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Extreme thermal expansion, piezoelectricity, and other coupled field
properties in composites with a negative stiffness phase

Y. C. Wang and R. S. Lakesa)

Department of Engineering Physics, Engineering Mechanics Program, University of Wisconsin–Madison,
147 Engineering Research Building, 1500 Engineering Drive, Madison, Wisconsin 53706–1687

~Received 17 May 2001; accepted for publication 5 September 2001!

Particulate composites with negative stiffness inclusions in a viscoelastic matrix are shown to have
higher thermal expansion than that of either constituent and exceeding conventional bounds. It is
also shown theoretically that other extreme linear coupled field properties including piezoelectricity
and pyroelectricity occur in layer- and fiber-type piezoelectric composites, due to negative inclusion
stiffness effects. The causal mechanism is a greater deformation in and near the inclusions than the
composite as a whole. A block of negative stiffness material is unstable, but negative stiffness
inclusions in a composite can be stabilized by the surrounding matrix and can give rise to extreme
viscoelastic effects in lumped and distributed composites. In contrast to prior proposed composites
with unbounded thermal expansion, neither the assumptions of void spaces nor slip interfaces are
required in the present analysis. ©2001 American Institute of Physics.
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I. INTRODUCTION

Microstructure in multiphase materials such as comp
ites and biological tissues may be so complex that theore
prediction of aggregate physical properties from constitu
properties becomes difficult or impossible. Consequently
is useful to develop analytical bounds upon properties
order to constrain the range of properties which may be
pected. Bounds1,2 have been developed for the thermal e
pansion coefficienta of composite materials of two solid
phases in terms of constituent expansion coefficientsa1 and
a2 . The upper bound is a rule of mixturesa5a1V1

1a2(12V1), in which V1 is the volume fraction of the firs
phase. If the detailed microstructure of a composite
known, the exact relations of overall mechanical or coup
properties and those of each constituent can be obta
theoretically. Even if the microstructure is unknown for
particular composite, the bound equations constrain att
able behavior provided the assumptions of the bound
theorems are satisfied. Many bounding formulas are att
able, that is, they correspond exactly to a known microstr
ture. In deriving the bounds on thermal expansion coe
cients, it was tacitly assumed that the two phases
perfectly bonded and with zero void content; moreover, t
each phase is of positive stiffness with zero stored energ
equilibrium. We have shown that arbitrarily high thermal e
pansions can be achieved in composites with void fracti3

or in dense composites with interfaces which allow sli4

These composites contain rib elements of composite mi
structure. Each rib element is a bilayer made of two bon
layers of differing thermal expansion coefficienta. Compos-
ites with extremal thermal expansion coefficients have a
been presented based on topology optimization5 of structure

a!Author to whom correspondence should be addressed; electronic
lakes@engr.wisc.edu
6450021-8979/2001/90(12)/6458/8/$18.00
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allowing void space. Inclusion of void space of appropria
shape in a composite microstructure can also give rise
unusual mechanical properties such as a negative Poiss
ratio.6 Void space is not, however, a necessary condition
achieve negative Poisson’s ratio; a hierarchical laminate w
dissimilar constituents also has this property.7 A common
aspect is nonaffine or heterogeneous deformation.8 Negative
thermal expansion coefficients are known in certain ox
systems;9 they also occur in lattice composites if the high
expansion constituent is on the convex side of each bila
We remark that molecular design of materials with moder
values of negative linear and volumetric thermal expans
has been conducted.10

It is the purpose of this article to explore the effects
negative stiffness composite phases in achieving extre
thermal expansion, piezoelectric, and pyroelectric coup
field properties. The possibility of extreme behavior in su
composites was explored theoretically11 for viscoelastic sys-
tems. High viscoelastic damping in composite cells w
negative stiffness has been demonstrated experimentally12 in
compliant systems containing postbuckled tubes. High v
coelastic damping has also been observed in composites
negative stiffness particulate inclusions.13 In this article, we
first demonstrate the possibility to achieve extreme ther
expansion of particulate composites via the exact relation
thermal expansion coefficients and bulk moduli. Second,
show theoretically that extreme piezoelectric constants,
ezoelectric coefficients, and pyroelectric constants can
be observed in layer- and fiber-type piezoelectric composi
based on available exact or approximate relations.

