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Designing structures that have minimal or zero coefficients of thermal expansion (CTE) are useful in
many engineering applications. Zero thermal expansion is achievable with the design of porous
materials. The behavior is primarily stretch-dominated, resulting in favorable stiffness. Two and
three-dimensional lattices are designed using ribs consisting of straight tubes containing two nested
shells of differing materials. Differential Poisson contraction counteracts thermal elongation. Tubular
ribs provide superior buckling strength. Zero expansion is achieved using positive expansion isotropic
materials provided axial deformation is decoupled by lubrication or segmentation. Anisotropic
materials allow more design freedom. Properties of two-dimensional zero expansion lattices, of
several designs, are compared with those of triangular and hexagonal honeycomb nonzero expansion
lattices in a modulus-density map. A three-dimensional, zero expansion, octet-truss lattice is also
analyzed. Analysis of relative density, mechanical stiffness, and Euler buckling strength reveals
high stiffness in stretch-dominated lattices and enhanced strength due to tubular ribs.

I. INTRODUCTION

It is desirable to design materials with low or zero co-
efficients of thermal expansion (CTEs) for applications that
involve large temperature variations, to reduce thermal
stresses and maintain geometric stability. Traditionally the
thermal expansion of composite materials is considered to
be a weighted average of the thermal expansion coefficients
of the constituent materials. For two-phase composites with
constituents that are assumed to be isotropic, have positive
definite strain energy, and are not porous, the overall ther-
mal expansion is a weighted average based on the con-
stituent volume fractions and bulk moduli.1 It is possible by
evading these assumptions, combined with tailored design
of the material’s microstructure to obtain large or even neg-
ative values of thermal expansion, with positive constituent
CTEs.2,3

For use in structural applications, material stiffness opti-
mization is often required. In general, three-dimensional
foams (in any direction) and hexagonal honeycombs
(in-plane) deform mainly by bending of cell walls.4 This
gives rise to a modulus that is quadratic in relative density.
Relative density is the density of the porous material di-
vided by the density of the solid phase that comprises the
ribs. To optimize material stiffness, lattices are chosen so
that the material deformation is axial rather than bending.

In such stretch-dominated lattices, the modulus is linear in
relative density. For low density, such lattices are much
stiffer than foams. Axial deformation is achieved by spec-
ifying equilateral triangular honeycombs and octet-truss
three-dimensional lattices. Prior studies analytically de-
scribed zero thermal expansion with the use of two-
dimensional triangular honeycomb composed of curved
bi-material rib elements.5 These lattices were optimized
for stiffness by further design of the dimensions of the rib
cross-sections.6 The present research obtains zero thermal
expansion, with the use of Poisson contraction. By the use
of this method, it is possible to utilize tube elements as
the structural member of lattices. The use of straight, as
opposed to curved, rib elements eliminates the bending
load applied to each member and thus improves stiffness.
This stiffness benefit is offset, somewhat, by additional
constituent mass, required for zero expansion, but does
not participate structurally. Additionally, tubes are geo-
metrically advantageous to resist buckling, increasing the
strength of the lattice material.
Poisson contraction in the longitudinal direction can be

achieved by using two concentric tubes in two different
configurations. In the first configuration, material two is
press fitted over material one, where material one has a
smaller CTE than material two. The press fit will initially
compress material one circumferentially, causing an initial
lengthening in the longitudinal direction. As a temperature
difference is applied, the outer tube (material two) will ex-
pand more rapidly than the inner tube, reducing the initial
stress caused by the press fit. This change in transverse
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stress will allow material one to contract in the longitu-
dinal direction, as the initial extension from the prestress
Poisson effect is reduced. This provides control of ther-
mal expansion. Reduced expansion via a bi-material con-
centric tubular geometry was first described by Baird.7

A second configuration exists where material two is used
as the inner tube. In this configuration, no initial prestress
is required. As the temperature increases the inner tube
(material two) will expand more than the outer tube. This
will cause circumferential tension in material one provid-
ing a longitudinal Poisson contraction. Both configura-
tions can be analyzed as one, with the assumption of thin
walls. In both cases, the longitudinal Poisson contraction
acts to counteract the longitudinal thermal expansion. The
system is first restricted to isotropic materials and then the
analysis is expanded to include anisotropic materials.
Figure 1 depicts a two-dimensional triangular lattice com-
posed of bi-material, concentric tube elements; three-
dimensional lattices are also analyzed.

