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When an elastic object is pressed, we expect it to resist by exerting a restoring force. A reversal of
this force corresponds to negative stiffness. If we combine elements with positive and negative
stiffness in a composite, it is possible to achieve stiffness greater than~or less than! that of any of
the constituents. This behavior violates established bounds that tacitly assume that each phase has
positive stiffness. Extreme composite behavior has been experimentally demonstrated in a lumped
system using a buckled tube to achieve negative stiffness and in a composite material in the vicinity
of a phase transformation of one of the constituents. In the context of a composite system, extreme
refers to a physical property greater than either constituent. We consider a simple spring model with
pre-load to achieve negative stiffness. When suitably tuned to balance positive and negative
stiffness, the system shows a critical equilibrium point giving rise to extreme overall stiffness. A
stability analysis of a viscous damped system containing negative stiffness springs reveals that the
system is stable when tuned for high compliance, but metastable when tuned for high stiffness. The
metastability of the extreme system is analogous to that of diamond. The frequency response of the
viscous damped system shows that the overall stiffness increases with frequency and goes to infinity
when one constituent has a suitable negative stiffness. ©2004 American Association of Physics Teachers.
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I. INTRODUCTION

Press on a spring or a seat cushion. Observe the f
required to achieve a given deformation. Stiffness refers
the ratio of the generalized force to the generalized displa
ment. For a spring the stiffness is the ratio of the force to
displacement: the usual spring constantk. For a three-
dimensional solid viewed as a continuum in the context
elasticity theory,1 the measure of stiffness is the ratio of th
stress~force per area! to the strain~displacement per length!,
referred to as a modulus. For example, Young’s modulus
the shear modulus are used for axial and torsional proper
respectively. Modulus is a continuum property independ
of the geometry and size of the material.

Objects usually resist deformation by a restoring for
Positive stiffness occurs when the deformation is in the sa
direction as the applied force, corresponding to a resto
force that returns the deformable body to its neutral positi
A negative stiffness object assists the imposed deformat
Negative stiffness involves a reversal of the usual directio
relationship between force and displacement in deformed
jects.

Negative stiffness is possible in systems with a pre-lo
To demonstrate negative stiffness, compress a plastic rule
that it forms a buckled S shape. Because a third force
presently be needed, the ruler’s ends can be held in plac
two books. This buckled shape is unstable, so hold it in pl
at the center inflection point. Then release the constraint,
observe the ruler suddenly snap to a new shape. This s
through instability is indicative of negative stiffness.2 One
can also provide two constraints~such as two fingers! spaced
by a small distance as shown in Fig. 1~a! and observe the
ruler snap from one to the other geometrical configurat
40 Am. J. Phys.72 ~1!, January 2004 http://aapt.org/a
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upon movement of the contact point. To demonstrate
negative stiffness of the S-shape ruler, constrain the ce
inflection point by pressing it with a spring or a deformab
ring. As you move the free end of the spring, observe h
the contact point moves. The direction of deformation of t
spring or ring reveals whether the buckled ruler resists
imposed deformation or assists it. This demonstration rev
the existence of negative stiffness, its instability, and the p
sibility of stabilizing it by a constraint.

Buckled tubes also exhibit negative incremental stiffne
that is, the stiffness of a material to perturbations abou
deformed configuration. Snap through3 also occurs on the
atomic scale in materials such as ferroelastic solids wh
exhibit a solid to solid phase transformation.

Negative stiffness is to be distinguished from a negat
Poisson ratio. Poisson’s ratio, denoted asn, is defined as the
negative lateral strain of a stressed body divided by its l
gitudinal strain. Based on the assumption of positive d
niteness of the strain energy for isotropic and homogene
solids,n ranges from21 to 0.5, which implies stability. Posi
tive definiteness does not specify the particular value of P
son’s ratio within that range. The value ofn for most solid
materials is between 0.25 and 0.33. Recently, foams witn
as small as20.8 have been made and analyzed.4,5 Whenn is
negative, materials become fatter in cross section when
are stretched. The stiffness of these foams is neverthe
positive.

Composite materials with negative stiffness constitue
and exhibiting extreme mechanical properties have been
ported in several theoretical and experimental studies.6–9 The
rationale for expecting extreme behavior in systems with o
negative stiffness phase can be understood by conside
the following thought experiments based on simple mecha
40jp © 2004 American Association of Physics Teachers
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cal spring models. For a parallel elastic system,Ec5E1V1

1E2V2 , whereEc , E1 , andE2 refer to the Young’s modu-
lus of the composite, phase 1, and phase 2, respectivelyV1

andV2 refer to the volume fraction of phase 1 and phas
with V11V251. The parallel elastic system has bond
phases which undergo the same strain and is known as
Voigt model.10 If we have parallel springs of spring consta
k, thenkc5k11k2 . Similarly, for a series system of spring
kc51/(k1

211k2
21). The system of springs in series is ana

gous to the Reuss model in composites.10 In the series sys-
tem, we can express the compliancej 51/k as j c5 j 11 j 2 . If
one stiffness is negative, the corresponding complianc
negative. We can sum a positive and negative complianc
obtain a zero compliance and hence an infinite stiffne
Therefore, extreme, and even singular stiffness is possib
heterogeneous systems with a negative stiffness constitu
However, a negative stiffness element by itself is unsta
and the series model also is unstable. If systems contai
negative stiffness can be made stable, they can be usefu
result of the unexpected large values of their physical pr
erties.