II. ANALYSIS

Thermal expansion in composites is intimately link
with the bulk properties. The thermal expansion coefficie
il:
8 © 2001 American Institute of Physics
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ac of a composite is related to the bulk properties
follows,14,15 provided the composite as well as each phas
isotropic.

ac5a11
a12a2

1

K2
2

1

K1

S 1

Kc2
1

K1
D . ~1!

The composite thermal expansionac can be large if the com
posite bulk modulusKc is small. That is the case in th
lattice structures considered in Refs. 3 and 4.ac can also be
large if bulk compliances of the constituents are out of p
portion to their thermal expansion coefficients. Based on
statistically isotropic assumption, Eq.~1! was obtained as an
exact solution by applying an eigenstress technique thro
the uniform fields approach,16 described as follows. The
name for the uniform field was coined much later than
derivation done by Levin. First, separate the inclusions fr
the matrix; let both of them be loaded by a hydrostatic str
with a uniform temperature change. Second, put those in
sions back into the matrix, constrain them to satisfy the tr
tion and displacement continuity conditions on the int
faces. Then, the expression is found for effective therm
expansion coefficients by the superposition of a hydrost
stress in the opposite direction on the outer boundary of
matrix to cancel the one added artificially in the first step

As for the bulk modulus as input to Eq.~1!, consider the
Hashin–Shtrikman17 ~1963! formulas. The lower bounds fo
the elastic shear modulusGL and bulk modulusKL of a
composite are:

GL5G21
V1

1

G12G2
1

6~K212G2!V2

5~3K214G2!G2

, ~2!

KL5K21
V1~K12K2!~3K214G2!

~3K214G2!13~K12K2!V2
, ~3!

in which K1 andK2 , G1 andG2 , andV1 andV2 are the bulk
modulus, shear modulus, and volume fraction of phase
and 2, respectively. IfG1.G2 , thenGL represents the lowe
bound on the shear modulus. Interchanging the subscrip
and 2 results in the upper boundGU for the shear modulus
The bounds for isotropic composites are attainable. T
Hashin–Shtrikman formula for the bulk modulus, Eq.~3!, is
attained exactly by a coated sphere morphology. T
‘‘lower’’ composite corresponds to the case of stiff sphe
coated with a compliant layer. The shear modulus of
coated sphere morphology approximates the correspon
Hashin–Shtrikman formula, Eq.~2!. Exact attainment of Eq
~2!, however, is possible via a laminate morphology18 as
shown by Milton.

We now allow one phase to havenegative stiffness.
Negative stiffness entails a reversal of the usual directio
relationship between force and displacement in deformed
jects. It does not violate any physical law, but an isola
object with negative stiffness is unstable. Composite mat
als with negative stiffness inclusions can be stable provi
the inclusion stiffness is not excessively negative. In ela
composites, the elastic moduli can become singular if
Downloaded 26 Oct 2005 to 128.104.185.133. Redistribution subject to A
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phases of positive and negative stiffness are properly
anced. In viscoelastic composites11 with a negative stiffness
phase, an anomaly in stiffness is predicted, as well as a p
in the mechanical damping. In that analysis, we applied
elastic–viscoelastic correspondence to the exact relation~1!
and~3! to obtain corresponding relations for viscoelastic m
dia. These formulas no longer represent bounds, howe
they are exact solutions for particular microstructures.

If the bulk modulus of one phase is allowed to becom
negative, the thermal expansion coefficient can greatly
ceed that of either phase, as shown in Fig. 1, which is ba
on Eq. ~1!, and the lower bound formula for effective bul
modulus, Eq.~3!. As inclusion stiffness is reduced, the com
posite thermal expansion attains its maximum magnitu
first, then the composite bulk modulus attains a minimu
The enhancement of thermal expansion becomes singula
the mechanical damping of the phases tends to zero
shown in Fig. 2. The singularity in thermal expansion occ
as the composite bulk modulus tends to zero. Therefore,
present composites share with prior ones3–5 the characteristic
that extreme expansion is associated with bulk complian
We remark that singular thermal expansion can be achie
without the composite bulk modulus passing through ne
tive regions in which stabilization might be required. Spec
cally, in Fig. 2, as the inclusion bulk modulus is tune
through progressively more negative values, the compo
thermal expansion becomes singular before the compo
bulk modulus.

