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Extreme thermal expansion, piezoelectricity, and other coupled field
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Particulate composites with negative stiffness inclusions in a viscoelastic matrix are shown to have
higher thermal expansion than that of either constituent and exceeding conventional bounds. It is
also shown theoretically that other extreme linear coupled field properties including piezoelectricity
and pyroelectricity occur in layer- and fiber-type piezoelectric composites, due to negative inclusion
stiffness effects. The causal mechanism is a greater deformation in and near the inclusions than the
composite as a whole. A block of negative stiffness material is unstable, but negative stiffness
inclusions in a composite can be stabilized by the surrounding matrix and can give rise to extreme
viscoelastic effects in lumped and distributed composites. In contrast to prior proposed composites
with unbounded thermal expansion, neither the assumptions of void spaces nor slip interfaces are
required in the present analysis. 01 American Institute of Physics.
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I. INTRODUCTION allowing void space. Inclusion of void space of appropriate
shape in a composite microstructure can also give rise to
Microstructure in multiphase materials such as composunusual mechanical properties such as a negative Poisson’s
ites and biological tissues may be so complex that theoreticahtio® Void space is not, however, a necessary condition to
prediction of aggregate physical properties from constituenfichieve negative Poisson’s ratio; a hierarchical laminate with
properties becomes difficult or impossible. Consequently, itlissimilar constituents also has this propért§. common
is useful to develop analytical bounds upon properties imaspect is nonaffine or heterogeneous deformatisagative
order to constrain the range of properties which may be exthermal expansion coefficients are known in certain oxide
pected. Bounds’ have been developed for the thermal ex-systems* they also occur in lattice composites if the higher
pansion coefficientx of composite materials of two solid expansion constituent is on the convex side of each bilayer.
phases in terms of constituent expansion coefficiantand  We remark that molecular design of materials with moderate
a,. The upper bound is a rule of mixtures=a;V,;  values of negative linear and volumetric thermal expansion
+ a,(1—-V;), in whichV; is the volume fraction of the first has been conductéd.
phase. If the detailed microstructure of a composite is It is the purpose of this article to explore the effects of
known, the exact relations of overall mechanical or couplechegative stiffness composite phases in achieving extreme
properties and those of each constituent can be obtaingbermal expansion, piezoelectric, and pyroelectric coupled
theoretically. Even if the microstructure is unknown for afield properties. The possibility of extreme behavior in such
particular composite, the bound equations constrain attairsomposites was explored theoretictifor viscoelastic sys-
able behavior provided the assumptions of the boundingems. High viscoelastic damping in composite cells with
theorems are satisfied. Many bounding formulas are attaimegative stiffness has been demonstrated experimefitadly
able, that is, they correspond exactly to a known microstruceompliant systems containing postbuckled tubes. High vis-
ture. In deriving the bounds on thermal expansion coefficoelastic damping has also been observed in composites with
cients, it was tacitly assumed that the two phases areegative stiffness particulate inclusiotisin this article, we
perfectly bonded and with zero void content; moreover, thafirst demonstrate the possibility to achieve extreme thermal
each phase is of positive stiffness with zero stored energy a@xpansion of particulate composites via the exact relation of
equilibrium. We have shown that arbitrarily high thermal ex-thermal expansion coefficients and bulk moduli. Second, we
pansions can be achieved in composites with void frattionshow theoretically that extreme piezoelectric constants, pi-
or in dense composites with interfaces which allow 8lip. ezoelectric coefficients, and pyroelectric constants can also
These composites contain rib elements of composite micrdse observed in layer- and fiber-type piezoelectric composites,
structure. Each rib element is a bilayer made of two bondedbased on available exact or approximate relations.
layers of differing thermal expansion coefficient Compos-
ites with extremal thermal expansion coefficients have also
been presented based on topology optimizatifrstructure Il ANALYSIS

dAuthor to whom correspondence should be addressed; electronic mail: Thermal eXpanSi_on in composites is imimatEW "'_"k_(:«'d
lakes@engr.wisc.edu with the bulk properties. The thermal expansion coefficient
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a® of a composite is related to the bulk properties as

follows,**° provided the composite as well as each phase is
isotropic.
a1 Qy 1 1
a'= “1+ﬁ(ﬁ‘ K_1>' @

