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Abstract

For engineering applications where tight dimensional tolerances are required, or for applications 
where materials are subjected to a wide range of temperatures it becomes desirable to reduce a 
material’s coefficient of thermal expansion. By carefully designing lattice microstructures, zero 
thermal expansion can be achieved. This work describes lattice microstructures that achieve zero 
expansion by utilizing either the Poisson effect to negate thermal expansion, or a curved, bi-
material rib morphology. Previously described microstructures were composed of solid material 
constituents. The lattices presented here have structural hierarchy in which lattice ribs contain 
oriented porosity. This gives rise to improved strength and modulus, and provides additional 
design freedom associated with anisotropy. 
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Introduction

Low or even zero thermal expansion coefficients are desirable for materials requiring 
precise dimensional tolerance or subjected to environments with large temperature fluctuations. 
It is possible to achieve thermal expansion that is large positive, zero, or large negative by 
lattices with curved bi-material ribs [1, 2]. Zero expansion lattices based on this concept have 
been designed [3] with improved ratio of stiffness to density [4]. Lattices containing straight ribs 
can in principle be fully stretch-dominated and have an optimally high ratio of stiffness to 
density. Two-dimensional lattices with two kinds of ribs and rotating joints were introduced by 
Steeves et al. [5]. Zero expansion lattices constructed of curved, hexagonal honeycomb cells, 
with inserts consisting of three spars, made of a second dissimilar material are described by 
Jefferson et al [6]. Two-dimensional and three-dimensional lattices containing nested tubes were 
analyzed by Lehman and Lakes [7].

The nested tube morphology consists of ribs that consist of two tubes with differing 
coefficients of thermal expansion (CTEs) oriented concentrically, following the structural strut 
design of Baird [7, 8]. Zero expansion is achieved via nested tubes as follows. The difference in 
material thermal expansion creates a thermal stress which acts to stretch the lower CTE material 
circumferentially, for an increase in temperature. This circumferential extension in turn leads to a 
Poisson contraction in the axial direction. By carefully choosing material properties and volume 
ratios it is possible to fully compensate for the thermal expansion in the axial direction to achieve 
zero expansion. For a decrease in temperature the reverse is true, a circumferential constriction 
results in an axial extension negating axial thermal contraction. Two configurations exist, with 
the same analysis and principles applicable to both. The first configuration is to have the smaller 
CTE material press fitted over the larger expansion material. This ensures that the two materials 
remain in contact as the temperature increases. Material separation may occur for sufficiently 
large temperature decreases. Another configuration would be to press fit the larger CTE material 
over the smaller expansion material, ensuring contact for all temperature decreases, with possible 
material separation for sufficiently large temperature increases.

Prior analysis of lattices based on nested tubes considered both isotropic and anisotropic 
materials as well as two material boundary conditions [7]. The first boundary condition assumes 
that the constituent materials are perfectly bonded, whereas the second boundary condition 
assumes perfect slip condition. Previously described material structures could only achieve zero 
thermal expansion with the use of either the perfect slip assumption or the use of a negative CTE 
material. Both of these restrictions entail limited applicability. Most commonly used materials 
have positive thermal expansions, and the perfect slip assumption is an ideal condition. One may 
approximate such a condition by segmenting the larger CTE material into rings, or a wrapping of 
helical wire [9]. 

The present analysis describes zero expansion morphologies composed of positive CTE 
materials. Strength and stiffness of these lattices are enhanced by structural hierarchy. Structural 
hierarchy refers to structure within structure. Honeycombs and foams with structural hierarchy 
can be designed with compressive strength to density ratio orders of magnitude greater than 
values for conventional structures [10]. The present zero-expansion lattices are designed using 
ribs that themselves have oriented porosity. Lattices are considered based on nested hierarchical 
tubular ribs as well as lattices based on curved bi-material ribs. 

