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Abstract
Distributions of stress and strain in composite and cellular materials can differ significantly

from the predictions of classical elasticity. For example, concentration of stress and strain around
holes and cracks is consistently less than classical predictions. Generalized continuum theories such
as micropolar (Cosserat) elasticity offer improved predictive power. In this article Saint-Venant end
effects for self equilibrated external forces in micropolar solids are investigated in two dimensions.
A two dimensional finite element analysis is used which takes into account the extra degrees of
freedom, to treat the problem of localized end loads acting upon a strip. The rate of decay of strain
energy becomes slower in a two dimensional strip as the micropolar characteristic length l  is
increased (for l sufficiently less than the strip width). For the strip geometry a Cosserat solid
exhibits slower stress decay than a classical solid.

Introduction
Saint-Venant's principle is useful in that it permits the application of elasticity solutions in

many practical situations in which boundary conditions are satisfied in the sense of resultants rather
than pointwise. By invoking Saint-Venant's principle, one assumes that the effect of self
equilibrated loads on an object is purely local, and that stress due to such loads decays rapidly with
distance. Studies of Saint-Venant's principle in elastic materials are reviewed by Horgan and
Knowles 1  and by Horgan 2. In contrast to the usual case of rapid stress decay, self equilibrated end
stresses can decay slowly in highly anisotropic solids 2-5. Slow stress decay also occurs in
sandwich structures 6 with core made of isotropic solids with Poisson's ratios approaching the
upper limit 1/2, or in cylindrical rods made of material with Poisson's ratio approaching the lower
limit 7 -1. Cases of slow stress decay are important in that many engineering decisions are made
assuming Saint Venant's principle to hold. Saint-Venant's principle is also of interest in the
localization of damage in composite materials.

We consider here the effect of material microstructure size on Saint Venant's principle. The
effect of a nonzero microstructure size can be accounted for by generalized continuum theories
which allow additional degrees of freedom associated with the microstructure. Micropolar elasticity,
also called Cosserat elasticity, in which the points in the continuum can rotate as well as translate, is
one of the simplest of these theories 8-10. Micropolar elasticity has a natural characteristic length
scale associated with the theory 11 . Micropolar elasticity has been studied experimentally in human
bone 12  and several cellular solids 13, 14. Micropolar elasticity has six elastic constants in the three
dimensional isotropic case, in contrast to classical elasticity in which there are two. The
corresponding engineering elastic constants (some of which are related) are Young's modulus E,
shear modulus G, Poisson's ratio ν, two characteristic lengths l t, lb (for torsion and bending) a
coupling number N (0≤ N ≤ 1) which quantifies the intensity of interaction between the
displacement and rotation fields, and a polar ratio Ψ analogous to Poisson's ratio. The case N = 0 is
problematical analytically 15 , and caution is to be exercised numerically. The case N = 1 is
equivalent to constrained 'couple stress theory' 16  in which the local rotation is assumed equal to the
macro-rotation associated with displacement gradients.

Saint Venant's principle has been studied for micropolar media 17 . Energy inequalities were
developed, and it was shown that the decay of strain energy along a cylinder is exponential as it is in
classical elastic solids 5. However it is not obvious from the analysis whether the rate of decay of
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energy is larger or smaller in a micropolar solid in comparison with a classical elastic solid. It is the
purpose of this study to make such comparisons of decay rates in two dimensions, using finite
element analysis. The full range of Poisson's ratio -1 ≤ ν ≤ 0.5 is incorporated in the analysis in
view of the fact that negative Poisson's ratio materials can be fabricated 18 .

