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Extreme Damping in Composite Materials with a Negative Stiffness Phase
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Composites with negative stiffness inclusions in a viscoelastic matrix are shown to have higher stiffness
and mechanical damping tand than that of either constituent and exceeding conventional bounds. The
causal mechanism is a greater deformation in and near the inclusions than the composite as a whole.
Though a block of negative stiffness is unstable, negative stiffness inclusions in a composite can be
stabilized by the surrounding matrix. Such inclusions may be made from single domains of ferroelastic
material below its phase transition temperature or from prebuckled lumped elements.
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Properties of a composite material depend upon the
shape and properties of the heterogeneities, upon the
volume fraction occupied by them, and upon the interface
between the constituents [1,2]. Bounds for behavior
of a composite of any structure have been developed
assuming positive stiffness. For example, the com-
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posite stiffness cannot exceed the Voigt form Gc,u �
G1V1 1 G2V2, where G1 and V1, and G2 and V2, are
the shear modulus and volume fraction of phases 1
and 2, respectively. The Hashin-Shtrikman bounding
formulas [1] apply for isotropic composites; the lower
bound for the shear modulus GL of an elastic composite
is
GL � G2 1
V1

1��G1 2 G2� 1 �6�K2 1 2G2�V2���5�3K2 1 4G2�G2�
, (1)
in which K1, K2, G1, G2, V1, and V2 are the bulk modulus,
shear modulus, and volume fraction of phases 1 and 2,
respectively. Positive stiffness values were tacitly assumed
for this and for other bounds [3]. One attains the upper and
lower Hashin-Shtrikman formulas for bulk modulus with
a morphology in which the composite is filled with coated
spheres of different size but an identical ratio of sphere size
to coating thickness. The attainment is exact for the bulk
modulus [4] and approximate for the shear modulus. The
shear modulus formula is attained exactly by hierarchical
laminates [5].

Dynamic viscoelastic properties are expressed in
terms of the complex dynamic Young’s modulus
E� � E0 1 iE00 � E0�1 1 i tand�, with E0 � Re�E��
and tand � Im�E���Re�E��; d is the phase angle be-
tween the stress and strain sinusoids. (The primes are
conventional notation for the real and imaginary part, re-
spectively, and do not represent derivatives.) The dynamic
modulus is a function of frequency, and in composite
materials it depends on constituent properties and mor-
phology. A representative stiffness-loss map for several
composites is shown in Fig. 1. The product E0 tand is a
figure of merit [6] for the damping of structural vibration;
however, most existing materials [7] exhibit maximum
E0 tand , 0.6 GPa. Some composites with higher values
have been developed [8]. The purpose of this paper is to
explore the consequences of negative stiffness constituents
in achieving high damping in composites.

Lumped examples of negative stiffness include a column
constrained in a buckled “S” shaped configuration [9]. If
one presses laterally on the column, one can cause it to
snap through. The negative stiffness condition is unstable.
The column can be stabilized by a lateral constraint. Tubes
following buckling offer decreasing force with an increase
in deformation, hence, negative incremental stiffness [9].
Single cell tetrakaidecahedron models exhibit a compres-
sive force-deformation relation that is not monotonic [10]
under displacement control, hence, exhibit negative stiff-
ness over a range of strain.

Distributed examples of negative stiffness include
single domains of materials in the vicinity of certain phase
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FIG. 1. Stiffness-loss map. Calculated behavior of several
composites. Each point corresponds to a different volume frac-
tion (adapted from Lakes [25]). One phase is stiff and low loss,
and the other phase is more compliant and high loss.
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transformations. Bulk ferroelastic materials [11] in the
vicinity of phase transformations exhibit a minimum stiff-
ness at a transition temperature, and are unstable and revert
to a banded domain structure below that transition tempera-
ture. Single domains [12] are expected to exhibit nega-
tive stiffness since the free energy in the Landau theory
has a relative maximum, corresponding to unstable equi-
librium, below a critical temperature [13]. One does not
ordinarily speak of negative stiffness of ferroelastics or
ferroelectrics because, owing to the instability, it is not
observed in bulk multidomain samples. Ferroelastic mate-
rials are crystalline and anisotropic; however, the physical
principles articulated here may be extended to such cases.
Negative stiffness is also known in string theory [14]; how-
ever, we do not expect to make composites from strings.