II. MATERIALS CONSIDERED AND THEIR
PROPERTIES

To characterize zero expansion lattices, a variety of
materials were considered for lattice constituents. Three
isotropic materials studied include steel, aluminum, and
Invar. Invar is known for its low CTE, whereas steel and
aluminum are commonly used for structural materials
and have differing thermal expansion coefficients. Two
anisotropic unidirectional fiber composites were also con-
sidered, a graphite fiber epoxy composite and a Kevlar
fiber epoxy composite. The fibers are aligned in the lon-
gitudinal direction with respect to the matrix, whereas the
transverse direction is considered to be orthogonal to the
axis of the fibers. The material properties used for each
material are shown in Table I in which E is Young’s
modulus, m is Poisson’s ratio, and a is thermal expansion.
The properties used are obtained as follows. The proper-
ties of Invar were obtained from Woolger,8 the properties
for Kevlar and graphite epoxy composites are fromAgarwal
and Broutman.9 The thermal properties for aluminum and
steel come from the ASM InternationalMaterials Properties

Database Committee,10 whereas the mechanical properties
of aluminum and steel are from Cook and Young.11

III. THERMAL EXPANSION ANALYSIS

This first analysis assumes that the materials are isotropic.
The following assumptions are also made. The materials
are perfectly bonded at their interface so that all strain
values are equal at the contact surface, specifically, in both
longitudinal and circumferential directions. The walls of
both tubes are assumed to be thin in comparison to their
diameter. This means that the tube radii are considered
equal and all radial stresses are neglected. The following
subscripts are used throughout the analysis, L, C, R, 1, and
2. L denotes the longitudinal direction, C the circumferen-
tial direction, R the radial direction, and 1 and 2 represent
materials one and two, respectively. Useful dimensionless
parameters (d and n) are defined as follows:

d ¼ t1=t2; n ¼ E1=E2 ;

where t1 and t2 are material one’s and two’s thicknesses,
and E1 and E2 are the Young’sModuli for material one and
two, respectively.

A. Isotropic results

From Hooke’s law for plane stress, the strain equations
for the circumferential direction can be written for both
materials as shown in Eqs. (1) and (2)

eC1 ¼
rC1 " m1rL1ð Þ

E1
þ a1DT ; ð1Þ

eC2 ¼
rC2 " m2rL2ð Þ

E2
þ a2DT ; ð2Þ

in which m1 and m2 are the Poisson ratios for materials one
and two, a1 and a2 are the CTEs for materials one and two,

FIG. 1. A two-dimensional triangular lattice constructed of bi-material
concentric tubular elements. The geometry of the nodes is not shown for
simplicity.

TABLE I. A list of material properties used throughout the analysis.
For fiber-reinforced composites, the L subscript indicates the direction
along the fibers, whereas T denotes the direction transverse to that of the
fibers. Steel, aluminum, and Invar are considered isotropic and are only
defined by one Young’s modulus and one CTE.

Material
property Steel Aluminum Invar

Unidirectional
graphite

fiber epoxy
composite

Unidirectional
Kevlar

fiber epoxy
composite

EL (GPa) 200 70 140 159 83
ET (GPa) 200 70 140 10.9 5.6
mLT 0.3 0.33 0.28 0.38 0.34
aL (lstrain/K) 12 22.2 1 0.045 "3.3
aT (lstrain/K) 12 22.2 1 20.2 35
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and DT is the change in temperature applied to the system.
Stresses are denoted by r. The circumferential and lon-
gitudinal stresses of materials one and two can be re-
lated by assuming thin-walled stress values where the
radii are set equal for both materials and by utilizing
force equilibrium. The axial force as a result of CTE
mismatch is equal and opposite in materials one and
two. Additionally, the pressure at the interface surface
of the material acts equally on material one and two.
Equations (3) and (4), relating the stresses of materials
one and two to one another, can be derived from these
principles

rC2 ¼ "drC1 ; ð3Þ

rL2 ¼ "drL1 : ð4Þ

As a result of the no slip condition at the interface
surface, the strains of Eqs. (1) and (2) can be set equal to
each other. Solving for rC1 and substituting Eqs. (3) and
(4), the following relationship is obtained

rC1 ¼
a2 " a1ð ÞE1DT þ rL1 m1 þ ndm2ð Þ

1þ nd
: ð5Þ

The same approach is taken with the longitudinal strain
values, using Hooke’s law for plane strain. Equations (6)
and (7) are written for materials one and two

eL1 ¼
rL1 " m1rC1ð Þ

E1
þ a1DT ; ð6Þ

eL2 ¼
rL2 " m2rC2ð Þ

E2
þ a2DT : ð7Þ

By setting Eqs. (6) and (7) equal and substituting
Eqs. (3) and (4), a relationship relating longitudinal
stress of material one to the circumferential stress of material
one is obtained

rL1 ¼
a2 " a1ð ÞDTE1 þ rC1 m1 þ m2ndð Þ

1þ nd
: ð8Þ

To obtain a relationship for longitudinal stress of material
one, substitute Eq. (5) into Eq. (8)

rL1 ¼
a2 " a1ð ÞDTE1 þ 1þ nd þ m1 þ m2nd½ '

