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a  b  s  t  r  a  c  t

Collagen  fibers  and  fibrils  that comprise  tendons  and  ligaments  are  disrupted  or  damaged  during  injury.
Fibrillogenesis  during  healing  produces  a  matrix  that  is initially  quite  disorganized,  but  remodels  over
time to resemble,  but not  replicate,  the  original  roughly  parallel  microstructure.  Quantification  of  these
changes  is  traditionally  a laborious  and  subjective  task.  In  this  work  we  applied  two  automated  tech-
niques,  fast  Fourier  transformation  (FFT)  and  fractal  dimension  analysis  (FA)  to  quantify  the  organization
of  collagen  fibers  or  fibrils.  Using  multi-photon  images  of  collagen  fibers  obtained  from  rat  ligament
we  showed  that  for healing  ligaments,  FA  differentiates  more  clearly  between  the different  time-points
during  healing.  Using  scanning  electron  microscopy  images  of  overstretched  porcine  flexor  tendon,  we
showed  that  combining  FFT  and  FA  measures  distinguishes  the  damaged  and  undamaged  groups  more
clearly  than  either  method  separately.

© 2011 Elsevier GmbH. All rights reserved.

Introduction

Tendons and ligaments are composed of a hierarchical system
of collagen fibrils, fibers, and bundles of fibers, which are approxi-
mately parallel in their organization. Injured tendons and ligaments
or those subjected to sub-failure damage by overstretching exhibit
a loss of organization in the ruptured fibers and fibrils. During
healing, fibrillogenesis produces a matrix that is quite disorga-
nized in the early granulation tissue, but remodels over time to
resemble (but not replicate) the original microstructural organiza-

Abbreviations: 2D, two-dimensional; AR, aspect ratio (of 2D FFT); FA, fractal
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tion. The collagen in excised specimens can be visually examined
using variety of imaging techniques including scanning electron
microscopy (SEM) and multi-photon imaging to identify these signs
of damage. With the aid of a microscope, an observer can eas-
ily recognize these signs of damage, but it is difficult to quantify
results for scientific inquiry. Ranking systems are subjective and
often not repeatable between researchers. Therefore, it would be
advantageous to have an objective and repeatable method to quan-
tify disruption and damage in fibers and fibrils. Subjectivity can be
removed from image characterization by removing the element of
human judgment. This requires the implementation of an image
analysis program capable of recognizing and quantifying patterns.
One method often employed to remove subjectivity when analyz-
ing sample organization is the two-dimensional (2D) fast Fourier
transform algorithm (FFT). A single dimension FFT algorithm breaks
an electronic signal into its component frequencies and then counts
how often those frequencies occur. A 2D FFT performs a similar
operation on a two-dimensional signal, or image computing spatial
frequencies within the image in radial directions. Using this tech-
nique, the 2D FFT can quantify the distribution of fiber orientation
in an image of collagen fibers. The shape of the spatial distribution
of the data, i.e. the plot of spatial frequencies in orthogonal, planar
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Fig. 1. Examples of fractals with dimensions. (a) A line is one-dimensional [Frac-
tal  Dimension = 1.0000]. (b) The Koch Curve is somewhere between one and two
dimensions [Fractal Dimension = 1.2619]. (c) The Sierpinski Triangle is closer to two
dimensions that the Koch Curve [Fractal Dimension = 1.5849]. (d) A solid rectangle
is  two-dimensional [Fractal Dimension = 2.0000].

directions, often projects into an elliptical shape. This allows for
quantification by an aspect ratio (AR) of the major and minor axes
of the ellipse. An image with a preferred direction of fiber orien-
tation has a higher AR. Two-dimensional Fourier analysis has been
used to quantify organization of collagen fibrils in the dermis (de
Vries et al., 2000), the cochlea (Tsuprun and Santi, 1999), and liga-
ment (Bashford et al., 2008; Cicchi et al., 2010; Vidal Bde and Mello,
2010). The technique has been extensively validated in ligament,
with the fiber directionality corresponding directly with regions of
damage (Sereysky et al., 2010).