K2 Ky

The composite thermal expansiafi can be large if the com-
posite bulk moduluk® is small. That is the case in the
lattice structures considered in Refs. 3 andv%can also be
large if bulk compliances of the constituents are out of pro-
port.IOIjI to thelr the_rmal expan_smn coefficients. I_Based on th%IG. 1. The thermal expansion coefficiemeal part ofa.) of a Hashin—
statistically isotropic assumption, E(L) was obtained as an shtrikman composite assuming a matrix phase of mechanical dampiig tan
exact solution by applying an eigenstress technique through0.0S in the bulk modulus with negative stiffness inclusions, as a function

the uniform fields approad? described as follows. The of inclusion stiffness and volume fraction. Thermal expansion coefficients of
! ) inclusion and matrix differ by a factor of two. The composite thermal ex-

name for the uniform field was coined much later than th&,,ion coefficient is normalized to that of phase 1.

derivation done by Levin. First, separate the inclusions from

the matrix; let both of them be loaded by a hydrostatic stress

with a uniform temperature change. Second, put those inclu-

sions back into the matrix, constrain them to satisfy the tracPhases of positive and negative stiffness are properly bal-

tion and displacement continuity conditions on the inter-anced. In viscoelastic compositésvith a negative stiffness

faces. Then, the expression is found for effective thermaPhase, an anomaly in stiffness is predicted, as well as a peak

expansion coefficients by the superposition of a hydrostati#h the mechanical damping. In that analysis, we applied the

stress in the opposite direction on the outer boundary of thélastic—viscoelastic correspondence to the exact relations

matrix to cancel the one added artificially in the first step. and(3) to obtain corresponding relations for viscoelastic me-
As for the bulk modulus as input to E€l), consider the dia. These formulas no longer represent bounds, however

Hashin—Shtrikmah (1963 formulas. The lower bounds for they are exact solutions for particular microstructures.

the elastic shear modulug, and bulk modulusk, of a If the bulk modulus of one phase is allowed to become
composite are: negative, the thermal expansion coefficient can greatly ex-
ceed that of either phase, as shown in Fig. 1, which is based
G =Gt \ @) on Eq. (1), and the lower bound formula for effective bulk
L2 1 6(K,+2G,)V, ' modulus, Eq(3). As inclusion stiffness is reduced, the com-
Gl—G2+ 5(3K,+4G,)G, posite thermal expansion attains its maximum magnitude
first, then the composite bulk modulus attains a minimum.
V1(K;—K5)(3K,+4G,) The enhancement of thermal expansion becomes singular as
KL:K2+(3K2+4GZ)+3(K1—K2)V2’ 3 the mechanical damping of the phases tends to zero, as

shown in Fig. 2. The singularity in thermal expansion occurs
in whichK; andK;, G; andG,, andV; andV, are the bulk a5 the composite bulk modulus tends to zero. Therefore, the
modulus, shear modulus, and volume fraction of phases Jpresent composites share with prior ch@she characteristic
and 2, respectively. I6,>G,, thenG, represents the lower that extreme expansion is associated with bulk compliance.
bound on the shear modulus. Interchanging the subscripts We remark that singular thermal expansion can be achieved
and 2 results in the upper bou@, for the shear modulus. without the composite bulk modulus passing through nega-
The bounds for isotropic composites are attainable. Theve regions in which stabilization might be required. Specifi-
Hashin—Shtrikman formula for the bulk modulus, &8), is  cally, in Fig. 2, as the inclusion bulk modulus is tuned
attained exactly by a coated sphere morphology. Thenhrough progressively more negative values, the composite
“lower” composite corresponds to the case of stiff spheresthermal expansion becomes singular before the composite
coated with a compliant layer. The shear modulus of theyylk modulus.
coated sphere morphology approximates the corresponding As for the piezoelectric coupling problems, Skinner,
Hashin—Shtrikman formula, EqZ) Exact attainment of Eq Newnham, and Cro%% proposed a set of rule-of-mixtures
(2), however, is possible via a laminate morpholBygs  type equations to approximately estimate the effective piezo-