1þ ndð Þ2¼ m1 þ m2ndð Þ2
: ð9Þ

The total CTE is obtained by dividing the longitu-
dinal strain of material one by the change in temper-
ature. Equation (10) is obtained by substituting Eqs. (5)
and (9) into Eq. (6), then dividing by the change in
temperature, DT

astruct ¼ a1 " a2ð Þ

(
1þ nd þ m1 þ m2ndð Þ m1 m1þm2ndð Þ

1þnd " 1
! "

1þ ndð Þ2" m1 þ m2ndð Þ2
þ

m1
1þ nd

2

4

3

5þ a1 :

ð10Þ

The above relationship represents the overall structural
thermal expansion of the system. To gain insight into the
possible values of astruct, three specific cases are studied.
The first is to set both Poisson ratios equal to one another
resulting in Eq. (11). This case approximates a material
choice with similar Poisson ratios, such as two metals. The
second case is to set m1 equal to zero, resulting in Eq. (12).
The third case, resulting in Eq. (13), is to set m2 equal to
zero. Studying these three cases illustrates the role of
the constituents’ Poisson ratios, on the overall expansion
coefficient.

astructjm1¼m2 ¼
a1nd þ a2
1þ nd

; ð11Þ

astructjm1¼0 ¼ a1nd 1" m2ð Þ þ a2
1þ nd 1" m2ð Þ

; ð12Þ

astructjm2¼0 ¼ a1nd þ a2 1" m2ð Þ
1þ nd " m1

: ð13Þ

The simplification given by Eq. (11) is a weighted
average of the two component CTEs based on relative
thicknesses and Young’s modulus. Equations (12) and (13)
are also weighted averages but are shifted further by the
nonzero Poisson ratios. In all three cases, it is not possible to
obtain negative or zero thermal expansion without the use
of negative thermal expansion materials.

A parametric study of Eq. (10) was conducted where the
constituents’ CTEs, stiffness ratio (n), and one constituent’s
m were held constant while the other constituent’s Poisson
ratio was varied from zero to one half. A second parametric
study varied the other constituent’s Poisson ratio while
holding all other parameters constant. Both studies also
considered different material thickness ratios. These two
parametric studies did not identify a pair of Poisson ratios
that allow for zero overall expansion. The limits achieved
were those of the material constituent CTEs. Figures 2(a)
and 2(b) provide plots of the structural thermal expansion
versus the varied Poisson ratio, with the stiffness ratio
(n) equal to 1.7, the constituent thermal expansion values
equal to 12 and 1 lstrain/K, and the unvaried Poisson ratio
equal to 0.3.

This suggests that for any two isotropic materials, as
nested tubes, with a fully bonded no slip interface, it is
likely not possible to obtain a CTE less than the smallest
or greater than the largest component CTE. Thus, zero
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thermal expansion was not obtained over a range of pa-
rameter space with isotropic, perfectly bonded tubes via
Poisson contraction, without one constituent material
having a negative CTE.

B. Anisotropic results

Because current parametric studies have not obtained
zero CTE with bonded isotropic materials of equal length
and positive constituent CTEs, it is expedient to relax the
assumption of isotropy or the assumption of perfect
bonding. Anisotropic materials such as fiber-reinforced
composites may allow the CTE to approach zero or even
become negative. Assumptions for the anisotropic case
still include thin walls, and a no slip material interface.
The same approach used for the isotropic analysis is used
here. The strain for both materials in both longitudinal
and circumferential directions is written with Hooke’s law.
The strains for each direction are constrained to be equal in
both materials, and the expansion coefficient is taken to be
the longitudinal strain of material one divided by the change
in temperature.