Material Properties
Several materials were considered throughout this analysis. Four isotropic metals were 

chosen including Invar, aluminum, steel, and brass. These materials were selected for their 

2



commonality and typical use as structural materials. Invar is well known for its small coefficient 
of thermal expansion. Additionally two anisotropic, unidirectional fiber composites were also 
considered, a graphite fiber epoxy composite and a Kevlar fiber epoxy composite. The fibers are 
aligned in the longitudinal direction with respect to the matrix, while the transverse direction is 
considered to be orthogonal to the axis of the fibers.  The material properties used for each 
material are shown in Table 1 in which E is Young’s modulus, ! is Poisson’s ratio, and  is 
thermal expansion. The properties used are obtained as follows. The properties of Invar were 
obtained from Woolger [11]; the properties for Kevlar epoxy and graphite epoxy composites are 
from Agarwal and Broutman [12] The thermal properties for aluminum and steel are obtained 
from the ASM International Materials Properties Database Committee [13], while the 
mechanical properties of aluminum and steel are from Cook and Young [14]. The properties of 
Brass are those of yellow brass and were obtained from Beer et al. [15].

Table 1 provides a list of material properties used throughout the analysis. For fiber reinforced composites the L subscript 
indicates the direction along the fibers while T denotes transverse to the direction of the fibers. Steel, brass, aluminum, 
and Invar are considered isotropic and are only defined by one Young’s modulus and one CTE.

Material
Property Steel Brass Aluminum Invar Unidirectional Graphite

Fiber Epoxy Composite
Unidirectional Kevlar

Fiber Epoxy Composite
EL (GPa) 200 105 70 140 159 83
ET (GPa) -- -- -- -- 10.9 5.6
!LT 0.3 0.35 0.33 0.28 0.38 0.34
L

(!strain/K) 12 20.9 22.2 1 0.045 -3.3

T
(!strain/K) -- -- -- -- 20.2 35

Zero Expansion via Oriented Porosity and the Poisson Effect

Hierarchical tubular rib based lattices contain a tube with oriented porosity along its axis. 
This tube is then incased by a second material which has porosity oriented circumferentially. The 
porosity can be distributed randomly or periodically, but it is assumed to be homogeneously 
distributed within the material. Figure 1 depicts this zero expansion morphology. A no slip 
boundary condition is assumed. 

Figure 1 shows the bi-material, concentric tube with oriented porosity in the form of tubular channels oriented
longitudinally in material 1 and oriented circumferentially in material 2. 
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Figure 2 depicts an octet-truss lattice structure composed of nested tube rib elements. All elements are identical. The inner
octahedron elements are shown in black while the exterior tetrahedral elements are depicted in white for visual clarity.

Oriented porosity in the lattice rib gives rise to tunable anisotropy of the rib material, a 
useful design variable, and also enhances the ratio of strength to weight. Anisotropy is achieved 
with the addition of oriented cylindrical pores.

The structural hierarchy can alter the mode of failure, resulting in improved strength. 
Both plastic yield and Euler buckling modes are considered for octet-truss lattices of zero 
expansion tubes. Deshpande et al. describe the octet-truss and its mechanical properties [16]. An 
octet-truss lattice made of nested tube elements is shown by Figure 2 [7].

The material Young’s modulus along the axis of the pores is proportional to the material 
density, whereas in the transverse direction the elastic modulus is proportional to the relative 
density to the third power [17]. This difference is due to the mode of deformation for each 
direction. Along the axial direction the solid material’s deformation is stretch dominated, but in 
the transverse direction, the deformation is primarily bending dominated [17]. By changing the 
relative density of each constituent material, the degree of anisotropy can be adjusted. Equations 
1 and 2 explicitly state the Young’s moduli along the axial and transverse directions.

1

2

The subscript s indicates the material property (density or elastic modulus) corresponding that of 
the solid material (density or elastic modulus). The constants of proportionality (C1 or C2) depend 
on the geometry of the pores. Because the pores are perfectly aligned in the axial direction the 
constant C1 is simply equal to one. The tangential constant of proportionality is somewhat more 
difficult to characterize, and depends upon the pore geometry. For this analysis a value of 0.8 
was used for C2. This value is equivalent to that of wood in the radial direction, as reported by 
Gibson and Ashby [17]. This constant is valid for wood-like relative densities, 0.05-0.8 [17], and 
is applicable for the range of constituent relative densities considered here. 
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Thermal Expansion of Nested Tubes
The total thermal expansion of the combined structure can be calculated using the 

relationship derived by Lehman and Lakes for thin walled bi-material tubes with a no-slip 
material interface [7].  The assumptions inherent to this relationship include a thin wall 
assumption. This implies that the radii of the two materials much greater than the wall thickness, 
and thus the thickness ratio (d = t1/t2) is equivalent to the volume ratio of material one to material 
two. Stress in the radial direction is assumed to be zero. As specified by the no slip assumption, 
the strain of material one is equal to the strain of material two. Equation 3 provides the 
expression for the total structural thermal expansion.