shown by Milton. electric coefficients, as follows.
We now allow one phase to haveegative stiffness o o
Negative stiffness entails a reversal of the usual directional dCy :V1d33833+(1_V1)d33833 @
relationship between force and displacement in deformed ob- (d33)series Vieggt(1=Vy)ess
jects. It does not violate any physical law, but an isolated —_— o
object with negative stiffness is unstable. Composite materi- ~ .c - V1d33S53+ (1—V1)d33S;3 5
als with negative stifiness inclusions can be stable provided (93 parale= ViSht (1-Vy)Sy
the inclusion stiffness is not excessively negative. In elastic _
composites, the elastic moduli can become singular if the —d31=Vads+(1—Vy)d3y, (6)
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FIG. 2. Thermal expansion properties of a Hashin—Shtrikman compositeG*/Gee
assuming a inclusion phase of mechanical dampingstm05 or 0 and

negative stiffness. Thermal expansion is normalized to that of phase 1. The -0.
volume fraction of the inclusion is 0.01.

-1

where the symbolslj,, €j., andS;, are piezoelectric coef-
ficients, permittivity constants, and elastic compliances, the
inverse of the elastic modulu€(,). The indexeg andk of
second rank tensor propertieg, are from 1 to 3, denoting
the axes of the coordinate system. The subscripts, series ar
parallel, represent the type of connectivity, which corre- (b) Vi
sponds to the Reuss and Voigt composites, respectively, ir "
geometry. In the series case, 3-axis represents the axis pe
pendicular to the layers; the reverse applies in the paralle
case. The superscripts m, and c represent the inclusion,
matrix, and composite. The relationship between piezoelec
tric constants ¢;) and piezoelectric coefficientsdf) is
djk=€jqSqk. The usual contracted index notation is used for
the higher order tensorial properties, such as elastic modul
(Cijui), elastic compliancesSjy,), and piezoelectric prop-
erties (e or djj;) in which only the last two indexes are
contracted, as used by N§&The contraction means indexes
11 becomel, 22 become?, 33 become3, 23 become 4, 13
become 5, 12 become 6. Each of the field quantities is mea
sured when all others are fixed. A more rigorous derivation,
based on the linear coupled field theory and uniform field
technique, for this sort of two-phase layer-type piezoelectric(c)
composites, consisting of transversely isotropic phases, isiG. 3. (a) Normalized piezoelectric coefficient;, in series,(b) normal-
given by Benveniste and DvorgkThe 17 independent ma- ized piezoelectric coefficientz, in parallel, andc) normalized piezoelec-
terial parameters for the overall orthotropic piezoelectrictric coefficientds, of a layer-type piezoelectric composite versus inclusion
composites are obtained exactly. volume fraction ¥/,) and normalized inclusion shear modulus'AG,ey),

To simplify our theoretical analysis of this coupled field whereGe=25 GPa. Calculated by EG&)~(6)
problem, we assume each of the piezoelectric transducer
(PZT) inclusion layers or rods is mechanically isotropic. This
assumption is justified since the degree of mechanical anisoparent material is stiff away from the transition. Therefore, to
ropy of certain PZT materials, for example PZT-BRef. 22 delineate phenomena, we allow the shear modulus of the
is not very pronounced. Moreover, most piezoelectric ceraminclusion to become negative. To aid the numerical calcula-
ics are rather stiff, therefore typical matrix materials can betion of the overall piezoelectric properties, we assume the
expected to be much more compliant than piezoelectric inelectrical and coupled properties of the inclusion to be the
clusions. In the vicinity of a phase transformation, a singlesame as those of PZT-5A materfilwhich are—5.4, 15.8,
domain can go from positive to negative stiffness even if theand 12.3(C/n?) for e, €33, ande;s, as well as 916y,