The following new terms are defined for the aniso-
tropic solution. EL1 and EL2 are the Young’s moduli in the

longitudinal direction for materials one and two. EC1 and
EC2 are the Young’s moduli in the circumferential direc-
tion for materials one and two. aL1 and aL2 are the thermal
expansion coefficients in the longitudinal direction for
materials one and two. aC1 and aC2 are the thermal expan-
sion coefficients in the circumferential direction for materi-
als one and two. The Poisson ratios are defined with three
subscripts as follows: the third subscript is either one or two
and indicates material. The first and second subscripts are
either L or C and indicate the direction. The Poisson ratio
for anisotropy is defined as follows:

mLC ¼ " eC
eL

: ð14Þ

The thickness ratio is still defined as d. The moduli ratio
n is replaced with two ratios given in Eq. (15)

nL ¼ EL1

EL2
; nC ¼ EC1

EC2
: ð15Þ

The anisotropic solution for overall thermal expansion
is given by Eq. (16). By replacing all anisotropic prop-
erties with isotropic ones, Eq. (16) reduces to the isotropic
form given by Eq. (10)

astruct ¼ aL1 þ
mLC1EC1 aC1 " aC2ð Þ

EL1 1þ nCdð Þ

þ 1" mLC1 mLC1 þ mLC2nCdð Þ
1þ nCd

# $

(
aL2 " aL1ð Þ 1þ nCdð Þ þ EC1

EL1
aC2 " aC1ð Þ mLC1 þ mLC2nLdð Þ

1þ nCdð Þ 1þ nLdð Þ " mLC1 þ mLC2nLdð Þ mCL1 þ mCL2nCdð Þ

" #
:

ð16Þ

Two anisotropic materials were considered in attempting
to achieve zero thermal expansion: the first material con-
sidered is a unidirectional graphite-epoxy fiber composite,
whereas the second is a unidirectional Kevlar-epoxy fiber
composite. Both materials are paired with Invar, which has
a small CTE. The Kevlar-epoxy composite is notable for
having a negative thermal expansion in the longitudinal
direction. For each material, two fiber orientations are con-
sidered: axially oriented and circumferentially oriented fibers.
Graphite fiber epoxy and Invar do not allow for zero struc-
tural thermal expansion, regardless of the fiber orientation.
The end result is a weighted average of the two material
CTEs. By using Kevlar-epoxy with the fibers oriented
along the axis of the tube, zero expansion is attainable
due to the negative thermal expansion of the Kevlar-epoxy
composite. The thickness ratio of Invar to Kevlar compos-
ite is 1.88, corresponding to a tube that is 65.3% by volume
Invar.

C. Results for tube with decoupled layers

It is possible to achieve zero expansion of nested
tubes made of positive expansion materials if the axial

FIG. 2. (a) Structural thermal expansion for isotropic fully bonded tubes,
a15 1 lstrain/K, a2 5 12 lstrain/K, m2 5 0.3, n5 1.7, m1 and thickness
ratio d are varied. (b) Structural thermal expansion for isotropic bonded
tubes with the same properties as (a) but m15 0.3 and m2 and d are varied.
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deformation of the layers is decoupled. One way is to
provide a layer of lubricant between the layers so that
a radial constraint is imposed but longitudinal deforma-
tion of each layer is free to occur. Another way is to
segment one layer into rings or wire wrap. In that vein,
a configuration specified by the Baird patent describes
an Invar tube for material one and a steel wire wrapped
helically for material two.12 Using a steel wire as op-
posed to a solid wall steel tube reduces the contact area
between the two materials. Reducing the contact also
reduces the strain in the longitudinal direction as a result
of the larger CTE material pulling on the smaller CTE
material. This allows for effectively zero thermal expansion
and zero stiffness contribution of the steel in the long-
itudinal direction, while still providing adequate stiffness
in the circumferential direction. The structure is analyzed
with similar methods, as before, but accounting for vari-
able contact area and assuming perfect slip conditions.
This means that the longitudinal stiffness of material two
(the outer material) is treated as zero and its thermal
expansion in the longitudinal direction is also neglected.
In addition, stress concentrations are neglected and loads
are distributed evenly over contact surfaces. These assump-
tions are considered to be consistent with both methods
of decoupling axial deformation and are recognized to be
idealized conditions.

An anisotropic analysis was performed allowing
for materials one and two to differ in length. The anal-
ysis defines a new ratio, l, which is equal to the total
length of material two divided by the total length of
material one. The derivation relies on the assumption
that the axial stress and strain of the two materials
are independent and are allowed to slide relative to one
another. This assumption is best approximated for
small l values. Equation (17) provides the overall CTE
for the anisotropic case allowing for different material
lengths

astruct ¼ aL1 þ
mCL1 aC1 " aC2ð Þ

1þ nCd
l

: ð17Þ

For the isotropic case, the above relationship reduces
to Eq. (18)

astruct ¼ a1 þ
m1 a1 " a2ð Þ

1þ nd
l

: ð18Þ

By cutting the structure along its lengthwise direction,
the cross-sectional area of each material is equal to its
length times twice its thickness, thus A1