A material with negative stiffness is in unstable equili
rium, because the material has a higher positive stored
ergy at equilibrium, compared to neighboring possible eq
librium configurations. A material with negative stiffness c
be stable if it is constrained. For example, the buckled ru
is an example of such a stabilizing constraint. Also, a bu
led rubber tube has a negative stiffness component,6 and ex-
perimentally reveals a large peak in the mechanical damp
consistent with the prediction of the Reuss model with o
phase having negative stiffness. Mechanical damping is
dominating mechanism in energy dissipation of a vibrat
object. The idea that negative stiffness may occur has m
vated a series of explorations of extreme phenomena in c
posite materials. An analytical model of a distributed co
posite shows7 that isotropic composites can possess extre
stiffness and damping. Furthermore, the contribution
negative stiffness to physical properties of materials gi
extremely large coupling effects, such as piezoelectric, py
electric, and thermal expansion coefficients.11 In this article,
we analyze the stability of several spring systems with
negative stiffness element.

II. STABILITY ANALYSIS WITH THE
DEMONSTRATION OF A NEGATIVE STIFFNESS
ELEMENT

A stability analysis can be done using two different a
proaches. One approach is to investigate the energy l
scape of the system. This approach is only suitable for s
tems without energy dissipation. A region with a concave
energy profile, that is, the second derivative of the ene
function is greater than zero, indicates that the system
locally stable around the equilibrium position.12 An alterna-
tive method is to examine the eigenvalues of the pertur
dynamical system in the context of Lyapunov’s stabil
theorem.12,13This approach allows the effects of dissipatio
stored energy, and input power to be accommoda
Lyapunov’s indirect method will be adopted here for a s
tem with nonconservative components.

Lyapunov’s indirect method often is called the Routh
Hurwitz criterion in electrical engineering.13,14 This type of
stability analysis is used to analyze electronic circuits t
41 Am. J. Phys., Vol. 72, No. 1, January 2004
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contain elements such as capacitors which store energy,
amplifiers. The method predicts the stability of a dynam
system, governed by

ẋ5X~x!, ~1!

where X is a column-vector function ofx, x5x(t) is a
column-vector function of time, and the dot denotes diff
entiation with respect to time. Using the calculus of var
tions the perturbation of the dynamical system can be writ
to first order as

d

dt
~dx!5Juxe

•dx, ~2!

where the Jacobian matrixJ5]X/]x, or Ji j 5]Xi /]xj . The
subscriptxe indicates that the matrix,J, is evaluated at the
equilibrium point (dx/dt50), x5xe , whereX(xe)50.

Lyapunov’s indirect method states that if all the roots
the characteristic equation of the matrixJ of the perturbed
system in Eq.~2! have negative real parts, then the unp
turbed system, Eq.~1!, is asymptotically stable.14 However,
when the real parts of the eigenvalues are zero, we nee
investigate the imaginary part of the eigenvalues or the
duction in the eigenspace of the system. In this case
system will be stable when the imaginary part is nonzero15

To demonstrate the relation between Lyapunov’s indir
method and known cases of stability and instability, we fi
analyze a spring system with a negative stiffness elem
@see Fig. 1~b!#. The negative stiffness arises from a compre
sive pre-load in the springs. The equation of motion for t
system is

mẍ12FkhS 1

cosa
21D1 f 0Gsina5F, ~3!

wherex5x(t), anda5a(t) @see Fig. 1~b!#. The symbolf 0

represents the pre-load inside both theac andbc springs and
should be distinguished from the applied force,F. If we re-
place the displacementx by the generalized coordinatea, we
can express the equation of motion as

Fig. 1. ~a! Buckled plastic ruler to demonstrate negative stiffness.~b!. A
spring system that can exhibit positive or negative stiffness depending
the pre-load. The symbolk represents the spring constant, the anglea the
generalized coordinate describing the motion of the springs, andf 0 ~not
shown! the initial force in each spring.
41Y. C. Wang and R. S. Lakes
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~mhsec2 a!ä1~2mhsec2 a tana!ȧ212kh tana

22kh sina12 f 0 sina5F. ~4!

To investigate the stability arounda!1 ~corresponding to
a vertical position of the springs! andda/dt!1 with F50,
Eq. ~4! can be further simplified:

ä1
2 f 0

mh
a50. ~5!