Cosserat solids
The constitutive equations for a linear isotropic Cosserat  elastic solid 8, 9  also known as a

micropolar 10 solid are, in the continuum formulation of Eringen:
τkl =  λεrr δkl + (2µ + κ )εkl + κeklm(r m- φm) (1)

mkl =  α φr,r  δkl + βφk,l + γφl,k (2)
The usual summation convention for repeated indices is used throughout and the comma denotes
differentiation with respect to spatial coordinates. τkl is the force stress, which is a symmetric tensor

in classical elasticity but it is asymmetric here. mkl is the couple stress or moment per unit area, εkl =
(uk,l + ul,k)/2 is the small strain, uk is the displacement, δkl  is the Kronecker delta,  and eklm is the

permutation symbol. The microrotation φk in micropolar elasticity is kinematically distinct from the
macrorotation rk = (eklmum,l)/2. In three dimensions, the isotropic micropolar elastic solid requires

six elastic constants λ, µ, α, β, γ, and κ for its description. The following technical constants

derived from them are 10, 11: Young's modulus E, shear modulus G; Poisson's ratio ν, characteristic

length for torsion lt, characteristic length for bending lb, coupling number N, and polar ratio Ψ. In

two dimensions, only four independent constants survive, e.g. E, ν, l , N. Various foams have been
shown to behave as micropolar solids; experimental work is reviewed by 14 . Classical elasticity
corresponds to the special case of micropolar elasticity in which l → 0.

By using arguments similar to those of classical elasticity, the above equations can be
reduced to two-dimensional problems.  In Plane Strain Problem, those equations are expressed in
matrix form as,
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where, εzz = εxz = εzx = εyz = εzy = 0 and φx = φy = 0 are assumed.  The engineering material
constants for micropolar elasticity are as follows:

. Characteristic Length: l2 = 
γ

4µ+2κ
(5)

. Coupling Factor: N2 = 
κ

2µ+2κ
(6)



3

. Poisson's Ratio: νm = 
λ

2µ+2λ+κ
(7)

. Young's Modulus: Em = 
(2µ+κ)(3λ+2µ+κ)

2λ+2µ+κ
(8)

Eringen 10  refers to a quantity µ* = µ − κ/2, with µ as the observed Lamé shear modulus in the
absence of strain gradients. The subscripts m given to Young's modulus and Poisson's ratio refer to
'micropolar', however these constants are the observable constants extracted from a simple tension
experiment in the absence of strain gradients. Using the engineering constants, equation (3) can be
expressed in Generalized Plane Strain formulation.
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By substituting N = 0 into equation (9) and using the relationship µ* = µ − κ/2 in equation (7),

where µ is the classical Lamé shear modulus, the constitutive equation for the classical Plane Strain
Problem  can be recovered.

The Plane Stress Problem  for micropolar elasticity can be formulated by substituting τzz = τxz = τzx

= τyz = τzy = 0 and φx = φy = 0 into equations (1) and (2) and expressed as:
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and
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Equation (11) may by also expressed in Generalized Plane Stress form using the engineering
constants of equations (5) to (8):
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By substituting N = 0 in Eq. (13) and using the relationship µ* = µ - κ/2 in Eq. (7) in which
µ is the classical Lamé shear modulus, the constitutive equation for the classical plane stress problem
can be recovered.

The End Problem for a Plane Strip: Finite Element Model
A displacement type finite element analysis program called MIRACS (Microrotation and

couple stress), which takes into account the degrees of freedom of the micropolar solid 19-24, was
used for the present study. In the literature, several other finite element methods are known to exist.
These include the pioneering work by Oden, et al 25 , whose formulation is based on the constrained
couple stress theory, and others 26 . However, none of these numerical results was compared with
known analytical solutions. The validity of MIRACS has been verified by calculating the stress
concentration factors around a circular hole in plane strain 24  and around a semicircular groove of an
axisymmetric micropolar solid.

Currently, MIRACS has three types of elements for two dimensional analysis. They are (a)
3-node constant strain triangular element, (b) 4-node isoparametric element, (c) 8-node isoparametric
element. In the present study, three finite element meshes as described in Table 1 were generated to
model a rectangular strip of isotropic micropolar solid: (A) 4-node isoparametric elements with 2548
elements and 2615 nodes, (B) 4-node isoparametric elements with 606 elements and 640 nodes, (C)
3-node constant strain triangular elements with 1160 elements and 638 nodes. All the meshes have
finer grids near the loads as shown in Fig. 1, which corresponds to the model (A). The strip was
240 units wide and 720 units long.