A2
¼ d

l where A1 and
A2 are the cross-sectional areas for materials one and two.
Using this relationship and setting, the overall expansion
coefficient equal to zero in Eq. (18) and Eq. (19) is
obtained

A1

A2
¼ 1

n
m1 a2 " a1ð Þ

a1
" 1

# $
: ð19Þ

Equation (19) is equivalent to the formula given by
Baird.7 A similar relationship for the anisotropic case can
be derived. Equation (20) provides a formula for calcu-
lating the required area ratio from material properties to
achieve zero thermal expansion

A1

A2
¼ 1

nC

mCL1 aC2 " aC1ð Þ
aL1

" 1

# $
: ð20Þ

Making use of the above equations, it is possible to
compare different material combinations. The area ratio is
equivalent to the material volume ratio due to the radial
symmetry of the structure and thin wall assumption.

IV. 2D TRIANGULAR HONEYCOMB LATTICE
STIFFNESS ANALYSIS

Zero expansion lattices are envisaged based on these
nested tube elements as lattice ribs. For example, to op-
timize stiffness, while maintaining low or zero thermal
expansion, the tubular elements can be arranged in a 2D
triangular honeycomb lattice, as shown in Fig. 1. Poisson
contraction neutralizes the thermal expansion of each
element, which neutralizes expansion of the lattice as a
whole. The in-plane stiffness of the honeycomb lattice (Eh)
composed of zero expansion tubes can be analytically de-
termined by following the approach used by Hunt.13 This
analysis assumes that the elements are pin connected, that
is joints can rotate freely, and all loads are carried axially,
bending moments are neglected. Additionally, the mass
of material two is assumed to not participate structurally.
All forces are carried by the tubular element composed of
material one. The honeycomb structural stiffness is given
by Eq. (21)

Eh ¼
p 2" t1

r

% &
ffiffiffi
3

p t1
L
EL1 : ð21Þ

The thickness of material one is given as t1 and the
length of the tubular element is L while the radius of the
tube element is r. To compare this stiffness to that pre-
viously obtained, zero expansion lattices in a meaningful
way, it is necessary to normalize the honeycomb stiffness
by the stiffness (Es) of a solid made of equal proportions of
material one and two as the zero expansion lattice. The solid
stiffness is considered as that of a Voigt composite and is
given by Eq. (22)

Es ¼
EL2 nLmCL1 aC2 " aC1ð Þ þ aL1 nC " nLð Þ½ '

mCL1 aC2 " aC1ð Þ þ aL1 nC " 1ð Þ
: ð22Þ
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The relative density must also be determined to allow
for an accurate comparison between lattices. To compute
relative densities, material located at the nodes is ignored.
This approximation works well for length to radius (aspect)
ratios that are sufficiently large. This analysis only considers
slender aspect ratios equal to and greater than eight.
Equation (23) provides the relative density ratio for tubular,
triangular honeycomb lattices with zero thermal expansion

q)

qs
¼

ffiffiffi
3

p
p
t1
L

2" t1
r

! "
1þ aL1nC

mCL1 aC2 " aC1ð Þ " aL1

( )
:

ð23Þ

By plotting the honeycomb stiffness obtained from
Eq. (21) divided by the solid stiffness of Eq. (22) versus
the relative density of Eq. (23), a stiffness density plot
is made which can compare the Poisson contraction of
tubular lattices to the previously studied curved bi-material
lattices. Figure 3 provides a stiffness density plot of both
tubular honeycomb lattices and curved bi-material honey-
comb lattices, which have previously been described.6 Each
lattice, represented with symbols, is analytically tailored for
zero thermal expansion. Thick dashed lines indicate trian-
gular and regular hexagonal honeycomb lattices made of
straight solid elements. These lattices are characterized after
Gibson and Ashby4 and do not have tailored zero thermal
expansion. The triangular nonzero expansion lattice repre-
sents an optimally stiff two-dimensional lattice, whereas the
regular hexagonal lattice is least optimal in terms of stiff-
ness. The triangular lattice is optimally stiff as a result of
its substructure distributing all applied loads axially. The
hexagonal lattice substructure however is dominated by
bending4; hence, hexagonal honeycombs are compliant for
deformation in-plane. The node condition for hexagonal
lattices differs from that of the triangular honeycombs;
angles of ribs at nodes are fixed.