3

The L subscript indicates the axial or longitudinal direction of the tube element, while the C 
subscript describes the circumferential direction. Material one and two are designated by their 
numeric subscripts. The variable n is a material modulus ratio, E1 over E2, and one ratio exists for 
each direction, longitudinal and circumferential. The Poisson ratios are defined by the strain ratio 
given by Equation 4, whereas the two Poisson ratios for each material are related as in Equation 
5 [12].

4

5

By using Equations 1 through 5, aligning the pore axial direction of material one with the 
longitudinal direction of the tube structure, aligning the pore axial direction of material two with 
the circumferential direction of the tube structure, and varying both materials’ relative densities 
for a given thickness ratio, it is possible to characterize a structure that has zero over all 
expansion.  Zero expansion is analytically achieved for tube elements with Invar for material one 
and aluminum, brass or steel for material two. The contour plots shown in Figures 3-5 represent 
zero expansion tube elements.  Each contour represents a different thickness ratio (d = t1/t2), and 
is labeled with this value. The plot axes indicate the material relative densities.
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Figure 3 plots contours of zero expansion for different geometry values for hierarchical tubular lattices. Material one is
Invar; material two is aluminum. Contour labels represent thickness ratio d = t1/t2.

Figure 4 plots contours of zero expansion for different geometry values for hierarchical tubular lattices. Material one is
Invar; material two is brass. Contour labels represent thickness ratio d = t1/t2.
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Figure 5 plots contours of zero expansion for different geometry values for hierarchical tubular lattices. Material one is
Invar; material two is steel. Contour labels represent thickness ratio d = t1/t2.

From a design and manufacturing perspective, it is simpler if only one of the materials contains 
oriented porosity. Indeed, for all three material combinations shown, zero expansion can be 
achieved in which material one, Invar, is fully dense without porosity. In that case, not plotted in 
Figures 3-5, an optimal thickness ratio exists, maximizing the relative density of material two. 
For Invar and aluminum, a thickness ratio of 0.2 allows for zero expansion with an aluminum 
relative density as much as 0.33. For steel and Invar a thickness ratio of 0.25 and a steel relative 
density of 0.24 can achieve zero expansion. 

Parametric Study
It has been shown that zero thermal expansion is attainable with Invar paired with 

aluminum, brass, or steel. It is desirable to gain insight into which other material combinations 
are capable of obtaining zero expansion. To achieve further insight a parametric study was 
conducted where various parameters are held constant while others are allowed to vary, in order 
to see which geometries and material properties can achieve zero expansion. 

Equation 3 is rewritten for the specific case where two initially isotropic materials are 
considered to have equal Poisson’s ratios. It is then possible to write the total overall expansion 
in terms of the relative density of material 1 (!1), the relative density of material two (!2), the 
thermal expansion ratio of material two to material one, Poisson’s ratio (!), the effective 
stiffness ratio of material one to material two (nd) with the modulus ratio given by n = E1/E2 and 
the constant of proportionality (C2) of Equation 2. The effective stiffness ratio is defined as the 
Young’s modulus of material one times the thickness of material one, divided by the product of 
the thickness and modulus of material two. The porosity is assumed to be oriented as shown in 
Figure 1, and to run the full length of the material. This geometry implies that the constant of 
proportionality in the axial direction (C1) is one, while C2 is again considered to be 0.8 after the 
wood model provided by Gibson and Ashby [17]. By constraining the overall thermal expansion 
to be zero and varying the effective stiffness and relative density of material two while holding 
all parameters constant it is possible to compute the ratio of material thermal expansions required 

7



to achieve zero thermal expansion. Equation 6 provides the relationship for overall thermal 
expansion which was used to complete the parametric study.

       6

Using three different values for the relative density of material one and varying material two 
relative density, Figures 6-8 are generated. Figure 6 provides 

Figure 6 indicates the required ratio of thermal expansion coefficients required to achieve zero overall thermal expansion
for nested tubes with a material one relative density of 1.0, Poisson’s ratios equal to 0.3 and varying effective stiffness

ratios and material two relative densities. nd = E1t1/E2t2 is the ratio of structural stiffness of the two tube materials.