Gi/Grgf
-1
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FIG. 4. (a) Normalized piezoelectric coefficierts;, (b) normalized piezoelectric coefficiemks,, (c) normalized piezoelectric coefficients;, and (d)
normalized piezoelectric coefficiedys of a layer-type piezoelectric composite versus inclusion volume fractigh4¢nd normalized inclusion shear modulus
(G'I1G,ep), WhereG, =25 GPa. Calculated by the equations, which are exact, in Ref. 21.

830 for €1, ande33, Whereegq represents the permittivity semblage. Because of the independence of electric field, the
in a vacuum. For the isotropic matrix, there are no coupledelation for effective plane strain bulk modulus, E@) is
electrical properties, but we assume its permittivity to beexact, based on the same argument used for the effective
4.4%,. Figure 3 shows the existence of singularities, pre-bulk modulus in the Hashin—Shtrikman bounds.

dicted by Eqs(4)—(6), in this type of composites for their

piezoelectric coefficients when their piezoelectric phases un- =~ Vi
dergo a negative stiffness transition. Based on those equa- Ke=k"+ 1 1-V,' (@)
tions obtained by Benveniste and Dvorak, the singularities WJF i Gam

T

also can be observed in the graphical results, Fig. 4, for the

overall piezoelectric coefficientsss, ds,, d3;, anddys, in . . .
which the index 3 indicates the axis perpendicular to theWherek is the plane strain t.)ulk' modulus, ar @.I IS the
layers. transverse shear modulus, differing fra&y, which is de-

In the piezoelectric composites with 1—3 connectivity, noted as the longitudinal shear modulus. Following the uni-

contrasted with the aforementioned piezoelectric composite ble]ZI bcogliﬁl'ogsggg Vs'eezc(;enleggt';inf'?heer'%ﬂgw?r?mzgzgtes’
which are catalogued as those with 2—2 connectivity, th y 9 ' 9

piezoelectric phase is continuously self-connected in one dir_elatlons.

mension and the matrix is connected in three dimensions. In
other words, they are fiber-type or transversely isotropic  ~c
composites. Throughout our analysis for fiber composites,

the 3 direction of the composite is along the direction in
which the fibers are aligned and poled. BenveRigteinted CSe=V,Chyt V,CT,

out, among the ten independent material constants for the .

overall properties, nine of them can be derived exactly as _ (Ci5—Cig)(V1Ciat VLT3 Cy
simple expressions in the model of composite cylinder as- kM—k¢ ’

(k™—k®)Clg— (k' —k%)CTy
= L , ®

©
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FIG. 5. (@) Normalized piezoelectric coefficiemts, (b) normalized piezo-
electric coefficiente;;, and (c) normalized permittivity constant;; of a

1-3 fiber-type piezoelectric composite versus inclusion volume fraction

(V,) and normalized inclusion shear modulu§'{G,.), where G
=25 GPa. Calculated by Eq&Ll0)—(12), exact relations.

€55= Va€i3+ (1—-Vy)ely

(efi— €5 (V1Clg+ (1-V;)CT—CSo)
- KM— K¢ ’

(10

o eh(KM k) — el (K —kY)
e3l: km _ kl ’

(11)

(e~ €5 (€5~ Vaeh,— Vel
KM_ KC )
(12

c _ i m__
€33~ V1331 Voegs

Y. Wang and R. Lakes

The rest of the exact relations fegs, G, ande,;, dem-
onstrated by Milgrom and Shtrikmanare presented as fol-
lows.