Tubular triangular lattices that utilize Poisson contrac-
tion can analytically achieve zero thermal expansion while
remaining optimally stiff. They suffer a slight penalty in
relative stiffness for a given relative density due to the fact
that the ancillary material does not participate structurally
but still contributes to the overall weight of the lattice. The
curved, bi-material, triangular honeycomb lattices shown
in Fig. 3 have either square-shaped, Tee-shaped or I-shaped
cross-sections and are composed of Invar and steel. The
optimized parameters are provided in Fig. 3, and they fully
characterize the shape of the element cross-section and
follow the conventions previously described.6 An improve-
ment in relative stiffness is obtained by redistributing the
material area as a Tee-shaped section. This improvement is
greater still for an I-shaped section. A zero expansion
tubular lattice composed of steel and Invar approximately
as relatively stiff as an I-section with a j ratio of 20. When
the Invar tube is wrapped with aluminum, a further en-
hancement is observed. Although aluminum is less stiff

than steel, it has a larger thermal expansion and lower
density, which make it a more desirable material choice.

Figure 4 provides the same relative stiffness versus rel-
ative density comparison but only looks at tubular Poisson
contraction lattices composed of varying materials.
Anisotropicmaterials are considered, including fibrous com-
posites such as graphite epoxy andKevlar epoxy. All lattices
depicted with symbols in Fig. 4 are geometrically con-
strained to have zero lattice thermal expansion, by calculat-
ing relative density with the use of Eq. (23). This means that
the perfect slip material interface assumption is used.

FIG. 3. (a) Relative stiffness versus relative density for seven zero
expansion lattices. All lattices, except where indicated, are composed of
steel and Invar. Thick dashed lines indicate triangle and regular hexagonal
honeycombs of nonzero thermal expansion. Squares indicate curved bi-
material zero expansion lattices with square cross-sections optimally stiff
with a1/t 5 46%. Closed and open triangles with dashed lines indicate
optimally stiff zero expansion curved bi-material Tee-shaped lattices with
j values of 5 and 20, respectively, and a1/t values of 23% and 11%, re-
spectively. Closed and open circles with solid lines indicate optimally stiff
zero expansion curved bi-material I-shaped lattices with j values of 5 and
20, respectively, k2 values of 0.28 and 0.17, k1 values of 1, and a1/t values
of 23% and 11%, respectively. Solid diamonds indicate zero expansion
Poisson contraction lattices composed of Invar tubes wrapped with steel
wire and a t/r value of 1/20. Open diamonds indicate zero expansion
Poisson contraction lattices composed of Invar tubes wrapped with
aluminum wire and a t/r value of 1/20. (b) An identical plot as (a) with a
restricted y-axis to enhance clarity.
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The material combinations shown in Fig. 4 represent all
the configurations that can be tailored to achieve zero ex-
pansion, with the assumption of perfect slip interfaces.
It should be noted that for negative expansion material
constituents such as Kevlar-epoxy, zero expansion can be
achieved by fully bonding the materials together. To gain
insight into why some material combinations have better
relative stiffness’s for a given relative density, two cases
are considered. The first case is that of a Kevlar-epoxy tube
wrapped with Invar, with the fibers oriented axially. For a
small increase in temperature, the Kevlar-epoxy tube
alone will shorten axially and expand circumferentially.
The Invar will expand circumferentially but not as much
as the Kevlar-epoxy. The constrictive load applied by the
Invar causes a Poisson effect that will lengthen the
Kevlar-epoxy tube. This would seemingly indicate that
zero expansion can be obtained with this configuration.
However, because of the large degree of anisotropy inher-
ent to the unidirectional Kevlar-epoxy composite, a large
circumferential deformation is required to achieve a mean-
ingful axial deformation as a result of the Poisson effect.
For these two materials, zero expansion is not possible.
A second characteristic material combination is to have
a graphite-epoxy tube wrapped with Invar, with the fibers
oriented axially. For a small increase in temperature, the
graphite-epoxy tube will lengthen and expand circum-
ferentially. The Invar, which has a smaller CTE than
graphite-epoxy in the transverse direction, will act to

constrict the graphite-epoxy tube. This constriction leads
to an increase in length due to the Poisson effect. Even
though graphite-epoxy has a small CTE in the axial direc-
tion, Invar will only act to increase the CTE.

Graphite-epoxy tubes wrapped with Kevlar-epoxy
provide the highest relative stiffness for a given relative
density. Invar tubes wrapped with aluminum provide the
next best alternative, with only a slightly lower relative
stiffness. Material combinations that cannot be tailored to
achieve zero thermal expansion can be identified by solv-
ing Eq. (20). If the area ratio of material one to material
two is negative, an unphysical condition, then it is not
possible to achieve zero thermal expansion.