8



Figure 7 indicates the required ratio of thermal expansion coefficients required to achieve zero overall thermal expansion 
for nested tubes with a material one relative density of 0.8, Poisson’s ratios equal to 0.3 and varying effective stiffness 
ratios and material two relative densities. nd = E1t1/E2t2 is the ratio of structural stiffness of the two tube materials.

Figure 8 indicates the required ratio of thermal expansion coefficients required to achieve zero overall thermal expansion
for nested tubes with a material one relative density of 0.5, Poisson’s ratios equal to 0.3 and varying effective stiffness

ratios and material two relative densities. nd = E1t1/E2t2 is the ratio of structural stiffness of the two tube materials.
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From Figures 6-8 it is possible to make inferences about what material combinations can 
possibly achieve zero thermal expansion. By selecting an effective stiffness ratio and 
determining from the plots the minimum required ratio of thermal expansion ratio, one can 
determine if two materials can be used to make a tubular lattice with zero expansion. It is 
desirable to consider materials with a small expansion ratio 1/ 2 to expand the design space. 
Moreover, an ideal material combination would have a material one with a small Young’s 
modulus and small thermal expansion in comparison to material two. For most materials these 
properties are contradictory. Most materials with low thermal expansion are also quite stiff, while 
high expansion materials are considerably less stiff. Invar is unique in that it has a very small 
expansion and is still quite stiff. The thermal expansion ratio for steel to Invar is 12, while for 
aluminum and Invar it is 22.2. Many polymers when paired with other polymers have expansion 
ratios of approximately 3-5 [18]. This difference in expansion is too small to achieve zero overall 
expansion with pairs of polymers. Small expansion ratios can be used provided the structural 
stiffness ratio nd = E1t1/E2t2 is high. There are practical limits on this ratio. However Figure 4 
shows that for an effective stiffness ratio of 0.1 can achieve zero expansion with a material 
thermal expansion ratio of as little as 9. This can be achieved with Invar-steel, Invar-aluminum, 
and Invar-brass. Several metal-polymer combinations were considered. Of those considered, 
Invar and high density polyethylene (HDPE) can achieve zero expansion with a thickness ratio of 
0.06. This implies a solid volume fraction of 5.7 % Invar to 94.3% HDPE. 

It is also important to consider the structural properties of this morphology. A two 
dimensional honeycomb can be constructed of zero expansion nested tube elements. Stiffness is 
enhanced by organizing the tubular elements in an equilateral triangular lattice. This lattice 
structure has deformation that is predominantly axial to the constituent elements. A stretch as 
opposed to bending dominant structure has greater in plane stiffness because a stretch dominant 
structure’s stiffness will be linearly proportional to relative density whereas a bending dominant 
structure will be a quadratic function of relative density [17]. The relative stiffness of a lattice 
structure as well as relative density serve as useful measures of a material’s performance.  By 
modifying previously derived results for triangular, tubular honeycombs [7], and allowing for 
oriented porosity within materials one and two, Equations 7 and 8 are obtained. 

7

8

Adding porosity to material one actually decreases the performance of the overall zero 
expansion structure. This can be conceptualized by studying the relationship of Equation 5. The 
Poisson ratio !CL1 actually decreases as porosity is added. This means that by adding porosity, 
more circumferential displacement is required to achieve the same longitudinal contraction. The 
magnitude of the Poisson effect is reduced as porosity is added to material one.