As for the piezoelectric coupling problems, Skinne
Newnham, and Cross19 proposed a set of rule-of-mixture
type equations to approximately estimate the effective pie
electric coefficients, as follows.

~d33
c !series5

V1d33
i «33

m 1~12V1!d33
m«33

i

V1«33
m 1~12V1!«33

i , ~4!

~d33
c !parallel5

V1d33
i S33

m 1~12V1!d33
mS33

i

V1S33
m 1~12V1!S33

i , ~5!

d31
c 5V1d31

i 1~12V1!d31
m , ~6!

FIG. 1. The thermal expansion coefficient~real part ofac! of a Hashin–
Shtrikman composite assuming a matrix phase of mechanical dampingd
50.05 in the bulk modulus with negative stiffness inclusions, as a func
of inclusion stiffness and volume fraction. Thermal expansion coefficient
inclusion and matrix differ by a factor of two. The composite thermal e
pansion coefficient is normalized to that of phase 1.
IP license or copyright, see http://jap.aip.org/jap/copyright.jsp
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where the symbolsdjk , « jk , andSjk are piezoelectric coef
ficients, permittivity constants, and elastic compliances,
inverse of the elastic modulus (Cjk). The indexesj andk of
second rank tensor properties« jk are from 1 to 3, denoting
the axes of the coordinate system. The subscripts, series
parallel, represent the type of connectivity, which cor
sponds to the Reuss and Voigt composites, respectivel
geometry. In the series case, 3-axis represents the axis
pendicular to the layers; the reverse applies in the para
case. The superscriptsi, m, and c represent the inclusion
matrix, and composite. The relationship between piezoe
tric constants (ejk) and piezoelectric coefficients (djk) is
djk5ejqSqk . The usual contracted index notation is used
the higher order tensorial properties, such as elastic mo
(Ci jkl ), elastic compliances (Si jkl ), and piezoelectric prop
erties ~ei jk or di jk! in which only the last two indexes ar
contracted, as used by Nye.20 The contraction means indexe
11 becomeI 1, 22 becomeI 2, 33 becomeI 3, 23 become 4, 13
become 5, 12 become 6. Each of the field quantities is m
sured when all others are fixed. A more rigorous derivati
based on the linear coupled field theory and uniform fi
technique, for this sort of two-phase layer-type piezoelec
composites, consisting of transversely isotropic phases
given by Benveniste and Dvorak.21 The 17 independent ma
terial parameters for the overall orthotropic piezoelec
composites are obtained exactly.

To simplify our theoretical analysis of this coupled fie
problem, we assume each of the piezoelectric transd
~PZT! inclusion layers or rods is mechanically isotropic. Th
assumption is justified since the degree of mechanical an
ropy of certain PZT materials, for example PZT-5A~Ref. 22!
is not very pronounced. Moreover, most piezoelectric cera
ics are rather stiff, therefore typical matrix materials can
expected to be much more compliant than piezoelectric
clusions. In the vicinity of a phase transformation, a sin
domain can go from positive to negative stiffness even if

FIG. 2. Thermal expansion properties of a Hashin–Shtrikman compo
assuming a inclusion phase of mechanical damping tand50.05 or 0 and
negative stiffness. Thermal expansion is normalized to that of phase 1.
volume fraction of the inclusion is 0.01.
Downloaded 26 Oct 2005 to 128.104.185.133. Redistribution subject to A
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parent material is stiff away from the transition. Therefore,
delineate phenomena, we allow the shear modulus of
inclusion to become negative. To aid the numerical calcu
tion of the overall piezoelectric properties, we assume
electrical and coupled properties of the inclusion to be
same as those of PZT-5A material,24 which are25.4, 15.8,
and 12.3~C/m2! for e31, e33, and e15, as well as 916«0 ,