A second technique for objectively quantifying organization in
an image is fractal analysis (FA). First used by Benoit Mandel-
brot in 1975, the word “fractal” refers to a figure with a fractional
dimension. It is necessary to point out that a true fractal has
smaller structures that ramify endlessly. Physical objects can only
be approximated by fractals because the atomic size limits the
size of the smallest structure. Images are limited by their resolu-
tion. A simple example of this repeating self-similarity is the Koch
Curve (also known as the Koch Snowflake), in which four lines
of equal length are arranged so that they are the length of only
three segments and then four of the line groups are treated the
same way (Fig. 1b). There are many well-known fractals occurring
in multiple dimensions, including the Sierpinski Triangle (Fig. 1c)
and the more complex Julia and Mandelbrot Sets. Fractals are also
commonly seen in nature: fjords, cloud shapes, trees (Mandelbrot,
1982), and artery branching (Gazit et al., 1997). Each of these fractal
patterns has a degree of self-similarity that can be measured using
a fractal number. It is necessary to point out that a true fractal has
smaller structures that ramify endlessly. Physical objects can only
be approximated by fractals because the atomic size limits the size
of the smallest structure. A fractal dimension describes the amount
of space and self-similarity of the structure. For example, a line
exists in a single dimension, therefore it has a fractal dimension of
1 (Fig. 1a), while a square exists in two dimensions and has a fractal
dimension of 2 (Fig. 1b). A simple fractal like the Koch Curve has a
larger “dimension” than a line but not as much as a square; its fractal
dimension is 1.26, between 1 and 2 and the Sierpinski Triangle has a
greater fractal dimension of 1.58. Fractal analysis has been applied
in several different biological and medical applications (Lopes and
Betrouni, 2009). For collagen and related structures it has been
used to quantify the periodontal bone-ligament interface (Wagle
et al., 2005; Madan et al., 2007; Bosshardt et al., 2008), muscle

attachment sites (Zumwalt, 2005), and ACL bone-ligament inter-
face (Buckland-Wright et al., 2000).

In this study we  perform both Fourier (FFT) and fractal (FA) anal-
ysis on images of tendon and ligament collagen at various levels
of organization. One group of specimens was evaluated by multi-
photon images of rat medial collateral ligament (MCL) healing. The
other group of specimens is comprised of SEM images of porcine
digital flexor tendon following overstretch injury. We  hypothesize
that both the aspect ratio and the fractal number will be altered as
a result of injury and these differences can be used to differentiate
between normal and damaged or healing tissues.

Materials and methods

Fourier analysis

The grayscale images were subjected to 2D fast Fourier trans-
formation analysis using Matlab (Mathworks, Natick, MA,  USA).
Each line of the image was broken down into its spatial frequency
components. Then histograms of both the horizontally occurring
frequencies and the vertically occurring frequencies were exam-
ined. For each direction, the spatial frequencies occurring between
the 9th and 10th percentiles were selected and plotted in 2D fre-
quency space (horizontal frequency values vs. vertical frequency
values). An ellipse was fit to the resulting data distribution. The
ratio of the long axis to the short axis was calculated for each image
and compared between groups.

Fractal analysis

Prior to fractal analysis, the images were converted from
grayscale to binary images using a threshold value that was
automatically determined using Matlab’s graythresh command
(Mathworks, Natick, MA,  USA). To improve contrast and avoid
scaling issues, the full-size image was  divided into 32 equally
sized regions and the automatic threshold value for each region
was  determined independently. The image sections were then re-
aggregated to form a binary representation of the original grayscale
image. Fractal analysis of each binary image was  performed using
a Matlab routine that calculated the fractal dimension using the
Minkowski–Bouligand dimension, also known as the “box count-
ing” dimension (Moisy, 2006). The box counting dimension is
determined by covering the image in successively smaller grids of
boxes and at each level counting how many boxes are required to
cover the image. The number of boxes is then plotted as a function
of the box size and the slope of the line is computed. If the slope of
the line remains constant as the boxes get smaller that slope value
is the fractal dimension. We confirmed that the slope of the line
was  approximately constant for each image and then averaged the
slope value for the three smallest box sizes to calculate the fractal
dimension for each image.