 Zero Expansion via Oriented Porosity and Curved Bi-material Rib Elements

The second morphology analyzed is that of curved, bi-material rib elements with added 
porosity. The added porosity, oriented along the axis of the curved element, allows the sectional 
properties of both materials to vary, without any additional material. The area moment of inertia 
can be increased if the amount of material remains constant but is allowed to occupy more space. 
Adjusting the sectional properties of both constituent materials was considered in the context of 
section shape [4] and is further expanded by the analysis of elements with porosity. The result of 
added porosity is compared to prior honeycomb lattices via a stiffness density map.
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Curved bi-material rib elements consist of two layers of differing materials fully bonded 
to one another. As the temperature fluctuates, a bending moment is created which will result in a 
slight change in curvature. By carefully selecting the material, and geometric properties 
including a slight initial curvature, the overall expansion of the two end points of the rib can be 
negated. That is, the axial expansion is counteracted by the increasing curvature of the element 
resulting in a zero net displacement of the end nodes. Thermal expansion of such ribs is given by 
Equation 9 [3]. This structural expansion represents the thermal expansion coefficient along the 
chord wise direction of the bi-material curved rib element. It applies to ribs with solid, 
rectangular cross sections. The subscripts refer to either material one or two, where material one 
is located on the interior of the curved element while material two is exterior. Figure 9 depicts a 
single curved rib element depicting materials one and two, as well as indicating the Length Larc 
and interior angle !.  

         9

The thickness in the plane shown by Figure 9 is t. The non-dimensional parameters n and m 
indicate the material stiffness ratio of material one to material two, and the material thickness 
ratio of material one to material two.

Porosity is added by specifying the relative density of material one, relative density of 
material two and the ratio of material one relative density to material two relative density as !1, 
!2 and r respectively. The porosity itself is assumed to be on a scale much smaller than that of 
the rib. For this reason the material is treated as a homogeneous mixture, similar to that of wood. 
The porosity can be distributed randomly or periodically, however heterogeneity is assumed to 
be sufficiently small that the porous material can be viewed as a continuum. For constant lattice 
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relative density if porosity is added while holding all other geometric constants equal the 
thickness of the cross section will increase as shown in Figure 9. This increase in cross sectional 
area will lead to increased bending stiffness for a particular relative density. Additionally by 
specifying unequal constituent relative densities (r not equal to one) the stiffness of one 
constituent can be increased relative to the other, allowing for increased bending as a result of the 
material thermal expansion mismatch. Increased thermal bending allows zero expansion to be 
achieved with a smaller initial curvature, which again enhances stiffness. This analysis assumes 
that the porosity is oriented along the axis of the rib, and thus the stiffness with porosity is 
simply proportional to the amount of void space added. The overall expansion for a rectangular 
section with porosity added is given by Equation 10, which is modified from the solid result.

   10

The first term of Equation 10 is negative when the CTE of material one is smaller than material 
two, while the other two terms are positive. By carefully selecting the geometry and material pair 
it is possible to obtain zero or even negative values of thermal expansion for the rib element in 
the chord direction.  By creating a two dimensional honeycomb lattice of rib elements it is 
possible to envisage a material that has zero net thermal expansion in two directions. This lattice 
is shown in Figure 10 [3].

Figure 10 illustrates a two dimensional triangular honeycomb lattice composed of curved, bi-material rib elements.

By specifying an initial curvature the lattice can be tailored to achieve zero thermal expansion. 
This initial curvature will reduce the lattice in plane stiffness because of the added bending 
deformation. For this reason it is necessary to describe the overall in plane lattice stiffness as a 
function of material and geometric parameters. Similarly to accounting for porosity in the 
thermal expansion coefficient, the honeycomb stiffness can be modified from the results for solid 
ribs. Again, the stiffness ratio n is modified by a factor r, additionally because a continuum 
approach is used, the stiffness of material two is replaced with the stiffness of material two times 
the relative density of material 2. Equation 11 provides a formula for the overall stiffness of the 
honeycomb in plane.
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A useful dimensionless parameter for comparing the performance of this lattice to others is to 
normalize the stiffness by the solid material stiffness. In this case the solid stiffness is simply a 
weighted average of the solid volume of material one to the solid volume of material two. 
Equations 12 and 13 provide both the solid stiffness and the relative stiffness for the present 
lattice.

  12

13

It is necessary to determine the lattice overall relative density in order to make a side by side 
comparison to prior lattice structures. The relative density is obtained by modifying the previous 
results for a solid lattice structure, but then multiplying by al factor accounting for the porosity 
within each individual rib element. Equation 14 provides the relative density of the overall lattice 
structure with added porosity.