V. 3D OCTET-TRUSS LATTICE STIFFNESS
ANALYSIS

The zero expansion elements can also be used to
create three-dimensional lattices. One three-dimensional
lattice configuration that is known for its stiffness prop-
erties is the octet-truss lattice. The octet-truss lattice cell
consists of an octahedron and eight tetrahedrons. Figure 5
depicts an isometric view of an octet-truss unit cell. The
structure is stretch dominated, and thus, analogous to the
two-dimensional triangular lattice is a good choice for
structural stiffness. The mechanical properties of the octet-
truss lattice are described in the literature.14 It is possible
to modify the basic properties described previously and

FIG. 4. Several zero expansion, tubular, triangular Poisson contraction
honeycomb lattices composed of various material and geometry config-
urations. Thick dashed lines indicate triangle and regular hexagonal
honeycombs of nonzero thermal expansion. All plotted zero expansion
lattices are tubular and have a t/r ratio of 1/20. Solid triangles indicate
Invar tube wrapped with graphite-epoxy, inverted open triangles indicate
Invar tube wrapped with Kevlar-epoxy, solid diamonds indicate Invar
tube wrapped with steel, open diamonds indicate Invar tube wrapped
with aluminum, open squares indicate graphite-epoxy tube wrapped with
aluminum, and solid squares indicate graphite-epoxy tubes wrapped with
Kevlar-epoxy. All fiber composites have fibers oriented in the axial
direction.

FIG. 5. An octet-truss lattice constructed of bi-material nested tube
elements. Each element is identical; the black and white colors are used
to provide visual contrast between the center octahedron and surround-
ing tetrahedra. The two coordinate axis used in the analysis are depicted.
Axis 123 is centered with respect to a surrounding tetrahedron, whereas
the XYZ axis is centered with respect to the center octahedron.
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apply them to the zero thermal expansion tube elements
described here. This analysis treats the element connec-
tions as pin connected, allowing joint angles to freely
rotate. The relative density of a zero expansion octet-truss
lattice composed of bi-material wire wrapped tubes is
given by Eq. (24)

q)oct
qs

¼ 6p
ffiffiffi
2

p
1þ nCaL1

mCL1 aC2 " aC1ð Þ " aL1

( )
t1
r

! "

( 2" t1
r

! " r
L

! "2
: ð24Þ

The octet-truss has different Young’s moduli in its
three principle directions, but these differences are slight,
so this analysis only considers the stiffest principle di-
rection, along the 33 axis. The mechanical stiffness for a
nested tube lattice can be obtained by modifying the ex-
isting Young’s moduli equations for an octet-truss lattice.14

This formulation14 treats the elements as solid rods. To
modify these results to the current analysis, the stiffness of
the solid rod is taken as that of a tube element. This stiffness
is simply a Voigt composite of material one and the void
space created by the hollow section of the tube. Material
two is neglected in the stiffness analysis, making this result
applicable to elements where axial deformation coupling
has beenmitigated. The octet-trussYoung’smoduli is given
by Eq. (25)

E33 ¼
6
5
p

ffiffiffi
2

p r
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! "2 t1
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! "
2" t1

r

! "
EL1 : ð25Þ

To calculate the relative stiffness for the octet-truss
lattice, the same value for Es given by Eq. (22) can be used
because the material composition required to achieve zero
expansion remains unchanged. The solid stiffness is the
same because the same volume ratio is required to achieve
zero thermal expansion for both lattices.

VI. BUCKLING STRENGTH ANALYSIS—
TWO-DIMENSIONAL LATTICE

In addition to the mechanical stiffness of the honeycomb,
it is important to consider its strength. It is necessary to
know at what point the zero CTE material will fail to carry
any additional load. Creating lattice elements out of tubes
can significantly increase the critical buckling load of the
element and thus the overall strength of the lattice struc-
ture. Three buckling modes were considered. Each mode’s
critical lattice stress was computed in terms of lattice pa-
rameters. Euler buckling, symmetric buckling, and asym-
metric buckling modes were analyzed as described by
Timoshenko and Gere.15