te

he

FIG. 3. ~a! Normalized piezoelectric coefficientd33 , in series,~b! normal-
ized piezoelectric coefficientd33 , in parallel, and~c! normalized piezoelec-
tric coefficientd31 of a layer-type piezoelectric composite versus inclusi
volume fraction (V1) and normalized inclusion shear modulus (Gi /Gref),
whereGref525 GPa. Calculated by Eqs.~4!–~6!.
IP license or copyright, see http://jap.aip.org/jap/copyright.jsp
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FIG. 4. ~a! Normalized piezoelectric coefficientd33 , ~b! normalized piezoelectric coefficientd32 , ~c! normalized piezoelectric coefficientd31 , and ~d!
normalized piezoelectric coefficientd15 of a layer-type piezoelectric composite versus inclusion volume fraction (V1) and normalized inclusion shear modulu
(Gi /Gref), whereGref525 GPa. Calculated by the equations, which are exact, in Ref. 21.
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830«0 for «11 and«33, where«0 represents the permittivity
in a vacuum. For the isotropic matrix, there are no coup
electrical properties, but we assume its permittivity to
4.43«0 . Figure 3 shows the existence of singularities, p
dicted by Eqs.~4!–~6!, in this type of composites for thei
piezoelectric coefficients when their piezoelectric phases
dergo a negative stiffness transition. Based on those e
tions obtained by Benveniste and Dvorak, the singulari
also can be observed in the graphical results, Fig. 4, for
overall piezoelectric coefficientsd33, d32, d31, andd15, in
which the index 3 indicates the axis perpendicular to
layers.

In the piezoelectric composites with 1–3 connectivi
contrasted with the aforementioned piezoelectric compos
which are catalogued as those with 2–2 connectivity,
piezoelectric phase is continuously self-connected in one
mension and the matrix is connected in three dimensions
other words, they are fiber-type or transversely isotro
composites. Throughout our analysis for fiber composi
the 3 direction of the composite is along the direction
which the fibers are aligned and poled. Benveniste23 pointed
out, among the ten independent material constants for
overall properties, nine of them can be derived exactly
simple expressions in the model of composite cylinder
Downloaded 26 Oct 2005 to 128.104.185.133. Redistribution subject to A
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semblage. Because of the independence of electric field
relation for effective plane strain bulk modulus, Eq.~7! is
exact, based on the same argument used for the effec
bulk modulus in the Hashin–Shtrikman bounds.

kc5km1
V1

1

ki2km 1
12V1

k1GT
m

, ~7!

where k is the plane strain bulk modulus, andGT is the
transverse shear modulus, differing fromGA , which is de-
noted as the longitudinal shear modulus. Following the u
versal connection for piezoelectric fiber-type composit
found by Schulgasser,24 we can obtain the following exac
relations.

C13
c 5

~km2kc!C13
i 2~ki2kc!C13

m

km2ki , ~8!

C33
c 5V1C33

i 1V2C33
m

2
~C13

m 2C13
c !~V1C13

i 1V2C13
m 2C13

c !

km2kc , ~9!
IP license or copyright, see http://jap.aip.org/jap/copyright.jsp
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e33
c 5V1e33

i 1~12V1!e33
m

2
~e31

m 2e31
c !~V1C13

i 1~12V1!C13
m 2C13

c !

km2kc , ~10!

e31
c 5

e31
i ~km2kc!2e31

m ~ki2kc!

km2ki , ~11!

«33
c 5V1«33

i 1V2«33
m 2

~e31
m 2e31

c !~e31
c 2V1e31

i 2V2e31
m !

km2kc ,

~12!

FIG. 5. ~a! Normalized piezoelectric coefficiente33 , ~b! normalized piezo-
electric coefficiente31 , and ~c! normalized permittivity constant«33 of a
1–3 fiber-type piezoelectric composite versus inclusion volume frac
(V1) and normalized inclusion shear modulus (Gi /Gref), where Gref

525 GPa. Calculated by Eqs.~10!–~12!, exact relations.
Downloaded 26 Oct 2005 to 128.104.185.133. Redistribution subject to A
The rest of the exact relations fore15, GA , and«11, dem-
onstrated by Milgrom and Shtrikman,25 are presented as fol
lows.

L c5Lm@~12V1!L i1~11V1!Lm#21@~11V1!L i

1~12V1!Lm#, ~13!

where

L r5FGL e15

e15 2e11
G r

, r 5 i ,m.