14

The ratio of relative stiffness to relative density for both solid and porous lattices is the same. 
There is however an advantage to adding porosity because of its effect on thermal expansion. By 
increasing the geometric stiffness of material one relative to material two, a rib with less initial 
curvature can be used to attain zero expansion. This in turn leads to a stiffer lattice configuration. 
Figures 11 and 12 plot relative stiffness versus relative density, where material one is Invar and 
material two steel. Figure 11 holds the relative density of material one constant while material 
two’s relative density is varied. Additionally dashed lines are plotted that represent solid non-
zero expansion lattices. The equilateral triangular lattice is dominated by axial deformation and 
thus can be considered to be optimally stiff. The regular hexagonal honeycomb primarily 
undergoes bending deformation, and is less stiff as a result. Figure 12 varies the relative density 
of material one, while holding material two’s relative density constant. 
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Figure 11 plots relative stiffness versus relative density for a porous, curved, bi-material, triangular honeycomb. The
relative density of material one, Invar, is constant and equal to one, while the relative density of material 2, steel, is varied.

The dashed lines represent non-zero expansion lattices representing equilateral and regular hexagonal honeycombs.

Figure 12 plots relative stiffness versus relative density for a porous, curved, bi-material, triangular honeycomb. The
relative density of material two, steel, is constant and equal to one, while the relative density of material one, Invar, is

varied. The dashed lines represent non-zero expansion lattices representing equilateral and regular hexagonal
honeycombs.
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Figure 11 indicates that as the relative density of material two is decreased, the relative stiffness 
ratio is improved for a given relative density. The opposite is true when the relative density of 
material one is decreased as shown by Figure 12. This can be explained by the fact that as you 
add porosity to material two, the stiffness of material one relative to that of two is increased. 
Because material one is the smaller CTE constituent, increasing its stiffness will create a large 
bending moment due to a change in temperature. This allows for zero overall expansion with a 
smaller initial curvature then a rib element with no added porosity. With less curvature, the 
penalty in stiffness is decreased. So it is better to add oriented porosity to the material with 
higher expansion because that leads to a stiffer lattice. 

The present porous rib elements are compared with previously described rib elements 
with Tee shaped cross sections. Figure 13 plots relative densities versus relative stiffness of both 
the porous honeycombs of Figure 11 and two different Tee shaped cross section. Each Tee 
shaped cross section is described by the dimensionless parameter j, or the ratio of the width of 
material one to the width of material two, where width indicates the out of plane direction of the 
honeycomb. The two section geometries included here are j equal to 5 and j equal to 20. This 
shows that ribs based on structural hierarchy provide stiffness enhancement comparable to 
engineered shaping of the rib cross section.

Figure 13 plots relative stiffness versus relative density for both porous, curved, bi-material, triangular honeycombs and
curved, bi-material, triangular honeycombs with Tee shaped cross sections. For the porous lattices the relative density of

material one, Invar, is constant and equal to one, while the relative density of material two, steel, is varied. Tee shaped
lattices where j = 5 and j = 20 are shown. The dashed lines represent non-zero expansion lattices representing equilateral

and regular hexagonal honeycombs.

An additional comparison can be made with tubular lattices previously studied. The 
tubular lattices described by Lehman and Lakes [4] are composed of solid, non-porous 
constituents but approximate a perfect slip interface by using a wire wrapped morphology. The 
second material is considered to be helical band or wire nested over the thin walled tube of 
material one. This allows material two to participate in applying circumferential stress to the 
other tube, while decreasing its axial contribution. Figure 14 plots in addition to curved porous 
ribs of zero expansion with varying material two relative density two wire wrapped tube zero 
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expansion morphologies. The first tubular morphology is that of an Invar tube wrapped with 
aluminum wire and is plotted using open diamonds. The other tubular morphology shown is that 
of an Invar tube wrapped with steel wire and is indicated with solid diamonds.

Figure 14 plots relative stiffness versus relative density for porous curved, bi-material, triangular honeycombs and wire
wrapped, bi-material, tubular, triangular honeycombs. For the porous lattices the relative density of material one, Invar,
is constant and equal to one, while the relative density of material two, steel, is varied. Wire wrapped tube morphologies

lattices where t/r = 20 are shown. Open diamonds indicate Invar tubes wrapped with aluminum while solid diamonds
indicate Invar tubes wrapped with steel. The dashed lines represent non-zero expansion lattices representing equilateral

and regular hexagonal honeycombs.