The critical stress applied to the lattice and acting on
a surface area equal to twice the radius times the height of
an equilateral triangle, which will cause buckling is cal-

culated for each of the three buckling modes. The tube
buckling stress is then normalized by the critical buckling
stress of an identical lattice, if the cross-sectional area was
distributed as a solid cylindrical element. Assumptions
made for this analysis include that the tubes are pin con-
nected at lattice nodes, allowing joints to freely rotate, the
lower thermal expansion material is isotropic, and the higher
thermal expansion material does not participate structurally.
It should be noted that this strength analysis accounts for
thin- and thick-walled tubes, where the thermal expansion
analysis and consequently the relative density of zero ther-
mal expansion tubular lattices require thin-walled tubes.
Equations (26)–(28) provide normalized critical stresses
for Euler, symmetric, and asymmetric buckling modes,
respectively
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The length, radius, and wall thickness of material one
are given by L, r, and t, respectively. The overall critical
stress of the lattice is considered to be the smallest of
the three buckling modes described by Eqs. (26)–(28).
Figure 6 plots the critical buckling stress of zero expansion

FIG. 6. The critical tube buckling stress normalized by the critical
stress of an identical lattice with the cross-sectional area redistributed as
a solid rod (t/r 5 1).
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tube lattices, normalized by a solid rod area configuration
versus the relative density determined by Eq. (23). The
curves are generated by specifying a thickness ratio (t/r)
and then varying the aspect ratio (L/r). All three critical
stress values are calculated, although only the minimum
value buckling mode is plotted. All curves shown are for
Invar tubes wrapped with steel wire and use a Poisson’s
ratio of 0.28. Euler critical loads are indicated by hori-
zontal curves and are dominant for slender elements with
large L/r ratios. For tubes with thin walls and smaller
aspect ratios, symmetric buckling becomes the critical
mode. For even thinner walls and yet smaller aspect ratios,
asymmetric buckling becomes the critical mode. For the
geometries chosen, asymmetric buckling does not become
the critical mode. Distributing the area of the elements as a
thin-walled tube provides a substantial increase in strength,
provided that Euler buckling is the critical mode. For higher
density lattices with lower aspect ratios, it may be desirable
to utilize a more solid area distribution (thicker wall tubes).

VII. BUCKLING STRENGTH—
THREE-DIMENSIONAL LATTICE

The octet-truss lattice has multiple collapse modes.
These modes are described in depth by prior studies.14

This analysis only studies the elastic bucklingmode for the
geometry of zero expansion bi-material tube elements.
To modify the relationships described in the literature,14

the formula for the solid rod octet-truss lattice is rewritten
in terms of the area moment of inertia and material Young’s
modulus, as opposed to lattice geometry parameters and
material yield strength. Equation (29) provides the modified
relationship for Euler buckling, in the ZZ direction in terms
of area moment of inertia (I) and Young’s modulus (E)
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2p2
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2

p
E
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: ð29Þ

From Eq. (29), it can be seen that the critical stress
does not depend on cross-sectional area properties other
than the area moment of inertia. This differs from the
two-dimensional lattice, where the area to which the critical
stress was applied depended on the radius of the constituent
elements. By replacing the area moment of inertia in
Eq. (29) with the lattice parameters for a tubular geometry,
Eq. (30) can be written
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It is noted that for a thickness over radius ratio of one,
representing solid rod geometry, Eq. (30) will reduce to the
original, unmodified Equation.14 To quantify the expected
improvement of elastic buckling strength, Eq. (30) is nor-
malized by the critical stress of a lattice composed of solid

rod elements of equal cross-sectional area. This also is just
simply the ratio of the area moments of inertia for the two
geometries. Equation (31) provides the general ratio in
terms of lattice parameters
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Specifying a tube-shaped geometry as opposed to a
solid rod element provides a considerable resistance to
Euler buckling, e.g., tubes with t/r 5 0.1 give a strength
enhancement of a factor of about 9.5 compared with solid
rods. As the critical Euler buckling stress of the lattice
increases, the structure becomes more susceptible to other
modes of failure, some of which are described for solid rod
geometries.14

VIII. CONCLUSION

The thermal expansion coefficient of a porous material
can be tailored as desired. Specifically stiff zero-expansion
lattices are designed using Poisson contraction in nested
tubular ribs. This technique requires two materials with
differing thermal expansion. If both materials have positive
expansion, interface stress must be controlled by providing
a slip or via a ring or wire wrap geometry for one material.
Graphite-epoxy tubes wrapped with Kevlar-epoxy provide
the best relative stiffness for a given relative density.
Use of Invar wrapped with aluminum provides a nearly
identical relative stiffness to density ratio. The advantage
is that Invar and aluminum are fairly commonly used struc-
tural materials and are advantageous from a manufacturing
perspective. In addition to providing stiff zero expansion
lattices, utilizing a tubular rib geometry has the benefit of
increasing the materials resistance to buckling, thus sub-
stantially increasing the materials strength. It is also pos-
sible, using the methods presented here, to find other more
desirable material pairs that can be tailored to obtain zero
thermal expansion.
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