Le=L"(1-V)L'+(1+V)L™ Y (1+ VL'

+(1-VyLM], (13
where
G es | .
L= . r=i,m.
€15 —€n

Figure 5 shows the singularities in piezoelectric con-
stants,e3; and e;3, and permittivity e, predicted by the
exact solutions, Eqg10)—(12). For the transversely isotro-
pic materials modeled by composite cylinder assemblage, the
effective transverse shear modulus can not be determined
exactly?®> However, deriving this effective property is a
purely mechanical problem, since there is no coupling with
electric field. Therefore, one can use, for example, general-
ized self-consistent meth&tito calculate it approximately.
Alternatively, by the multiple-scattering technique, all of the
ten effective material properties can be computed by Eqgs.
(14)—(23), plus the pyroelectric constapt by Eq. (24),2"?8
presented next, in the sense of a first order approximation.
The importance of these equations is that they represent the
overall properties of the two-phase transversely isotropic pi-
ezoelectric composites, whose microstructure is comprised
of infinitely long fibers. Mathematically, they are equivalent
to the results of the self-consistent -effective-medium
theory?® after theV,; square terms are ignored in the effec-
tive elastic moduli.

_ Ko(ky+my) +Vimy(k—ky)

ke 14
ki+my—Vi(ki—ky) 4
mem Ka(my+mp) +2mymy+ Vi Ky (my —my)
ZKa(my+my) +2mymy— Vi (my —my) (Ky+2my)
(15
c_ CTky — k) + Chg(k°—kp) 16
ki—ks
: (Ciz— CTp) (ko — k%)
c_m i ~my
n C11+V1(C33 C]_]_) 2V]_ (kl+m2)(kl—k2) (17)

. My(my+2Chg) +Vimy(2Ch5—my) a8
P 3 (m,+ 2CL) + 2V;(m,— 2CLy)

c . Ko+ m,
€31~ V1e31k1+m2 (19
c i i Cig—I°
€33= Vi€3~ 2V1931m (20
V€l ce(My+2p°)
1€15€2(Ma T 2P (21)

eis:[(l"‘vl)sﬁ'(1_V1)8|11](m2+2C=55)
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c __
€117 €2

Vet (1+ V) el — 2V (e5s—elg) el (m,+2Cky)
X

(1+V1)82+V28|11
(22
. - eS,—eh;
eS=e,+V (eha—g,) — 2V €h—— (23
33— &2t Vi(egz—er) 18319 S,
Vo 2B2e5;  2Bhi(eh ey
c_ i v2
P3=Vi| P3 A PR , (24)

in which k/2, m/2, I, n, p are Hill's®® elastic moduli under a
constant electric and temperature field. The single subscript:
represent the inclusion, as 1, and the matrix, as 2. In contras
the double subscripts represent second order tensors. TF
symbolsp;, B represent pyroelectricity and thermal stress
coefficient. This pyroelectricity is the variation of electric
displacement along the 3-axis due to a unit change of tem-
perature. The relation g8 to the thermal expansion coeffi-
cients isB=Ca.

To investigate the anomaly in the pyroelectric constants,
we adopt the CdS-epoxy piezoelectric compoSitdor -
which material parameters are0.074 and 1.32C/n?) for (b) v
eg andess, 1.17%, for £33, and—0.04 (10 4 C>m %K™ 1)
for p3. Also, the degree of mechanical anisotropy of theFIG. 6. (a) Normalized piezoelectric constaed; and(b) normalized piezo-
inclusion is low. The thermal properties of the inclusion andelec_tric constanes; of_a 1-3 fiber-type pie_zoele‘ctric gomposite Versus in-