To obtain the general form of the equation of motion for
dynamical system, as in Eq.~1!, the standard method, whic
is called the state-space technique for reducing higher o
ordinary differential equations to lower order ones, is used
that Eq.~5! can be rewritten as follows.15 The first step in
using Lyapunov’s indirect method to investigate the stabi
is to change a higher order differential equation to a sys
of first-order differential equations:

S ȧ
q̇ D5F 0 1

2
2 f 0

mh
0G S a

q D , ~6!

where q5da/dt. Near the equilibrium point,a50 and q
50, andJ is

Juxe
5F 0 1

2
2 f 0

mh
0G . ~7!

The characteristic equation ofJ is

l21
2 f 0

mh
50, ~8!

and hence,

l15A2u f 0u
mh

1 i0, ~9a!

l252A2u f 0u
mh

1 i0, ~9b!

for f 0,0 ~pre-compressed!, and

l1501 iA2 f 0

mh
, ~10a!

l2502 iA2 f 0

mh
, ~10b!

for f 0.0 ~pre-stretched!, wherel represents the eigenvalue
of J. We conclude that the system is unstable whenf 0,0,
because Re(l1).0 in Eq. ~9a!, and is stable whenf 0.0,
because Re(l1)5Re(l2)50 in Eq. ~10! with nonzero imagi-
nary parts. Note that the magnitude of the eigenvalues
be extremely large when the massm approaches zero. Th
eigenvalues with large positive real parts cause the syste
diverge rapidly from unstable equilibrium when the mass
small. Physically, it is understood that the system is loca
stable in a pre-stretched state~that is, tensile pre-load! like a
guitar string, but cannot be locally stable in a pr
compressed state~that is, a compressional pre-load!.

If we perform the stability analysis by the energ
method,16 the total energy and its second derivative can
expressed as
42 Am. J. Phys., Vol. 72, No. 1, January 2004
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U5kh2~seca21!212 f 0h~seca21!, ~11!

]2U

]a2U
a50

52 f 0h. ~12!

Clearly, if f 0.0, U is always greater than 0, and theU(a) is
concave up arounda50, that is,x50, the equilibrium point,
which indicates that the system is stable; iff 0,0, the system
is unstable. We see that the results of the stability anal
can be obtained from both methods, and a spring system
a compressional pre-load is unstable around the equilibr
point, a50, consistent with our physical intuition. The pre
compressed two-spring structure expresses the instabilit
unconstrained negative-stiffness materials.

The stability analysis performed here is crucial for und
standing the later analysis for extreme stiffness phenom
In the following we will embed a negative stiffness eleme
into other positive stiffness elements and investigate the
tem’s unusual mechanical properties. Then, the stab
analysis of a simplified spring model will be discussed.

III. ANALYSIS OF THE SPRING MODEL WITH
EXTREME STIFFNESS

A. Linear model: No pre-load

To understand the influence of negative stiffness com
nents on the overall stiffness of a mechanical system,
consider the two-dimensional spring system shown in Fig
It can be seen that the negative stiffness element is the i
set of springs when they are deformed to the vertical po
tion. ~As demonstrated in Sec. II, the pre-compressed tw
spring structure contains negative stiffness.! The springs are
assumed to be linear, with force–displacement relations
the form F5kx, wherek is a constant. Because the angl
change with deformation, a complete load–displacem
analysis requires us to adopt the equations of motion ba
on the deformed configuration, which is the central conc
of geometrical nonlinear analysis~see Sec. III B!. Geometri-
cal nonlinear analysis is a method of characterizing loa
displacement relations of a structure under a large defor
tion assumption.

Fig. 2. Two-dimensional spring system, undeformed configuration. T
anglesa andb are generalized coordinates. The spring elementsk1 , k2 , and
k3 , may have initial forces, denoted asf 1

0, f 2
0, and f 3

0 ~not shown!, and
changes of length,D1 , D2 , andD3 ~not shown!. The structure is symmetric
in loading conditions, geometry, and material properties. We may app
force Fa , but Fb50 throughout.
42Y. C. Wang and R. S. Lakes
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We first perform a linear analysis in the absence of p
load, to make a comparison with the geometrical nonlin
analysis presented later. The analysis is conducted using
energy method under the quasi-static assumption, that is
glecting inertial terms. The total strain energy of the syst
is, in terms of the displacementsxa andxb ,

U52U11U212U3 , ~13!

where U15k1 (xb sinu)2, U25k2 (xb2xa)2, and U3

5k3 (xa sinf)2. Hereu and f are the angles of springsbc
and ac from the vertical line,bd, indicating the initial con-
figuration of the system. The subscripts 1, 2, and 3 denote
bc or bd spring,ab spring, and theac or ad spring, respec-
tively. In other words, the subscripts 1, 2, and 3 represent
springs with the spring constant,k1 , k2 , and k3 , respec-
tively.

We now obtain the force displacement relation for t
spring system. We can do so by a direct application of Ne
ton’s second law or by an energy method such as C
tigliano’s ~first! principle,17 which states that for linear elas
tic materials under small deformation, the partial derivat
of the total strain energy with respect to an external force
equal to the displacement in the structure correspondin
that force. Specifically,Fi5]U(xj )/]xi , where i and j de-
note the direction of the generalized coordinates. The for
displacement relation for the system is

Fk212k3 sin2 f 2k2

2k2 k212k1 sin2 u G H xa

xb
J 5 HFa

Fb
J . ~14!