Negative stiffness is to be distinguished from negative
Poisson’s ratio. Poisson’s ratio, represented by n, is de-
fined as the negative lateral strain of a stretched or com-
pressed body divided by its longitudinal strain. Most
materials, stretched under axial tensile force, elongate lon-
gitudinally but also contract laterally, hence, have a posi-
tive Poisson’s ratio. Poisson’s ratio is dimensionless, and
for most solids its value ranges between 0.25 and 0.33; the
range for stability of isotropic solids is from 21 to 0.5;
within that range all moduli are positive. Recently, Lakes
and co-workers have conceptualized, fabricated, and stud-
ied negative Poisson’s ratio foams [15,16] with n as small
as 20.8. These materials become fatter in cross section
when they are stretched. The Poisson’s ratio and moduli
are within the range for stability. Negative stiffness, by
contrast, refers to a situation in which a reaction force oc-
curs in the same direction as imposed deformation.

Negative stiffness entails a reversal of the usual di-
rectional relationship between force and displacement in
deformed objects. In ordinary positive stiffness elastic ma-
terials (such as a spring), the reaction force exerted by the
material is in the opposite direction as the deformation.
This corresponds to a restoring force. A material of nega-
tive stiffness exerts a reaction force in the same direction
as the deformation, which tends to help the deformation
proceed further. This is accomplished by a positive stored
energy at unstable equilibrium.

To study viscoelastic composites, the dynamic elastic-
viscoelastic correspondence principle [17,18] is applied to
Eq. (1) so that all elastic constants become complex quan-
tities [19] in Eq. (1) giving the complex viscoelastic shear
modulus G�

L of the lower composite. The correspondence
principle is based on the fact that elastic and viscoelastic
problems share the same boundary conditions and laws of
motion; only the constitutive relation is different. Its valid-
ity depends on linearity and on the assumption that bound-
ary conditions do not change nature from displacement to
stress control, with time. No assumption of sign of stiff-
ness is required. The equation for G�

L is valid pointwise at
each frequency; there is no need to make any assumptions
about the frequency dependence. Time domain behavior,
2898
if desired, is obtained by Fourier transformation. Real
and imaginary parts are separated to numerically prepare
stiffness-loss maps and plots of viscoelastic properties vs
constituent stiffness and volume fraction. The Hashin-
Shtrikman formulas no longer represent bounds in the
viscoelastic case; however, they are in most cases close to
the true bounds [20], but that is immaterial in the present
context for the following reason. Since these formulas are
exactly attained via known microstructures in the elastic
case, they are also exactly attained in the viscoelastic case
by virtue of the correspondence principle. In the following
development, we exceed bounds derived assuming positive
stiffness constituents, on both stiffness and damping.

Composite damping tand achieves a maximum when
the inclusion stiffness is negative and comparable in mag-
nitude to the matrix stiffness, as shown in Fig. 2. The
maximum tand exceeds 1. This is a very large damping,
ordinarily seen only in solid polymers in the glass-rubber
transition, and is much larger than the assumed damping,
0.1 for the matrix and 0 for the inclusions, of either con-
stituent in the composite. The product G0 tand is large
at the peak, corresponding to regions in the upper right
region in Fig. 1. Moreover, a dilute concentration of in-
clusions of negative stiffness also has a substantial effect
on the stiffness. The effect is larger than if the inclusions
were rigid (much stiffer than the matrix) or if they were
voids. In comparison with the 	40% effect on stiffness
shown in Fig. 2, 2% void inclusions reduces the compos-
ite stiffness by 3.7%, while 2% perfectly rigid (infinitely
stiff) inclusions increases the composite stiffness by 4.3%.
If the Poisson’s ratio of the matrix is increased, the peak in
Fig. 2 shifts to more negative values of inclusion stiffness.

The plots of Fig. 2 are reminiscent of a resonance phe-
nomenon. There are, however, no inertial terms: On the
continuum scale, the representation, though time depen-
dent, in quasistatic. In resonance, elastic terms can neutral-
ize inertial terms at selected high frequencies; by contrast,
in the present composites, elastic terms in the denomina-
tor can have opposite signs since one phase has a negative
stiffness. This is illustrated in Eq. (2), in which the com-
plex form of Eq. (1) is simplified by assuming a rubbery
matrix, K2 ¿ G2. As above, we allow Re�G1� , 0:

FIG. 2. Composite normalized stiffness G0
c�G0

m and mechani-
cal damping tand vs volume fraction and stiffness of elastic
inclusions, normalized to matrix stiffness. Hashin-Shtrikman
isotropic “lower” composite. Matrix damping, tand � 0.1;
Poisson’s ratio 0.3.
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As for stability, both the composite shear modulus G0

and bulk modulus K 0 are positive over the ranges of vari-
ables considered; hence, the composite obeys the con-
tinuum stability criteria. However, negative composite
stiffnesses, hence instability, may occur for certain com-
binations of sufficiently high inclusion concentration and
sufficiently negative values of inclusion stiffness. As for
local stability, the inclusions are stable [21] provided their
stiffness is not too much less than 2G0