Image preparation

Multiphoton
Four groups of three skeletally mature male Wistar rats (pur-

chase weight 275–300 g, age two  months) underwent surgical
transection of the MCL  according to a procedure approved by the
University of Wisconsin-Madison Animal Care and Use Commit-
tee. Animals were then allowed to heal for 7, 14, 21, or 28 days,
according to group. A fifth group was  used as an intact control. After
collection, the ligament was longitudinally cryosectioned into 5 !m
thick sections, mounted on microscopy slides and stained with
Hematoxylin and Eosin (H&E). The healing region of the tendon was
then imaged using multiphoton microscopy to record the organi-
zation of collagen fibers. Multiphoton microscopy is a non-linear
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Fig. 2. Spatial frequency (arbitrary units of inverse length) distribution for intact vs. damaged tendon SEM images. Note the long and short axes of the ellipse used for the
quantification ratio.

imaging technique that excites endogenous fluorescent proteins
such as collagen. In this application, multiphoton images demon-
strate collagen organization more clearly than light microscopy.
The multiphoton system was designed around a Nikon Eclipse
TE300 microscope and used a 5 W mode-locked Ti:sapphire laser
(Spectra-Physics-Millennium/Tsunami, Mountain View, CA, USA)
at a wavelength of 890 nm to generate multi-photon excitation
(Wokosin et al., 2003) with a 445 nm band pass filter to allow only
second harmonic generation (SHG) through. Images were collected
using a Nikon 40× SuperFluor lens (numerical aperture = 1.3). Three
images from the transected region were used for analysis.

Scanning electron microscopy
Five porcine digital flexor tendons obtained from an abattoir

were excised and preconditioned (to 2% strain) using a sinu-
soidal strain wave in a mechanical testing system (MTS Bionix,
Minneapolis, MN,  USA). Control specimens (n = 3) were removed
following preconditioning, whereas damaged specimens (n = 2)
were stretched to 13% strain at 10 mm/s  prior to removal.

Following removal from the testing system, all specimens were
stretched flat under mild tension and fixed in a 2% glutaraldehyde
solution. Specimens were then dehydrated in ethanol, freeze-
fractured in liquid nitrogen, dried in a critical point drying system,
and sputter-coated with gold prior to SEM imaging. Images were
taken at 2000× magnification using a Hitachi S570 LaB6 scanning
electron microscope with 10 keV excitation (Hitachi High Tech-
nologies, Schaumburg, IL, USA). Fifteen representative images from
each group (damaged and normal) were chosen.

Statistics

All groups were compared using unpaired, two  tailed Student’s
T-tests. Significance was set at p = 0.05.

Results

Multiphoton microscopy

Multiphoton images of healthy ligaments (the control group of
rats) showed well-organized collagen with fibers running in the
same axial direction (Fig. 3c). After ligaments had been transected
and allowed to heal for one week, images of the healing region
of the ligament showed disorganized collagen fibrils, with no pre-
ferred direction of alignment (Fig. 3d). As healing progressed the
collagen structure began to preferentially align along the direction
of loading, until at four weeks post injury it looked similar to the
tissue before injury (not pictured). p-Values are shown in Table 1.

The change in fractal number mimicked the differences
described both qualitatively and quantitatively using FFT analy-

Fig. 3. SEM images of (a) undamaged and (b) damaged tendon at 2000× magnifi-
cation and multi-photon images of (c) healthy and (d) 7 days post injury tendon at
40×  magnification.

sis for the multiphoton images. For all intermediate healing time
points the FFT aspect ratio was significantly lower than the intact
ligament and at day 28 the ligament had recovered to levels similar
to the intact ligament (Fig. 4a and Table 1). However, the intermedi-
ate healing time points did not show significant differences relative
to one another (Table 1).

The fractal analysis technique showed significant differences
between time points for the healing multiphoton images (Fig. 4b).
The fractal number for intact ligament was 1.807 (standard devi-
ation ±0.011). At 7 days post-injury the fractal number dropped
significantly to 1.728 (p < 0.001). As the healing progressed the frac-
tal number increased significantly relative to each of the proceeding

Table 1
Statistical significance for FFT aspect ratio analysis of multiphoton images
(*p < 0.001).

Day Intact 7 14 21 28

Intact × 0.000* 0.000* 0.000* 0.057
7 × 0.584 0.273 0.000*

14 × 0.574 0.000*

21 × 0.000*

28 ×
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Fig. 4. (a) The average FFT aspect ratio decreases after injury, then recovers four weeks after injury. Statistical significance is shown in Table 1. (b) The average fractal number
for  multi-photon images decreases after injury, and then increases over healing time. Error bars in both figures represent standard deviation. Statistical significance is shown
in  Table 2.

Table 2
Statistical significance for fractal analysis of multiphoton images (*p < 0.001,
ˆp < 0.01).

Day Intact 7 14 21 28

Intact × 0.000* 0.000* 0.002  ̂ 0.698
7  × 0.000* 0.000* 0.000*

14 × 0.066 0.000*

21 × 0.004ˆ
28 ×

time points with the exception of 21 days relative to 14 days. The
fractal number over healing time also remained significantly lower
than that of the intact tendon until four weeks post injury (day 28)
when it had returned to 1.805. p-Values are shown in Table 2.