From Figure 14 it can be seen that by adding porosity to the curved bi-material lattice 
structure can enhance the relative stiffness performance to near that of the wire wrapped tube 
morphology. Although the enhanced stiffness is not as great as the tubular morphologies shown 
the present lattice structures benefit by utilizing a less complex geometry, and do not require the 
approximation of an ideal condition. These two attributes would be advantageous from a 
practical standpoint.

To compare both porous, curved, bi-material rib and porous nested tube morphologies the 
relative density of each is plotted in Figure 15. 
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Figure 15 plots relative stiffness versus relative density for porous curved, bi-material, triangular honeycombs and wire
wrapped, bi-material, tubular, triangular honeycombs. For the porous lattices the relative density of material one, Invar,
is constant and equal to one, while the relative density of material two, steel, is varied. Solid squares indicate a solid cross
section, open circles, closed inverted triangles, and open triangles represent material two relative densities of 0.4, 0.2, and

0.1 respectively. Nested tube morphology lattices where t/r = 10 are shown. Open diamonds indicate solid Invar tubes
wrapped with porous aluminum while solid diamonds indicate solid Invar tubes wrapped with porous steel. The relative
densities of the porous materials are 0.2. The dashed lines represent non-zero expansion lattices representing equilateral

and regular hexagonal honeycombs.

The strength of lattices composed of curved rib elements is also enhanced by added 
porosity. As an increasing load is applied, the curvature of the rib element will increase non-
linearly until the element becomes structurally unstable. By increasing the area moment of 
inertia, the change in curvature associated with each load increment is reduced. This in turn leads 
to a larger load capable of being supported and thus an enhanced material strength.

Effect of Hierarchical Porosity on Strength of 3-D Zero Expansion Lattices

Oriented porosity impacts a material’s thermal expansion and mechanical stiffness and can also 
improve the failure strength of the material. Adding porosity can alter the mode of failure. The 
failure mode with the smallest critical stress will determine which failure mode prevails. For low 
density cellular structures the elastic buckling of the material’s constituent members often times 
is the dominant failure mode. By adding porosity, the same amount of solid material will occupy 
more volume, and as a result will possess a larger area moment of inertia. This increased moment 
of inertia leads to an increased critical buckling stress. This proves advantageous to a point 
where another failure mode will become the dominant failure mode.

To study how overall material strength is affected by porosity, an octet-truss three 
dimensional lattice structure was chosen. Each lattice member is tailored to have zero thermal 
expansion. The materials chosen for this analysis are Kevlar epoxy fiber composite, and Invar. 
The constituents are bonded together as concentric, thin-walled tubes. The Kevlar fibers are 
oriented along the tube axis. Because Kevlar epoxy has a negative expansion coefficient along 
the fiber direction, oriented porosity is not necessary to achieve zero thermal expansion, but is 
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helpful in improving strength. From prior equations of thermal expansion for fully bonded 
anisotropic materials derived by Lehman and Lakes [7], the thickness ratio of Invar to Kevlar 
composite required to achieve zero thermal expansion is 1.88. This translates to a material that is 
65.3% Invar and 34.7% Kevlar composite. 

The added porosity is oriented axially along the tube. An identical amount of porosity is 
added to both material constituents. The porosity is described as the wall relative density. Adding 
porosity to the structure will impact the constituent Poisson ratios, resulting in slightly non zero 
thermal expansions, unless compensated by tuning other design variables. For the purposes of 
studying the material strength, this effect is ignored, and the ratio of Kevlar fiber composite to 
Invar is held constant throughout. The solid stiffness is computed as simply the weighted average 
of material one’s Young modulus to that of material two. 

Two failure modes were considered, Euler buckling and plastic yielding. For this analysis 
3 separate hierarchical orders are considered. Each order of hierarchy (n) represents a level of 
structural complexity. The 0th order is considered to be an octet-truss lattice composed of solid 
rib elements. The 1st order of hierarchy considered is to redistribute the cross sectional area to 
that of a thin walled zero expansion morphology, while adding oriented porosity to the material 
constituents themselves is considered to be of a hierarchical order of 2. 

The formula for determining the Euler critical stress applied to the lattice structure in the 
Z direction has been determined previously by Despande et al. [16] for solid rod elements and 
Lehman and Lakes for tube elements [7]. The relative density of the octet-lattice is dependent 
upon three parameters: wall relative density, wall thickness to radius ratio, and the ratio of the 
radius to length of an element. Equation 15 is obtained by modifying the relative density of the 
octet-truss composed of solid rod elements [15] to account for the added void space due to both 
the hollow tubular center and the added wall porosity.