We can use Eq.~14! and the pre-determined parameters
stiffness and initial geometry of the system to obtain a s
cific load–displacement relation of the system. With the
sumption that the forceFb50, the degrees of freedom of th
system can be reduced from two to one. Equations~15! and
~16! show explicitly the interrelation between the two d
grees of freedom and the load–displacement relation at p
a, respectively:

xb5
k2

k212k1 sin2 u
xa , ~15!

xa5
k212k1 sin2 u

2k2k3 sin2 f12k1k2 sin2 u14k1k3 sin2 f sin2 u
Fa .

~16!

The ratio ofFa to xa in Eq. ~16! can be considered as th
effective stiffness of the linearized system in the incremen
sense. Equations~15! and~16! will be used to compare with
the following analysis, which incorporates the effects of p
load in a full nonlinear representation. Observe that as
might expect, all terms are positive and there are no sin
larities.

B. Geometrically nonlinear model including pre-load

We now analyze the spring model in Fig. 2 including t
effects of pre-load in the context of full geometrical nonli
earity. The goal is to explore interesting phenomena in
vicinity of the snap-through of springsbc andbd. The static
or dynamic equations of motion have to be expressed w
respect to the deformed configuration in order to fulfill t
requirement of geometrical nonlinear analysis. To derive
governing equations for the system, we introduce the ki
matic relations first, then the equations of motion, and fina
the constitutive equations.
43 Am. J. Phys., Vol. 72, No. 1, January 2004
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1. Kinematic relations

We let the anglesa andb represent the change ofu andf
after the deformation as shown in Fig. 2, and interpreta and
b as generalized coordinates. The change of the length
the springs, denoted byD, can be related to the generalize
coordinates as:

D15
h

cos~u2a!
2

h

cosu
, ~17!

D25~h tan~f2b!2h tan~u2a!!2~h tanf2h tanu!,
~18!

D35
h

cos~f2b!
2

h

cosf
. ~19!

Once the relationship between the deformation of spri
and the generalized coordinates is found, the total poten
energy of the spring system, including the contribution fro
initial forces, shown in Eq.~20!, will be used in the stability
analysis of the elastic system in the absence of damping16

U5k1D1
21

1

2
k2D2

21k3D3
212 f 1

0D11 f 2
0D212 f 3

0D3

1
~ f 1

0!2

k1
1

~ f 2
0!2

2k2
1

~ f 3
0!2

k3
. ~20!

Hereh is half of the vertical distance~the length of the line
cd! between the two hinges. We can also see that the rela
between the generalized coordinates and displacemen
pointsa andb is

xa5h tanf2h tan~f2b!, ~21!

xb5h tanu2h tan~u2a!. ~22!

2. Equations of motion

Newton’s second law for the mass pointsa andb gives the
following equations of motion in terms of the generaliz
coordinatesa(t) andb(t), and the displacementsxa(t) and
xb(t):

maẍa5Fa1 f 212 f 3 sin~f2b!, ~23!

mbẍb52 f 1 sin~u2a!2 f 2 , ~24!

where f 1 , f 2 , and f 3 are the internal forces in thek1 , k2 ,
andk3 springs, respectively, andma andmb are the masses a
points a and b, respectively. By substituting the kinemat
relations, Eqs.~21! and ~22!, into Eqs. ~23! and ~24!, the
equations of motion can be expressed in terms of the ge
alized coordinates:

AH ä

b̈J 1BH ȧ2

ḃ2J 5 H 2 f 1~ t !sin~u2a!2 f 2~ t !
pa1 f 2~ t !12 f 3~ t !sin~f2b!J ,

~25!

where

A5Fmbh sec2~u2a! 0

0 mah sec2~f2b!
G , ~26!
43Y. C. Wang and R. S. Lakes



n of
f motion,
B5F22mbh sec2~u2a!tan~u2a! 0

0 22mah sec2~f2b!tan~f2b!
G . ~27!

3. Constitutive relations

Hooke’s law holds for linearly elastic springs and the relation between force and deformation is linear, that is,

f 15k1D11 f 1
0, ~28!

f 25k2D21 f 2
0, ~29!

f 35k3D31 f 3
0, ~30!

where thef’s are the total spring forces, andf 0’s are the initial forces or pre-loads inside the springs. The sign conventio
the internal forces is chosen so that tension is positive. If we substitute the constitutive equations into the equations o
we obtain the governing equations in the generalized coordinates:

AH ä

b̈J 1BH ȧ2

ḃ2J 5H 2k1h sin~u2a!

cos~u2a!
2

2k1h sin~u2a!

cosu
12 f 1

0 sin~u2a!2@k2~h tan~f2b!2h tan~u2a!2h tanf1h tanu!1 f 2
0#

Fa1@k2~h tan~f2b!2h tan~u2a!2h tanf1h tanu!1 f 2
0#1

2k3h sin~f2b!

cos~f2b!
2

2k3h sin~f2b!

cosf
12 f 3

0 sin~f2b!
J . ~31!
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If we assume quasi-static processes, the right-hand sid
Eq. ~31! is zero. Then Eq.~31! can be restated as the follow
ing equilibrium equations. The strategy used here is an
gous to Eqs.~15! and~16! in the previously mentioned linea
model, and the purpose is to relate the two generalized c
dinates to the only applied load at pointa,

b5f2arctanS tanf2tanu1tan~u2a!2
f 2

0

k2h
12

k1

k2

3S 2sin~u2a!

cosu
1tan~u2a!1

f 1
0

k1h
sin~u2a! D D ,

~32!