As for boundary conditions, the translational degrees of freedom of one node on the edge
opposite the load were  fixed, and the unloaded elements upon the boundary were given zero stress
and couple stress, with free displacement and microrotation. These conditions were insufficient in
that a singular matrix resulted in initial trials. It proved necessary to constrain the microrotation of
the above mentioned node as well (Fig. 1); owing to symmetry, that microrotation should be zero so
the only effect of the last constraint is stability. Self-equilibrated force systems applied to the model



5
included a dipole consisting of two concentrated forces oriented parallel to the strip edge (open
force); and a set of three concentrated forces oriented perpendicular to the strip edge (triforce). Fig. 1
illustrates the proportions of the strip with the two loading conditions for load separation distance df.

The material was assumed to be an isotropic micropolar solid, as described above. In the
finite element analysis, engineering material constants of l  = 0.1, N = 0.5, νm = 0.3 and Em = 104

were used as reference values. Only one parameter was changed at a time in order to determine the
dependence of strain energy on that particular parameter.

Definition of Strain Energy Decay
In the present study, five parameters have dimensions of [distance]: (i) the spacing between

forces df; the distance at which strain energy is examined dtest ; (iii) the micropolar characteristic
length l ; (iv) the lateral dimension of the strip dstrip; and (v) the mesh size.

Fig. 2 and Fig. 3 contain the numerical results of the strain energy distribution in response to
open force and triforce, respectively, along the line of symmetry of the FEM model (A) in Fig. 1, in
which 2548 isoparametric 4-node elements with 2615 nodes are used. The characteristic length l  is
varied. Both plots suggest a power law, giving rise to a curve which decreases linearly in a log-log
plot, for df < dtest <dstrip. Results for dtest <dstrip are discussed in detail, since this forms the near
field region in which complications of the finite size of the strip are not so apparent. To compare the
strain energy decay among various material parameters in the following sections of this article, the
strain energy decay slope was calculated via

slope = 
log(U1/U2)
log(d1/d2) . (15)

Here U is strain energy and d is position, and the subscripts indicate that two positions were used.
The strain energy density is given by Eringen 10;

U = 
1
2
 [λεkk  εll+ (2µ + κ )εklεkl] + κ(r k- φk)(r k- φk) +  

1
2
 [α φk,kφl,l+βφk,lφl,k+γφk,lφk,l]

For calculation, dtest was chosen as 40 and 70; these values are considerably less than the strip
width and correspond to the near field.

Results: decay of stress and of strain energy
 Table 2 and Table 3 give the comparisons of strain energy decays calculated using Eq. (15)

using the three FEM models mentioned above. It is observed that the Saint Venant decay of strain
energy is remarkably robust with respect to changes in the mesh, with computational error less than
2%, even though specific strains and stresses differ as much as 32% with mesh refinement, and
strain energy differs by as much as 52%. The differences are attributed to changes in the effective
stiffness of the model in the vicinity of load application points as the mesh is changed. Changes in
the spacing of the forces cause significant changes in the local stress distribution, but again the decay
rates do not vary much as shown in the tables. With confidence gained from these results, FEM
model (A) was used in the following studies. The abrupt drop off in strain energy after a distance of
200 is attributed to the finite width of the bar (240 units).

Another observation made from Table 2 and Table 3 is that the rate of energy decay is more
rapid in the triforce case than the open force. Moreover the effect of micropolar elasticity is less in
the triforce case.

Effects of characteristic length l
Fig. 4 shows the strain energy decay results for open force, for FEM Mesh-(A) in which

material parameters N = 0.5, νm = 0.3, and Em = 104 are fixed and characteristic length l  is varied.

We remark that classical elasticity corresponds to l → 0. Distances at which strain energy is
examined are dtest = 40 and 70 and spacing between forces are varied as df = 2, 8, 16, 24, and 32.
There is a relative minimum (lmin. = 7) of decay slope vs characteristic length and that minimum is
almost independent of the force separation distance df.  This behavior may be attributed to the edge
effect which comes from the finite width of the strip. That is, the edge is only 120 units away from
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the load application center and the effects might be saturated for larger l  exceeding about 100 units.
Verificational computation on this argument would require using a much wider strip model.