15

For this comparison the cross sectional area of each element is held constant. This means 
that if relative density is held constant, and so too is the thickness to radius ratio, then the aspect 
ratio, r over L, must change according to Equation 15. This allows the stiffness of each element 
to remain the same for changing densities because the load carried by each element is constant 
and so too is the solid area. The relationship for Euler buckling resulting from an applied load in 
the octet-truss Z direction has previously been derived and is repeated here by Equation 16 [7].

16

E is the solid stiffness computed as the weighted average of the two constituent materials. The 
second failure mode considered is that of plastic yielding. The failure criterion for plastic 
yielding is that described by Gibson and Ashby for wood, given by Equation 17 [17]. 

17

The material yield stress is taken to be a weighted average of the compressive failure stress of 
Kevlar fiber epoxy composite valid within a temperature range of -79 to 100 degrees Celsius, 
286 MPa [12], and Invar 385 MPa [11]. By relating the force applied to each element to the 
macroscopic stress applied in the Z direction to the octet lattice, the plastic yield stress can be 
obtained. Equation 18 is used to calculate the plastic yield stress.

18
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Using Equations 15-18, and holding relative density and the thickness to radius ratio constant, 
the critical stress for each failure mode can be plotted. The relative density of Figure 16 is 10-4, 
t/r = 1/10, and the aspect ratio is allowed to vary. Figure 17 plots the identical conditions, but 
with a constant relative density of 10-3.

Figure 16 plots the critical stress applied to the lattice Z direction for three hierarchical orders (n). n = 0 indicates an octet
truss composed of solid rod elements, n = 1 indicates a tubular element with solid walls, and n = 2 indicates a tubular

element with porous walls. The lattice relative density and thickness to radius ratio (for n greater than 0) are held
constant and equal to 10-4 and 1/10 respectively.

Figure 17 plots the critical stress applied to the lattice Z direction for three hierarchical orders (n). n = 0 indicates an octet
truss composed of solid rod elements, n = 1 indicates a tubular element with solid walls, and n = 2 indicates a tubular

element with porous walls. The lattice relative density and thickness to radius ratio (for n greater than 0) are held
constant and equal to 10-3 and 1/10 respectively.
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Figure 18 plots the critical stress applied to the lattice Z direction for three hierarchical orders (n). n = 0 indicates an octet
truss composed of solid rod elements, n = 1 indicates a tubular element with solid walls, and n = 2 indicates a tubular

element with porous walls. The lattice relative density and length to radius ratio (for n greater than 0) are held constant
and equal to 10-4 and 150 respectively.

Figure 19 plots the critical stress applied to the lattice Z direction for three hierarchical orders (n). n = 0 indicates an octet
truss composed of solid rod elements, n = 1 indicates a tubular element with solid walls, and n = 2 indicates a tubular

element with porous walls. The lattice relative density and length to radius ratio (for n greater than 0) are held constant
and equal to 10-3 and 50 respectively.

Figures 16-19 show that structural hierarchy can substantially increase the strength of zero-
expansion lattices. The strength enhancement is most pronounced for low density lattices.

Both tubular rib structure (order n = 1) and porous tubular ribs (order n = 2) greatly 
improve the resistance of lattice ribs to Euler buckling. The failure mode with the lowest stress 
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will govern the overall failure. So, if structural hierarchy gives rise to an Euler stress greater than 
stress associated with rib yield, then yielding will be the failure mode. Even so, overall stress 
(strength) is enhanced.

Conclusion
Structural hierarchy in lattices with tubular ribs enables zero expansion combined with 

enhanced ratio of strength to density. Zero expansion lattices with oriented porosity are 
achievable with positive CTE constituents including Invar-steel, Invar-brass, and Invar-
aluminum, by way of tunable anisotropy. The interface between the nested constituents can be 
bonded or press-fit, more practicable than slip interfaces used in prior designs. 
   

Structural hierarchy in lattices with curved bi-material ribs enables zero expansion 
combined with enhanced ratio of stiffness to density. The hierarchy enhances stiffness and 
strength because it entails thicker ribs of the same weight. 
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