Fa52~k2h~ tan~f2b!2tan~u2a!1tanu2tanf!

1 f 2
0!22S k3h

cos~f2b!
2

k3h

cosf
1 f 3

0D sin~f2b!.

~33!

The equilibrium equations~32! and ~33! are responsible for
generating load–displacement curves with no restriction
the magnitude of the displacements at nodesa andb.

IV. STABILITY ANALYSIS OF A SPRING MODEL
WITH EXTREME STIFFNESS

The spring model in Sec. III is important for demonstra
ing how a negative stiffness element surrounded with p
tive stiffness elements leads to extreme overall stiffne
However, a direct investigation of its stability with th
Routh–Hurwitz method involves mathematical and nume
cal complexity that might obscure the underlying physi
especially when viscosity is included. Here, we analyze
stability of a linear spring model, as shown in Fig. 3. It
equivalent~except for the addition of a viscous element! to
that in Fig. 2 for small deformations about an equilibriu
point. The negative stiffness due to the pre-load in
springsk1 in Fig. 2 is subsumed as a linear negative spring
44 Am. J. Phys., Vol. 72, No. 1, January 2004
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Fig. 3. Because stability analysis, based on Lyapunov’s in
rect theorem, deals with perturbations of a linearized syst
there is no loss of generality.

The governing equations of the system in Fig. 3 can
directly written as follows, withF150,

Fm1 0

0 m2
G S ẍ1

ẍ2
D1Fk11k2 2k2

2k2 k2
G S x1

x2
D1S f

0D5S 0
F2

D ,

~34!

f 1
h

k11k2
ḟ 5

k1k2

k11k2
x11

k1h

k11k2
ẋ1 . ~35!

Here h is the viscosity, and thek’s and k’s represent the
stiffness of the springs. The element parallel to thek1 spring
is often called a standard linear solid element in the con
of viscoelasticity. To demonstrate that the system exhib
extreme stiffness, the compliance~that is, the ratio of the
displacement to the applied force! of the system can be easil
calculated in the frequency domain with the aid of a Four
transformation:

Fig. 3. One-dimensional linear spring system for demonstrating stab
with a negative stiffness component.k15103106 N/m, and k255
3106 N/m. Herek1 , k2 , andh form a standard linear solid element in th
context of viscoelasticity. Assigningk1 to be negative is equivalent to com
pressional pre-load in thek springs in Fig. 1~b!.
44Y. C. Wang and R. S. Lakes
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F 2v2m11k11k21
k1k21 ivk1h

k11k21 ivh
2k2

2k2 2v2m21k2

G
3S x̃1

x̃2
D5S 0

F̃2
D . ~36!

The tilde denotes the Fourier transformed variables. If we
v50, we can obtain the compliance of the system unde
quasi-static assumption.

For stability in the sense of Routh–Hurwitz, the equatio
of motion, Eqs.~34! and~35!, can be rewritten in state spac
as

S u̇1

u̇2

v̇1

v̇2

ḟ

D 5JS u1

u2

v1

v2

f

D 1S 0

0

0

F2

m2

0

D , ~37a!

where

J53
0 0 1 0 0

0 0 0 1 0

2
k11k2

m1

k2

m1
0 0 2

1

m1

k2

m2
2

k2

m2
0 0 0

k1k2

h
0 k1 0 2

k11k2

h

4 . ~37b!

Herev15du1 /dt andv25du2 /dt. The second term on th
right-hand side of Eq.~37a! is irrelevant to the stability
analysis@see Eq.~2!#. The reason is that this term contribut
a particular solution to the ordinary differential equation.
long as the driving force,F2 , is a bounded function or its
driving frequency is not the natural frequency of the syst
~for h50), the contribution of the particular solution wi
not cause unbounded responses of the system. The inver
the eigenvalue of the matrixJ has the dimensions of time, s
it can be interpreted as a time constant indicating the rat
the growth or decay of the response of the system. There
the stability analysis will mainly investigate the eigenvalu
of the J in Eq. ~37!.