. 21 clusion volume fraction {;) and normalized inclusion shear modulus
_mamx_ are 6.5 and 4 (_IGSK ) for ay, a”O_' *33 OT the (G'/Gef), WhereG =25 GPa. Calculated by Eq&l9) and (20).
inclusion, and 60 (10° K 1) for the thermally isotropic ma-
trix. It is noteworthy that, in all of our analysis, the absolute
values of these _matenal properue; are not important becau§ﬁa_ DISCUSSION
only the normalized values are of interest to demonstrate the
anomalies. The standard normalization method used here is Although a giant magnitude of thermal expansion coef-
to divide each of the overall composite properties by that oficients can be also achieved by introducing the concepts of
phase 1, correspondingly, except for the shear modulus of theoid phase or slip interfacé the present approach not only
inclusion, which is normalized to that of phase 2, and thdargely increases the expansion of materials in magnitude,
overall piezoelectric coefficients, which are normalized tobut also improves the properties of stiffness and mechanical
those evaluated at; =1 andG'/G,= 1. In our calculation, damping simultaneously~** In addition, the layer type of
shear modulus is tuned through negative values while mairthis kind of composites makes the actuator application, such
taining coupled field constants unchanged. Single domainas cantilever beam bimorph actuatdtsnore feasible at a
may approximate such behavior but polydomain blocksdesignated temperature, without microdevice fabrication.
would not. Here, since we are considering linear systems, th€he achievement of enhanced composite stiffness by nega-
influence of nonlinear behavior of piezoelectric materialstive stiffness inclusions, while supported experimentslly,
such as ferroelectricit} upon the homogenization of com- raises questions of stabilitj.For thermoelasticity or piezo-
posites is neglected. Figure 6 shows the singularity in thelectricity, the sign is usually immaterial in transducer or
composite piezoelectric constardgg, and es3, as inclusion sensor applications. Consequently, we expect it will be easier
stiffness becomes negative. Figures 7 and 8 show that singte achieve overall stability in composites intended for ex-
larities also occur in the composite piezoelectric coefficientsireme thermoelastic or piezoelectric coupling. Tuning of
dss, ds3p, diq, andd;s, and the permittivityes;, as the negative stiffness can be achieved by control of temperature
inclusion stiffness becomes negative. Figure 9 shows the irthrough a phase transitibhor by controlling prestrain upon
fluence of inclusion negative stiffness on the composite pya postbuckled systef. The negative stiffness approach is
roelectric property. As with the other coupled fields, singu-distinct from the use of structural resonatfcéo achieve
larities occur for proper values of inclusion stiffness. As with high dielectric properties, since there are no inertial terms in
the viscoelastic casg,the singularities in the coupled fields the continuum elasticity equations used in the present work.
become peaks of finite magnitude when material damping Piezoelectric composite materiasare of interest since
properties of either phase are considered. the figure of merit for a variety of sensor and actuators can
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FIG. 7. (a) Normalized piezoelectric longitudinal coefficiedgs, (b) normalized piezoelectric transverse coefficiely, (c) normalized piezoelectric
transverse coefficients;, and(d) normalized piezoelectric shear coefficieht of a 1-3 fiber-type piezoelectric composite versus inclusion volume fraction
(V1) and normalized inclusion shear modul@'AG ), WhereG, =25 GPa. Calculated by Eqé&l4)—(24).

be increased by using composifédn the present work, it thermoelectric, magnetoelectric, and piezoelectric effects,
has been shown that piezoelectric and other coupled fieldan be obtained exactly by a modulus matrix decomposition
properties can become unbounded, not just increased. approach’’ Therefore, the overall properties can be exactly

To extend our idea to predict other anomalies in othercalculated simply by summing a finite series, whose terms
coupled fields, phenomenologically, the effective moduli of
two-phase composites with coupled multiple fields, such as

Vi
0.05
.15
1
0 €53
exst

-0.8
Gt /Gref

FIG. 9. Normalized pyroelectric coefficiept; of a 1-3 fiber-type piezo-
FIG. 8. Normalized permittivity constamt; of a 1-3 fiber-type piezoelec- electric composite versus inclusion volume fractiony and normalized
tric composite versus inclusion volume fractiov;§ and normalized inclu-  inclusion shear modulusy/G,e), whereG,4=25 GPa. Calculated by Eq.
sion shear modulus®'/G,e), whereG,=25 GPa. Calculated by E(23). (24).
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