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Abstract

Poisson’s ratio in chiral Cosserat elastic solids is considered. Chirality allows the Poisson’s
ratio to exceed classical bounds, even if the material is directionally isotropic and all elastic
moduli are within thermodynamic limits based on strain energy density. Poisson’s ratio in
chiral rods depends on the chiral elastic constants as well as on the shear and bulk moduli,
assumed positive. Poisson’s ratio can be greater than 0.5 or smaller than -1 for slender chiral
specimens.

1 Introduction and rationale

Classically isotropic elastic solids have two independent elastic constants. At least four constants are
used: the Young’s modulus, shear modulus, bulk modulus and Poisson’s ratio. They are interrelated
so only two are independent. The range of Poisson’s ratio inferred from energy relations associated
with stability is from -1 to 0.5 for isotropic materials in three dimensions [1]. By now, negative
Poisson’s ratio materials [2] are well known [3, 4, 5]. Chirality, which admits a distinction between
left and right handed microstructure, has no effect in classical elasticity because the elastic modulus
tensor is fourth rank.

The Cosserat [6] theory of elasticity provides more freedom than classical elasticity. The range
of Poisson’s ratio for an isotropic Cosserat solid is the same as that for a classical solid. Non-
chiral Cosserat solids are predicted to exhibit size effects [7]. Many experiments on non-chiral
heterogeneous materials have been done, enabling the Cosserat elastic constants to be extracted
(see [8] and references therein).

Chiral structure on the scale of atomic structure in molecules has long been known to have
effects in chemistry [9]. In crystals and crystalline materials, chirality is associated with physical
properties such as piezoelectricity, pyroelectricity, and optical activity [10]. Chiral materials are
also called noncentrosymmetric or hemitropic. Classical elasticity provides no distinction between
left and right handed materials but Cosserat elasticity [6] also (with a micro-inertia term) called
micropolar elasticity [11], has sufficient freedom to accommodate chirality. Chiral Cosserat solids
can support initial stresses and skin effects [12]. Analysis of chiral Cosserat elasticity [13] has
enabled interpretation of experiments that disclose coupling between extension or compression and
twist deformation. Experiments reveal that designed chiral rib [14] [15] [16] lattices and surface [17]
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lattices exhibit coupling between axial compression and twist as anticipated by analysis of a chiral
Cosserat elastic rod. Bone [18] tendon [19] and liquid crystal elastomers [20] also exhibit stretch-
twist coupling. Size effects in Poisson’s ratio of chiral lattices have been observed; the magnitude
of these size effects depends on the lattice. Analysis of two dimensional negative Poisson’s ratio
chiral lattices revealed a Cosserat characteristic length comparable to the cell size [21]. Chiral
nano-wires [22] exhibited size dependent effects and surface effects. Chiral Cosserat solids have
also been predicted to exhibit coupling between temperature changes and twist deformation [23].
The objective of this study is to explore the influence of the chiral Cosserat elastic constants on
size effects in Poisson’s ratio.

2 Analysis

2.1 Chiral elastic solids

Chirality is incorporated in linear Cosserat elasticity via the following constitutive equations [13].
The material is assumed to be isotropic with respect to direction. Chiral solids are not invariant
to inversions of coordinates.

σkl = λεrrδkl + 2Gεkl + κeklm(rm − φm)+

C1φr,rδkl + C2φk,l + C3φl,k
(1)

mkl = αφr,rδkl + βφk,l + γφl,k + C1εrrδkl+

(C2 + C3)εkl + (C3 − C2)eklm(rm − φm)
(2)

The stress σij (force per unit area) in a Cosserat solid can be asymmetric. Moments per unit
area mkl balance the asymmetry. εkl is the strain tensor. eklm is the permutation symbol. The
macro-rotation is ri = (eijkuk,j)/2 with u as displacement; φk is the micro-rotation which is the
rotation of points.

G is the shear modulus in the absence of gradients. Elastic constant λ has the same meaning
as in classical elasticity. Elastic constants α, β, γ are Cosserat elastic constants that quantify
sensitivity to gradients of local rotation. Elastic constant κ quantifies the coupling between local
rotation and rotation due to displacement gradient. Elastic constants C1, C2 and C3 quantify the
effect of chirality.