Fig. 5 shows the decay rates of force stress τx, for various characteristic lengths l . Couple
stress changes sign with distance and so does not lend itself to presentation on a logarithmic plot.

For the triforce case results for strain energy decay are shown in Fig.6. As in the Open Force
case, there strain energy decays slower with increasing characteristic length provided the length is
sufficiently smaller than the strip width. The rate of strain energy decay is more rapid in the triforce
case; moreover the dependence on the force separation distance df is less in triforce than in the open
force case. Couple stress m was observed in the numerical results to be proportional to l2. This is
reasonable since in the constitutive equations m is proportional to β and γ, which for constant elastic
modulus, are proportional to l2.

Effects of coupling number N
Fig. 7 shows the decay rate for Open Force, in which material parameters l  = 0.1,  νm =

0.3, and Em = 104 are fixed and coupling factor N is varied. Here again, FEM Model-(A) is used.
The same distances at which strain energy is examined and the same df are used as before.  It is
noted that decay rate is relatively insensitive to the variation of N.  Here again, mx fluctuates, while
my is robust under such variation. For triforce, as in the case of open force, the effect of micropolar
elasticity manifests itself as a weak dependence of strain energy decay or stress decay upon coupling
number.

The case N = 0 was found to be peculiar numerically in that additional constraints (a
restriction on the x displacements of two nodes) had to be imposed to prevent a singularity. The case
N = 0 also is known to present analytical difficulties 15 .

Effects of Poisson's Ratio:  νm

Fig. 8 shows the strain energy decay results for Open Force, in which material parameters l
= 0.1, N = 0.5, and Em = 104 are fixed and Poisson's ratio νm is varied. The FEM model, distance
for examination, and spacing between forces are the same as before.

In classical elasticity, Poisson's ratio has no effect on stresses in two-dimensional simply
connected problems.  However, strain energy decay rate is affected by Poisson's ratio in micropolar
solid. An apparent approach to an asymptote at the extreme values of Poisson's ratio 0.5 and −1 in
several numerical experiments (see Fig. 8) has its counterparts in analytical investigations of Saint
Venant's principle in classical elastic solids. The plane strain condition corresponds to the sandwich
structure considered by Choi and Horgan 6 in which decay rates for certain loading conditions
became slow for a Poisson's ratio approaching 0.5. Slow stress decay 7 has been predicted for shear
stress upon the end of a cylinder of material with a negative Poisson's ratio approaching the lower
limit -1.

Effects of Young's Modulus: Em
Strain energy decay results for open force are shown in Fig. 9 and for triforce in Fig. 10, in

which material parameters l  = 0.1, N = 0.5, νm = 0.3 are fixed and Young's modulus Em is varied.
All the other conditions remain the same. As can be seen, Young's modulus has absolutely no effect
on the strain energy decay, which is consistent with the classical elasticity theory. Moreover, E has
no effect on the decay of force stress. A more rapid decay rate is observed for triforce than for open
force and here again dependence on df is less in triforce, and the decay rates are independent of
Young's modulus.

Discussion
The influence of micropolar elasticity in the present study was to reduce the decay rates in

comparison with a classical solid. This result is specific to the geometry in question in the same way
that classical elastic results pertaining to Saint Venant's principle refer to specific geometries. For
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example, slow stress decay occurs in sandwich structures 6  with core made of isotropic solids with
Poisson's ratios approaching the upper limit 1/2. Slow stress decay 7 also occurs in cylindrical rods
made of material with Poisson's ratio approaching the lower limit -1.

As for physical realization of micropolar solids, several foams have been found
experimentally to behave according to micropolar elasticity, as reviewed by Lakes 14 . Fibrous and
laminated materials have been predicted to exhibit micropolar effects, while metals and glassy
polymers behave classically.

Conclusion
The rate of decay of stress or strain energy in a two dimensional strip loaded at one end
becomes slower as the micropolar characteristic length l  is increased, provided l  is
sufficiently smaller than the strip width. For the strip geometry a Cosserat solid exhibits
slower stress decay than a classical solid.
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(N = 0.5, ν = 0.3, E = 104)
7 Strain energy decay for open force as a function of coupling number N.
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