Figure 5 shows the singularities in piezoelectric co
stants,e31 and e33, and permittivity«33, predicted by the
exact solutions, Eqs.~10!–~12!. For the transversely isotro
pic materials modeled by composite cylinder assemblage
effective transverse shear modulus can not be determ
exactly.23 However, deriving this effective property is
purely mechanical problem, since there is no coupling w
electric field. Therefore, one can use, for example, gene
ized self-consistent method26 to calculate it approximately
Alternatively, by the multiple-scattering technique, all of th
ten effective material properties can be computed by E
~14!–~23!, plus the pyroelectric constantp3 by Eq. ~24!,27,28

presented next, in the sense of a first order approximat
The importance of these equations is that they represen
overall properties of the two-phase transversely isotropic
ezoelectric composites, whose microstructure is compri
of infinitely long fibers. Mathematically, they are equivale
to the results of the self-consistent effective-mediu
theory,29 after theV1 square terms are ignored in the effe
tive elastic moduli.

kc5
k2~k11m2!1V1m2~k12k2!

k11m22V1~k12k2!
~14!

mc5m2

k2~m11m2!12m1m21V1k2~m12m2!

k2~m11m2!12m1m22V1~m12m2!~k212m2!
~15!

l c5
C12

m ~k12kc!1C13
i ~kc2k2!

k12k2
~16!

nc5C11
m 1V1~C33

i 2C11
m !22V1

~C13
i 2C12

m !2~k22kc!

~k11m2!~k12k2!
~17!

pc5
m2~m212C55

i !1V1m2~2C55
i 2m2!

2~m212C55
i !12V1~m222C55

i !
~18!

e31
c 5V1e31

i kc1m2

k11m2
~19!

e33
c 5V1e31

i 22V1e31
i

C13
i 2 l c

k11m2
~20!

e15
c 5

V1e15
i «2~m212pc!

@~11V1!«21~12V1!«11
i #~m212C55

i !
~21!

n
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«11
c 5«2

3
V2«21~11V1!«11

i 22V1~e15
c 2e15

i !e15
i /~m212C55

i !

~11V1!«21V2«11
i

~22!

«33
c 5«21V1~«33

i 2«2!22V1e31
i

e31
c 2e31

i

k11m2
~23!

p3
c5V1S p3

i 2
V2

V1

2b2e31
c

k21m2
1

2b11
i ~e31

i 2e31
c !

k21m2
D , ~24!

in which k/2, m/2, l, n, p are Hill’s30 elastic moduli under a
constant electric and temperature field. The single subsc
represent the inclusion, as 1, and the matrix, as 2. In cont
the double subscripts represent second order tensors.
symbolsp3 , b represent pyroelectricity and thermal stre
coefficient. This pyroelectricity is the variation of electr
displacement along the 3-axis due to a unit change of t
perature. The relation ofb to the thermal expansion coeffi
cients isb5Ca.

To investigate the anomaly in the pyroelectric constan
we adopt the CdS-epoxy piezoelectric composite,28 for
which material parameters are20.074 and 1.32~C/m2! for
e31 ande33, 1.17«0 for «33, and20.04 (1024 C2-m22-K21)
for p3 . Also, the degree of mechanical anisotropy of t
inclusion is low. The thermal properties of the inclusion a
matrix are 6.5 and 4 (1026 K21) for a11 and a33 of the
inclusion, and 60 (1026 K21) for the thermally isotropic ma-
trix. It is noteworthy that, in all of our analysis, the absolu
values of these material properties are not important bec
only the normalized values are of interest to demonstrate
anomalies. The standard normalization method used he
to divide each of the overall composite properties by tha
phase 1, correspondingly, except for the shear modulus o
inclusion, which is normalized to that of phase 2, and
overall piezoelectric coefficients, which are normalized
those evaluated atV151 andGi /Gref51. In our calculation,
shear modulus is tuned through negative values while m
taining coupled field constants unchanged. Single dom
may approximate such behavior but polydomain bloc
would not. Here, since we are considering linear systems
influence of nonlinear behavior of piezoelectric materia
such as ferroelectricity,31 upon the homogenization of com
posites is neglected. Figure 6 shows the singularity in
composite piezoelectric constantse31 and e33, as inclusion
stiffness becomes negative. Figures 7 and 8 show that si
larities also occur in the composite piezoelectric coefficien
d33, d32, d31, and d15, and the permittivity«33, as the
inclusion stiffness becomes negative. Figure 9 shows the
fluence of inclusion negative stiffness on the composite
roelectric property. As with the other coupled fields, sing
larities occur for proper values of inclusion stiffness. As w
the viscoelastic case,11 the singularities in the coupled field
become peaks of finite magnitude when material damp
properties of either phase are considered.
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III. DISCUSSION