Characteristic lengths are defined to provide physical insight. When a length scale in an ex-
periment begins to approach a characteristic length, nonclassical effects including size effects in
bending and torsion [7] and reduction in stress concentration factors [24] [25] are predicted. The

characteristic length for torsion is `t =
√

β+γ
2G , and for bending, `b =

√
γ

4G .

The radial deformation of a chiral circular cylinder in response to an axial strain e is given [13]
by

ur(r) = −(ν0r +A9
C1 + C2 + C3

e(λ+ 2G)
I1(pr))e (3)

in which p2 = 2κ
α+β+γ

1
1−K2

0
and I1(pr) is the modified Bessel function of first order; r is the radial

coordinate and K0 is defined below. There is assumed to be no constraint upon rotation of the ends.
Nonclassical effects including stretch-twist coupling and size effects in Poisson’s ratio depend on the
chiral elastic constants C1, C2 and C3. The Poisson effect contains a component of homogeneous
deformation and a heterogeneous component of deformation that depends on radial coordinate
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r. The solution also contains a circumferential component of displacement that corresponds to
coupling between the applied stretch or squeeze deformation and a twisting response given by

uθ(r) = b0rze (4)

in which b0 is a function of the elastic constants. Because the strain is incorporated here, the
expression for b0 in [13] must be modified by factoring out the strain.

The homogeneous contribution in Equation 3 to the Poisson’s ratio of the chiral solid is given
by

ν0 =

∣∣∣∣∣∣
(`20 + (R/2)2)(R2/2) −`2R2/2 `23A11 −K2

1 (`22 + `23)A11 +K5A12

(K2 − 1)/2 −K3K0/`4 A30(1−K2
0 ) + (K2 −K2

1 )I1(pR)/R
(K3 − 1)/2 −K4/K0`4 (K3 −K4)I1(pR)/R

∣∣∣∣∣∣∣∣∣∣∣∣
(`20 + (R/2)2)(R2/2) −`2R2 `23A11 −K2

1 (`22 + `23)A11 +K5A12

(K2 − 1)/2 −K0(K3 + 1)/`4 A30(1−K2
0 ) + (K2 −K2

1 )I1(pR)/R
(K3 − 1)/2 −(K4 + 1)/K0`4 (K3 −K4)I1(pR)/R

∣∣∣∣∣∣
(5)

in which A11 = RI1(pR), A12 = R2I2(pR)/p and A30 = (pI0(pR))−I1(pR)/R) with I0, I1 and I2 as
the modified Bessel function of order 0, 1, and 2 respectively. The strain e has been factored from
columns in the determinants in [13] and divided for simplicity. The material is linear so Poisson
and other effects are independent of strain.

A9 in Equation 3 describing the heterogeneous contribution to Poisson’s ratio depends on the
elastic constants and the radius as follows.

A9 =

e

∣∣∣∣∣∣
(`20 + (R/2)2)(R2/2) −`2R2 −`1R2/2

(K2 − 1)/2 −K0(K3 + 1)/`4 −K3K0/`4
(K3 − 1)/2 −(K4 + 1)/K0`4 −K4/K0`4

∣∣∣∣∣∣∣∣∣∣∣∣
(`20 + (R/2)2)(R2/2) −`2R2 `23A11 −K2

1 (`22 + `23)A11 +K5A12

(K2 − 1)/2 −K0(K3 + 1)/`4 A30(1−K2
0 ) + (K2 −K2

1 )I1(pR)/R
(K3 − 1)/2 −(K4 + 1)/K0`4 (K3 −K4)I1(pR)/R

∣∣∣∣∣∣
(6)

The predicted Poisson’s ratio is determined at the surface, r = R, where measurements are
done. In the determinant in the denominator, the subscript of K2 in the third column, second row
had been omitted in [13]. This typographical error is corrected here.

2.2 Physical meaning of constants

As for elastic constants in relation to constants in Equation 1 and in Equation 2, Young’s modulus
is E = G(3λ+2G)

λ+G . The classical Poisson’s ratio is ν = λ
2λ+2G .

The quantity 2µ + κ in the earlier notation used by A. C. Eringen [11] and other writers [13]
corresponds to 2G in which G is the classical shear modulus in the absence of gradients. This
earlier notation, if used, requires caution [26].