V. RESULTS AND DISCUSSION
A. Stiffness at equilibrium points

In the following numerical simulations of the spring sy
tem in Fig. 2, we assumeh510) mm, u530°, and f
560° as initial conditions. Pre-load in the springk2 will
modify this geometry in the absence of an external for
Figure 4 shows the static characteristics of the mechan
spring system without thek3 springs, based on Eqs.~21! and
~22! for xa andxb and Eq.~33! for Fa in terms of the gen-
eralized coordinates, anglesa andb. Fork350 in Fig. 2, the
system is equivalent to a series~Reuss! composite cell. We
remark that Lakes and Drugan9 showed that this type of sys
tem is unstable if it is unconstrained. Geometrical nonline
ity is manifest in the calculation to include the effect of t
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change of structural shape, even though each spring h
linear force-deformation characteristic, because the an
change as the system is deformed. In the linear approxi
tion, the system will never buckle due to the lack of cons
eration of geometrical changes, as the straight lines~see Fig.
4, curves denoted as ‘‘Linear, no pre-load’’!. The match of
the slopes of the load–displacement curves for the linear
geometrical nonlinear analysis near zero deformation c
firms the validity of our calculation. By tuning the stiffnes
of the k2 springs, it can be seen that the overall stiffness
the system at pointa, the loading point, approaches infinit
around xa510 mm whenk1510 and k2533106 N/m. If
we observe the curves fork2,33106 N/m, it is understood
that the corresponding functions for the curves are mu
valued functions with respect to both displacement a
loads.

The snap-through or back-through phenomena will oc
in both the numerical simulations by solving Eqs.~23! and
~24! with the Newton–Raphson method2 and the laboratory
experiments if we try to control either the displacement
the loading at pointa. However, in this case, by controlling
the generalized coordinatea by hand, the curves can be nu
merically constructed with a one-to-one relation betweena
and the linear displacementxa , and a and the loadingFa
through Eqs.~32! and ~33!.

We next include thek3 springs so that the snap-throug
can occur in the vicinity of zero applied load. Figures 5 a
6 show the post-buckling behavior of the system with no
zerok3 elements. There are two possible buckling pheno
ena whenk3Þ0. One is the inner springs (k1) undergoing
snap-through, and the other is the buckling of the ou
springs (k3). Based on the chosen parameters, the extre
overall stiffness occurs at the snap-through of the in
springs. As shown in Fig. 6, under the chosen pre-load c
dition, tuning k3 will not increase the infinite-stiffness re
gion, but will change the characteristics of the transiti
from normal-stiffness to extreme-stiffness.

Fig. 4. Load–displacement diagram for the spring system in Fig. 2 with
k3 springs and no initial forces. The spring constant fork1 is 10
3106 N/m. The symbolsxa andxb indicate the displacement at pointsa and
b, respectively. The curved lines are calculated results based on the geo
ric nonlinear analysis with no pre-load. The straight lines represent a lin
approximation about zero displacement. The units fork2 in the diagram are
106 N/m.
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It is understood that each of the initial forces,f 1
0, f 2

0, and
f 3

0, is a free parameter: there are no equations relating th
If we specify the initial forces, the spring forcesf 1 , f 2 , and
f 3 will change, and the geometry of the system will al
change. A nonzerof 2

0 as chosen here causes the geometry
the system to change accordingly. The same effect also c
be obtained by changing the initial configuration of the s
tem, that is, adjustingu andf directly, with nonzero initial
forces inside all the springs. Figure 7 shows the initial sh
and the deformed shape~after pre-load! of the spring model.
After applying the pre-load,f 2

0, and before applying any loa
at pointa we can see that the system is deformed from
abcd to the a8b8cd configuration. Therefore, beforeFa is
applied, there are nonzero forces in all the springs. Also,

Fig. 5. The load–displacement diagram for spring system in Fig. 2 withk3

springs varied, and no pre-load. The spring constants fork1 andk2 are 10
and 33106 N/m, respectively. The units fork3 are 106 N/m.

Fig. 6. The load–displacement diagram for the spring system in Fig. 2
pre-load: the initial forces aref 1

050, f 2
052303103 N, and f 3

050 with
initial u530° and f560°. The values ofk1 and k2 are 10 and 3
3106 N/m, respectively. The units fork3 are 106 N/m. The straight line
solutions, corresponding to no pre-load, are obtained from Eqs.~15! and
~16!.
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7 shows two other equilibrium configurations correspond
to Fa50, indicated by double- and triple-primed symbols,
which the double-primed symbols indicate that the syst
exhibits extreme high effective stiffness at pointa.

B. Stability

For purely elastic cases, we can investigate the stability
the critical equilibrium position of the spring model in Fig.
by the energy method. Equation~20! is plotted as a surface in
Fig. 8 with respect to the displacements at pointsa and b.
The parameters arek1510, k253, k3553106 N/m, f 1

050,
f 2

052303103 N, f 3
050, u530°, andf560°. The magni-

tude of the massesm1 andm2 is irrelevant to the calculation
because of the quasi-static assumption. We see that the
face has a saddle shape at the critical equilibrium point,xa

50 mm andxb510 mm. It is understood that the system
not stable at the saddle point as discussed in Ref. 9.
system is not necessarily free to have any values of the
ordinatesxa and xb ; it is constrained by the equilibrium
equations. For example, applying Eq.~32! gives a
concave-up section of the saddle, which suggests stabilit
the presence of perturbations in the forceFa . However, the
application of Eq.~33! with Fa50 gives a concave-down
section of the saddle surface in Fig. 8, indicating instabi
in the presence of perturbations ofFb . Both degrees of free-
dom must be considered in an energy approach to determ
the stability of this system.