Fractal analysis differentiated more clearly among the different
time points, showing significant differences relative to preceding
time points (Table 2) while the FFT aspect ratio method showed
a trend (Fig. 4b) but no significance for the days relative to one
another (Table 1).

Scanning electron microscopy

SEM images of control specimens showed organized, intact fib-
rils without breaks (Fig. 3a). The fibrils were mainly oriented along
the long axis of the tendon. Images of overstretched specimens
showed broken fibrils, disrupted groups of fibers, and general dis-
organization (Fig. 3b). While many fibrils were still oriented along
the long axis of the tendon, the ends of broken fibrils followed
no pattern, giving the damaged tendon an overall disorganized
appearance. For normal tendon tissue the ellipse generated by the
two-dimensional FFT analysis was elongated (Fig. 2a), giving an
aspect ratio greater than one (average 2.36, standard error 0.21).
The ellipse generated by the analysis for the damaged tendon
tended to be more circular (Fig. 2b), leading to an aspect ratio
closer to one (average 1.57, standard error 0.06). The aspect ratio
was significantly higher in images from normal specimens than in
comparable images from damaged specimens (p < 0.001).

The fractal dimension algorithm returned significantly higher
(p < 0.001) values for images of the damaged specimens, with an
average value of 1.76 (standard error 0.012), than for the images of
normal specimens, with an average value of 1.71 (standard error
0.007).

Fig. 5. Fractal number as a function of FFT aspect ratio for intact vs. damaged SEM
images of pig flexor tendon. Note the distinction between groups that appears when
the  two  are plotted together.

When the fractal number is plotted as a function of the aspect
ratio for each image (Fig. 5), the mean values for normal vs. dam-
aged tendons are very different.

Discussion

We  hypothesized that both the aspect ratio and the fractal num-
ber would be altered after injury and indeed, our results show
that both Fourier analysis and fractal analysis are capable of dif-
ferentiating between healthy and healing or damaged collagenous
tissue.

With the multiphoton images we found that during healing both
the FFT aspect ratio and the fractal number initially decreased, then
recovered over the healing time course. The reorganization of col-
lagen fibers over the time course of healing is well established,
however, it is usually characterized using a tedious and subjec-
tive visual ranking process (Chamberlain et al., 2009). Recently it
has been shown that quantification of collagen organization can be
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performed using Fourier analysis (Sereysky et al., 2010). Our results
show that the fractal analysis technique has a greater sensitivity to
the progression of healing using the same set of healing tendon
images. This suggests that fractal analysis individually or in com-
bination may  be a stronger tool for analyzing the organization of
collagen fibers.

SEM images of normal and damaged tendon show an increase
in fractal number and a decrease in aspect ratio after damage.
Using FFT analysis and fractal analysis in combination works well
for quantifying overstretch damage in porcine flexor tendon. Our
results suggest that FFT analysis by itself would be problematic
to distinguish between the normal and damaged tissue, however,
when the two techniques are combined they clearly distinguish the
two groups.

We  found that SEM images of normal tendon have a lower frac-
tal number than damaged tendon, since damaged tendon is less
regular with bent and broken fibrils. This is the opposite of the
effect observed in the multi-photon images, where the fractal num-
ber decreases with fiber disorganization. This discrepancy occurs
because of differences in what is being imaged. The SEM images
of the overstretched tendon are looking at broken fiber ends and
irregularities in a field of tendon fibrils. Multiphoton images are
examining only collagen fiber organization, thus early on, while
the collagen is developing (days 7–21), there is more space between
the newly forming collagen fibrils (Fig. 3c and d), leading to a lower
fractal number in the healing images than in healthy images, where
the collagen fills the image in a regular pattern. If fractal analysis
were to be applied to the H&E images of the healing ligament the
fractal number would increase because it would measure general
disorganization, instead of collagen only.

In conclusion, we found that both Fourier analysis and frac-
tal analysis have potential to significantly decrease the burden
of manually and subjectively quantifying collagen organization in
damaged, diseased and healing tissues. These techniques also have
potential value for other imaging modalities, including medical
imaging with ultrasound or MRI. As such, these methods may  be
useful objective tools for tissue characterization and diagnostics,
but efficacy must be interpreted individually by modality and appli-
cation.
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