The characteristic length for torsion `t =
√

β+γ
2G corresponds to `0 in the chiral analysis. This

characteristic length quantifies the length scale at which Cosserat effects become prominent. If
the experimental length scale is less than about a factor 20 greater than the characteristic length,
Cosserat effects are observable.

The characteristic length `24 = α+β+γ
λ+2G in the chiral analysis may be written `24 =

`2t
Ψ

1−2ν
1−ν .
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As for dimensionless coupling constants, K0 is a dimensionless measure of the degree of chi-

ral coupling; it is given by K2
0 = (C1+C2+C3)2

(α+β+γ)(λ+2G) . This may be expressed K2
0 = (C1 + C2 +

C3)2Ψ 1
`2t

1
2G2

1−2ν
1−ν .

K1 = K0

√
K3 is a related dimensionless measure of the degree of chiral coupling.

K2 = α
α+β+γ is a dimensionless ratio of isotropic Cosserat elastic constants that represent

rotation sensitivity.
The polar ratio Ψ = β+γ

α+β+γ is a dimensionless ratio of rotation gradient sensitivity elements; it
is analogous to Poisson’s ratio in classical elasticity. Its allowable range is from 0 to 1.5. Because
K2 = α

α+β+γ , we have K2 = 1−Ψ.

K3 = C1
C1+C2+C3

is a dimensionless ratio of chirality coefficients.

K4 = λ
λ+2G . Because the classical Poisson’s ratio is ν = λ

2λ+2G , K4 = ν
1−ν .

K5 = κ
2G = N2

1−N2 in which the coupling number N =
√

κ
2G+κ represents the degree of coupling

between macro and micro rotations. Nonclassical effects such as size effects [7] and reduction is
stress concentration factor [25] are known to increase with N .

2.3 Stability considerations

As for the classical constants, an unconstrained specimen of an isotropic classical solid will be
stable provided the shear modulus G and the bulk modulus B = λ+ 2G/3 are positive. This range
corresponds to an assumption of a positive definite strain energy [1]. The corresponding range for
Poisson’s ratio ν is −1 < ν < 1

2 .
For isotropic Cosserat solids, stability analysis via an assumption of positive definite strain

energy [11] provides ∞ > κ > 0; γ > 0; −γ < β < γ; 3α + β + γ > 0. These imply `2b > 0, `2t > 0
and 1 > N2 > 0; also 0 < Ψ < 3/2.

For directionally isotropic chiral solids, similar stability analysis [13] provides

K2
10 =

(C2 + C3)2

4(2G)(β + γ)
< 1 (7)

K2
11 =

(C2 − C3)2

4(2G)(γ − β)
< 1 (8)

K2
12 =

(3C1 + C2 + C3)2

4(3λ+ 2G)(3α+ β + γ)
< 1. (9)

In the present study, all elastic constants have been assumed to be within the above stability
limits. For finite size objects of a Cosserat solid, less stringent conditions may apply [27] [28].
The reason is that that terms containing elastic constants are assumed to be independent and
uncoupled in the stability analyses but in Cosserat solid objects of finite size, the variables are in
fact coupled. Materials near the limits of stability with N = 1 are predicted to exhibit folding and
faulting phenomena [29, 30].

3 Results: Poisson effect

The following plots show Poisson’s ratio vs. specimen radius for several ranges of parameters. It
is initially assumed that α = 0, so Ψ = 1. It is also assumed that `t = 5 mm and that β/γ =
0.99. We assume also κ = 33G for the present study of Poisson’s ratio. Large κ has been assumed

4



for analysis of experiments on stretch twist coupling [14]. Observe that κ → ∞ implies p → ∞
in which κ quantifies the coupling between micro and macro rotations. This also corresponds to
N → 1, consistent with observation for some of the lattices we have studied. The case N → 1 also
maximizes Cosserat size effects and reductions in stress concentration factor.

Variation in C1 is considered first with C2 = C3 = 0. Different classical Poisson’s ratios are
assumed. Observe in Figure 1 that if the classical Poisson’s ratio is from 0.35 to 0.45 the effect
of chirality via variation of C1 is minimal. As the classical Poisson’s ratio becomes smaller, the
effect of chirality is larger. If the classical Poisson’s ratio is negative, there is a pronounced effect
of chirality for sufficiently small specimens as shown in Figure 1.