It is not realistic to draw definite conclusions about t
stability from purely elastic models because in real materi
viscoelastic effects cannot be neglected. Nonetheless,
equilibrium points with locally minimal energy before an
after snap-through are stable in accordance with Dirichl
theorem,12 which states an equilibrium point is stable if th
energy of the system reaches a minimum. To probe the
bility of this extreme phenomenon including consideratio
of viscoelasticity, we focus on the behavior of the lineariz
spring model in Fig. 3. In the calculation the parameters
k15103106 N/m, k2553106 N/m, k2553106 N/m, and
m15m2510212 kg. Compliances are calculated under t
assumption of zero frequency (v50) to represent a quasi
static deformation. The values for the masses will not cha
the compliance calculation due to the quasi-static assu
tion, but will strongly influence the eigenvalue calculatio
Figure 9 shows the familiar resonant- and anti-resonant-
compliance curves, signatures of a system with negative
clusions, whenk1 is tuned to be negative.

Because the frequency is assumed to be zero~static equi-
librium!, the effects are not resonant. The response of
spring model resembles that of a resonating system bec
the inertial terms in a classic mass–spring system are op
site in sign from the elastic terms. At sufficiently high fre
quency, the negative effective stiffness associated with
inertial terms suffices to cancel the elastic terms, giving r
to resonant behavior; for a system with more than one deg
of freedom, anti-resonance occurs as well. The freque
dependence and the negative sign in this case arise from
second derivative of the displacement in Newton’s seco
law. By contrast, the negative stiffness of a negative spr
has no frequency dependence. The frequency depend
can however be introduced in negative spring systems by
inclusion of viscous elements, and will be briefly discuss
later.

h

46Y. C. Wang and R. S. Lakes



f
-

-
d
-

e

Fig. 7. The change in the geometry o
the spring system in Fig. 2 with pre
load in spring 2~dimensions in milli-
meters!. The un-primed symbols indi-
cate the initial configuration before the
f 2

0 pre-load is applied, the single
primed symbols indicate the deforme
shape after the only pre-load is ap
plied. Double-primed symbols indicate
the deformed shape for extreme larg
stiffness; triple-primed the deformed
shape after snap-through.
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The compliance between resonant and anti-resonant
peaks in Fig. 9 is negative. Also, it is understood that
compliance at node 2 can be considered as the effective c
pliance of the system as a whole. At zero frequency,
magnitude of the viscosity will not change the complian
calculation, as can be seen in Eq.~36!. The lowest compli-
ance indicates the highest stiffness and vice versa. Base
the numerical resolution adopted in this analysis, which
determined by a pre-chosen increment for the tuning par
eter, k1 , the highest overall stiffness around the an
resonant-like peak (k1'23.73106 N/m) is about 20 times

Fig. 8. Two-dimensional energy landscape of the spring model in Fig
with respect toxa and xb with no force at pointa or b. k15103106, k2

533106, k3553106 N/m, f 1
050, f 2

052303103 N, and f 3
050.
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greater than that with positivek1 . Theoretically, the overall
stiffness can reach infinity due to the presence of nega
stiffness elements. Atk1'23.23106 N/m, the system
reaches its highest compliance because the amount of n
tive stiffness neutralizes that of the positive stiffness elem
in element 1 to the left in Fig. 2. It is not surprising that th
highest peaks of both compliance curves occur at the s
amount of negative stiffness in element 1 because the s
ness of this element dominates the relative motion of
nodes to the fixed end. Also in Fig. 9, we can see the stab
of the system from the trajectories of the only eigenva
with a positive real part. The eigenvalues are calculated fr
Eq. ~37!. Figure 9~b! is an expanded version of Fig. 9~a! for
the trajectories of the eigenvalue. It can be seen that w
k1.23.23106 N/m, the system is stable for various vis
cosities because there are no eigenvalues with a positive
part. Although there is an eigenvalue with non-negative r
part whenk1<23.23106 N/m, its magnitude can be mad
to be as small as desired by increasing the viscosity in
system. Therefore, around the point of interest (k1'23.7
3106 N/m), which gives rise to extreme positive overa
stiffness, the system is in a metastable state. The root-lo
plot of all eigenvalues with h510 and h5100
3106 (N m21 s), respectively, is shown in Fig. 10~a!. The
arrows indicate the direction of the movement of the eig
values with respect to the tuning parameter,h. A detailed
root-locus plot for the only eigenvalue with a positive re
part is shown in Fig. 10~b!. Again, the system is metastab
because the only eigenvalue with a positive real part can
made small by a choosing a high viscosity.