m.
As matrix damping is reduced to 0.001, the composite

damping peak becomes higher and narrower, as shown in
Fig. 3. Even a minuscule concentration of inclusions in a
low-damping matrix gives rise “homeopathic” effects: a
substantive effect from a vanishingly small concentration
of causal material. In physical systems, the concentration
cannot tend to zero, owing to the nonzero size of atoms.
The damping tand � 0.001 assumed in Fig. 3 is represen-
tative of structural metals; however, even smaller damping
values are common in some alloys, e.g., aluminum alloy
6061, exhibits tand 
 3.6 3 1026 in torsion at room tem-
perature [22]. As matrix damping tends to zero, behavior
in the vicinity of G0

i � 21.1G0
m becomes singular: Com-

posite damping and stiffness become unbounded. So ma-
trix damping has a stabilizing effect. The physical basis
for the damping enhancement may be understood as fol-
lows. Consider a spherical elastic inclusion in an elastic
matrix, under tension, after Goodier [23]. This solution
contains no assumptions about constituent stiffness; here,
we allow the inclusion stiffness to assume negative values.
Such a sphere elongates the least for a stiff inclusion, more
for an “inclusion” as stiff as the matrix, more for a cavity
of zero stiffness, and yet more for an inclusion of negative
stiffness Gi . The local deformation becomes unbounded
as Gi , assumed real, tends to 21.1G0

m, as shown in Fig. 4.
The value of G0

i for the transition becomes more negative
as the matrix Poisson’s ratio increases. For an inclusion
which has a shear modulus which is negative, but much
smaller in magnitude than that of the matrix, the inclusion
is effectively under displacement constraint. As the inclu-
sion stiffness approaches the matrix stiffness in magnitude,
the deformation at its surface becomes much greater than
the overall asymptotic deformation of the composite. Since
local strain becomes large in an elastic composite of this
type, the corresponding energy dissipation becomes large
in a viscoelastic composite. Behavior for a viscoelastic in-
clusion, inferred via the correspondence principle, shows
amelioration of the singularity seen in the elastic case, as
shown in Fig. 4.

As for geometry dependence, Reuss composites for
which stiffness is 1�Gc � V1�G1 1 V2�G2, as well as
composites with a dilute concentration of spheres [2] for
which stiffness is
FIG. 3. Illustration of “homeopathic” effects of a minuscule
concentration of inclusions in a low-damping matrix. Compos-
ite normalized stiffness G0

c�G0
m and mechanical damping tand

vs volume fraction and stiffness of inclusions, normalized to
matrix stiffness. Hashin-Shtrikman isotropic “lower” compos-
ite. Matrix damping, tand � 0.001; Poisson’s ratio 0.3.

Gcmp � G2 1 �G1 2 G2�

3
5�3B2 1 4G2�

�9B2 1 8G2 1 6�B2 1 2G2� �G1�G2��
V1 ,

(3)

exhibit similar response to negative stiffness phases as the
Hashin-Shtrikman composite. The predicted anomalies are
therefore robust with respect to the details of the assumed
geometry.

Viscoelastic composites with inclusions of negative
stiffness may have several uses as follows. They may
be used in studying properties of single domains of
ferroelastic, ferroelectric, shape memory martensite,
or ferromagnetic materials. A dilute concentration is
sufficient to obtain substantial effects, particularly if the
matrix chosen has a small mechanical damping. Effects
can be seen with a minuscule amount of sample material.
Some materials of interest cannot be easily prepared as
large single crystals; polycrystalline arrays may be brittle.
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FIG. 4. Deformation at the surface of a spherical inclusion vs
inclusion stiffness based on analytical solution of Goodier [23].
Solid symbols, elastic inclusion. Open symbols, viscoelastic
inclusion via the correspondence principle. Deformation is nor-
malized to deformation far from the inclusion. Inclusion stiff-
ness is normalized to the matrix stiffness. Poisson’s ratio of
matrix is 0.3. Inclusions are assumed to have a bulk modulus
100 times that of the matrix.
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Such composites also find applications in which high
stiffness and damping is needed, as well as in high per-
formance sensors and actuators based on thermoelastic or
piezoelectric coupling. Inclusions need not be temperature
sensitive ferroelastics. Prestressed or prebuckled elements
may be used as inclusions. Indeed, recent experiments
[24] have disclosed giant damping effects in two systems:
a macroscopic system with buckled compliant tubes as
negative stiffness elements, and a dilute particulate com-
posite with ferroelastic inclusions just below the transition
temperature as negative stiffness elements.

Composite materials of unbounded mechanical damping
tand are possible if the inclusion phase has negative stiff-
ness. Development of high-damping composites built of
conventional materials in novel geometrical arrangement
could optimize many existing technologies in which stiff-
ness and damping are both important.
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