Figure 1: Poisson’s ratio vs. radius for various C1; classical Poisson’s ratio 0.45, 0.35, 0, -0.5.
Poisson’s ratio is independent of size in classical solids and non-chiral Cosserat solids as indicated
by the horizontal line.

Poisson’s ratio can be below -1, the classical lower limit, as shown in Figure 2. If C1 is increased
to 75000 N/m, Poisson’s ratio decreases to -36 but only for the smallest radius in the range. If
C1 < 0, the Poisson’s ratio excursion is not as negative as it is for positive C1. An increase in α
also reduces the variation in Poisson’s ratio with radius.

Variation of C2 with C1 = C3 = 0 has considerably less effect on Poisson’s ratio than variation
of C1 as shown in Figure 3.

If β = 0, then one can allow larger values of C2 and remain within the stability limits (see
Equation 8). For a starting classical Poisson’s ratio of 0.45, and with C3 = −0.9C2 and with C1 =
0, the chirality allows the Poisson’s ratio to exceed 0.5 as shown in Figure 4. If C2 < 0 with the
above assumptions, Poisson’s ratio tends to negative values for small R.

The characteristic length `t larger be considerably than the microstructure size, permitting
experiments on specimens with R > `t as demonstrated by experiments on foams.
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Figure 2: Poisson’s ratio vs. radius for various C1; classical Poisson’s ratio -0.9. Poisson’s ratio is
independent of size in classical solids and non-chiral Cosserat solids as indicated by the horizontal
line.

Figure 3: Poisson’s ratio vs. radius for various C2; classical Poisson’s ratio 0.45, 0.35, -0.5, –0.9.
Poisson’s ratio is independent of size in classical solids and non-chiral Cosserat solids as indicated
by the horizontal line.
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Figure 4: Poisson’s ratio vs. radius for various C2 with C3 = −0.9C2; classical Poisson’s ratio 0.45.
Poisson’s ratio is independent of size in classical solids and non-chiral Cosserat solids as indicated
by the horizontal line.

4 Discussion and Conclusions

The classical range of Poisson’s ratio is derived from the assumption of positive definite strain
energy which requires the bulk and shear moduli to be positive. It is also tacitly assumed that bulk
and shear deformations are independent. In a chiral solid, there is stretch-twist coupling so these
deformations are linked and are not independent. The Poisson’s ratio predicted in a chiral solid
differs from the assumed classical value which is always taken to be within the classical stability
range. No internal energy has been added to obtain Poisson’s ratios outside the classical range.
All assumed moduli are within classic stability ranges. This is in contrast to the approach taken
in composites with a negative stiffness constituent [31].

Expansion of the Poisson’s ratio range is considered to arise from oblique redirection of forces
applied during compression or tension. Observe that C1 couples the dilatational part of the de-
formation field to the couple stress in Equation 2. When the classical Poisson’s ratio is negative,
the material is compliant in dilatation compared to shear, so chirality via C1 has a substantial
influence. By contrast, C2 and C3 couple the shear part of the deformation; the effect on Poisson’s
ratio is smaller than that of C1 as shown in Figure 3. If one allows larger values of C2 via choosing
β = 0 and if one maximizes C3 − C2, then Poisson’s ratio can exceed 0.5 as shown in Figure 4. In
this example the classical Poisson’s ratio is large so the material is compliant in shear compared
with dilatation.

As for comparison with experiment, chiral cubic lattices designed for negative Poisson’s ratio
exhibited squeeze twist coupling [14]. Poisson’s ratio in these lattices was negative and exhibited a
pronounced size dependence. Chiral gyroid lattices were observed to exhibit squeeze-twist coupling
[15]. Poisson’s ratio of the gyroid lattice was about 0.3 with little dependence on radius in contrast
to the above.

It is concluded that chirality allows Poisson’s ratio of directionally isotropic solids to exceed
classical bounds, even if all elastic moduli are within thermodynamic limits based on strain energy
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density. Poisson’s ratio can be greater than 0.5 or smaller than -1 if the chiral specimen is sufficiently
slender.
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