As for the frequency response of the effective overall d
namic compliance, that is, the dynamic compliance at n
2, Fig. 11~a! shows the results of the calculation assumi
that h5103106 (N m21 s) and k2 /k1525, with various
k1 . It can be seen that for this set of parameters, whenk1

52153106 N/m, the overall dynamic stiffness dramatical
increases as the frequency increases. However, whenk15
2103106 N/m, the overall dynamic stiffness decreases w

2
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Fig. 9. Compliance and stability analysis of the spring model in Fig. 3.k15103106, k2553106, andk2553106 N/m are fixed parameters.~a! Eigenvalues
on log scale.~b! Eigenvalues on linear scale showing sign change at the criticalk1 . Data forh51026 are omitted. The viscosityh is in units of 106 N m21 s.
Increasing the viscosity decreases the degree of instability. The eigenvalues are calculated from Eq.~37!. The compliances are calculated from Eq.~36! with
v50.
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frequency. The increase or decrease of the dynamic stiffn
with frequency is due to the response of the viscous elem
and is not due to inertial effects, because the masses
assumed to be 10212 kg in the calculation. In addition, the
frequency dependence is minimal when the amount of ne
tive stiffness is small~for example,k150) or large~for ex-
ample, k152203106 N/m) in the calculated frequenc
range. For comparison, with the same assumption, tha
k2 /k1525, the corresponding quasi-static response
shown in Fig. 11~b! as a function ofk1 . The value of the
node 2 compliance between the resonant-like and a
resonant-like peaks is negative, and compliance of node
negative fork1 less than that corresponding to the peak~that
is, k1'273106 N/m). The stability of the system at a ce
tain frequency has the same characteristics as that ana
before under the quasi-static assumption. In other wo
driving the system with a sub-resonant frequency will n
increase or decrease the degree of stability of the system

Fig. 10. Root-locus plots with the tuning parameter,h, around the extreme
high stiffness state.k15103106, k2553106, k1523.73106, and k2

553106 N/m. ~a! All eigenvalues. Closed symbols:h510; open symbols:
h5100. The viscosityh is in units of 106 N m21 s. The arrows indicate the
increase ofh. ~b! Trajectory of the only eigenvalue with a positive real pa
Stability corresponds to the real part~Re! of all eigenvalues less than zero
Instability corresponds to the real part of an eigenvalue greater than ze
sufficiently small positive real part of an eigenvalue corresponds to m
stability.
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mentioned, the presence of a sinusoidal driving force will n
change the nature of stability when the applied force
bounded in the time domain and its frequency is not
natural frequency of the system.

VI. SUMMARY

As expected, agreement between the linear and geom
nonlinear analysis for small displacement is observed. B
rigorous geometric nonlinear analysis, the effect of a p
load contributing to negative stiffness was identified. In th
way the idea of using a negative value for the stiffness
Hooke’s law was presented. Changing initial configuratio
of the model, such asu, f, or the stiffness of the springs, i
the geometrical nonlinear analysis will not eliminate the e
treme behavior, provided we choose different values for
free tuning parameters, the pre-loads. The results of the
metric nonlinear analysis verify the possibility of achievin
extreme stiffness system with negative stiffness compone
Theoretically, the effective stiffness can approach infinity

An unconstrained negative stiffness element is unsta
Rigorous stability analysis via the energy method a
Lyapunov’s indirect method reveals that the present ela
model of spring networks with a negative stiffness elemen

Fig. 11. ~a! Compliance vs frequency with variousk1 for the spring model
in Fig. 3 with h5103106 (N m21 s) andk2 /k1525. k’s are in units of
106 N/m. ~b! Quasi-static compliance of model in Fig. 3 withk2 /k15
25.
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stable at the equilibrium point when tuned for extreme h
compliance, but is not stable when tuned for extreme h
stiffness. However, the unstable model can be made m
stable~an arbitrarily long time constant for divergence! with
the aid of a nonzero viscosity.

It is well known that natural diamond is in a metastab
state at ambient conditions. Ultimately diamond is expec
to become graphite~which has a lower energy state! with a
large time constant of many years. In the present spring
tem, the time constant for divergence, when tuned to
metastable, can be made to be arbitrarily long. Therefor
system with extreme overall stiffness due to a negative s
ness element is metastable. This analysis applies only to
present spring system. The behavior of general systems
negative stiffness constituents remains to be explored to
termine the necessary and sufficient conditions for extre
mechanical behavior.

A negative stiffness element~containing springs with com
pressive pre-load!, though unstable by itself, can be stab
lized by including it in a system of positive stiffness el
ments. It is possible in such a system to achieve h
compliance and high internal deformation~greater than the
applied deformation! and to retain stability. This behavio
may be of interest in the context of composites with extre
piezoelectric or thermal expansion coefficients.11 The linear
and geometrically nonlinear analyses agree in the limit
small deformation. The spring system also can exhibit a
trarily high stiffness greater than that of any of the sprin
Under these conditions the spring system is unstable, b
viscous elements are included, it can be made metast
with an arbitrarily long time constant for divergence. Fu
thermore, the quasi-static stiffness of the viscous dam
system with an appropriate negative stiffness constitu
tends to infinity with increasing frequency of the appli
excitations.
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