Although a giant magnitude of thermal expansion co
ficients can be also achieved by introducing the concept
void phase or slip interfaces,3,4 the present approach not on
largely increases the expansion of materials in magnitu
but also improves the properties of stiffness and mechan
damping simultaneously.11–13 In addition, the layer type of
this kind of composites makes the actuator application, s
as cantilever beam bimorph actuators,32 more feasible at a
designated temperature, without microdevice fabricati
The achievement of enhanced composite stiffness by n
tive stiffness inclusions, while supported experimentally13

raises questions of stability.33 For thermoelasticity or piezo
electricity, the sign is usually immaterial in transducer
sensor applications. Consequently, we expect it will be ea
to achieve overall stability in composites intended for e
treme thermoelastic or piezoelectric coupling. Tuning
negative stiffness can be achieved by control of tempera
through a phase transition13 or by controlling prestrain upon
a postbuckled system.12 The negative stiffness approach
distinct from the use of structural resonance34 to achieve
high dielectric properties, since there are no inertial terms
the continuum elasticity equations used in the present w

Piezoelectric composite materials35 are of interest since
the figure of merit for a variety of sensor and actuators c

FIG. 6. ~a! Normalized piezoelectric constante33 and~b! normalized piezo-
electric constante31 of a 1–3 fiber-type piezoelectric composite versus
clusion volume fraction (V1) and normalized inclusion shear modulu
(Gi /Gref), whereGref525 GPa. Calculated by Eqs.~19! and ~20!.
IP license or copyright, see http://jap.aip.org/jap/copyright.jsp
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FIG. 7. ~a! Normalized piezoelectric longitudinal coefficientd33 , ~b! normalized piezoelectric transverse coefficientd32 , ~c! normalized piezoelectric
transverse coefficientd31 , and~d! normalized piezoelectric shear coefficientd15 of a 1–3 fiber-type piezoelectric composite versus inclusion volume frac
(V1) and normalized inclusion shear modulus (Gi /Gref), whereGref525 GPa. Calculated by Eqs.~14!–~24!.
fie

he
o
a

cts,
tion
tly
ms

-
.

be increased by using composites.36 In the present work, it
has been shown that piezoelectric and other coupled
properties can become unbounded, not just increased.

To extend our idea to predict other anomalies in ot
coupled fields, phenomenologically, the effective moduli
two-phase composites with coupled multiple fields, such

FIG. 8. Normalized permittivity constante33 of a 1–3 fiber-type piezoelec
tric composite versus inclusion volume fraction (V1) and normalized inclu-
sion shear modulus (Gi /Gref), whereGref525 GPa. Calculated by Eq.~23!.
Downloaded 26 Oct 2005 to 128.104.185.133. Redistribution subject to A
ld

r
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thermoelectric, magnetoelectric, and piezoelectric effe
can be obtained exactly by a modulus matrix decomposi
approach.37 Therefore, the overall properties can be exac
calculated simply by summing a finite series, whose ter

FIG. 9. Normalized pyroelectric coefficientp3 of a 1–3 fiber-type piezo-
electric composite versus inclusion volume fraction (V1) and normalized
inclusion shear modulus (Gi /Gref), whereGref525 GPa. Calculated by Eq
~24!.
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are comprised of the phase moduli and volume fracti
only. By allowing negative stiffness inclusions, we viola
the common assumption of positive definiteness for mod
In particular, it is possible to exceed commonly accep
bounds. The consequences of negative stiffness inclusion
mechanical systems have been explored theoretically11 and
experimentally.12,13Therefore, due to negative eigenvalues
the modulus matrix as the coefficients of the terms in
finite series, its sum, which represents the effective mod
may lead to extremely small or large values of properti
whereas the magnitude of the influence depends on the i
action of the degree of fields. The present theoretical anal
supports this argument. In thermoelastic and piezoelec
materials, elasticity is coupled with temperature and elec
field, respectively. Consequently, composites with nega
stiffness inclusions may find use in high performance sen
and actuators based on coupled fields.

IV. CONCLUSION

Extreme coupled field properties including thermal e
pansion, piezoelectricity, and pyroelectricity can occur
composites in which one phase has negative stiffness. In
early elastic materials, the properties become singular w
positive and negative stiffness are appropriately balanc
The presence of time or frequency dependence in elasti
electric properties, or their coupling will smooth out the s
gularities to finite peaks. Following the same idea, it also
be envisaged that similar anomalies can be found in o
coupled field problems.
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