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ABSTRACT 

Honeycombs with thermal expansion coefficients equal to zero are described analytically. The 
two dimensional lattice microstructure designs described are made of positive expansion 
materials. This work builds upon previous results, and provides further analysis into creating an 
optimal rib cross section. The design of ribs with Tee shaped and I shaped cross sections is 
developed. The behavior of these lattices is compared with that of triangular and hexagonal 
honeycombs as well as prior rectangular lattice results in a modulus-density map. Lattice relative 
stiffness is improved by as much as a factor of 2.4 when compared with a curved triangular 
lattice with ribs of rectangular section. Thermal shear stress at the material interface is found to 
be small. These lattices do not undergo thermal buckling, in contrast to designs based on sub-
lattices.  
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INTRODUCTION 
 A material’s coefficient of thermal expansion (CTE) is an important factor when 
selecting materials for applications with large temperature variations (Sokolnikoff, 1983). For 
these applications dimensional stability can be achieved by designing a material of near zero 
thermal expansion. According to Cribb (1968), the CTE of two phase composites are limited to a 
weighted average of the coefficients of thermal expansion of the two constituents, based on the 
volume fraction and bulk moduli of the two phases. This model prevents the composite CTE 
from being larger or smaller than either component phase and thus zero thermal expansion is not 
possible without a negative CTE material. These CTE bounds in addition to bounds (Hashin, 
1983; Milton, 2002; Paul, 1960) for elastic moduli of two phase composites are based on the 
assumption that the phases are perfectly bonded, have positive definite strain energy and that the 
composite is not porous. The bounds can be exceeded by relaxing these assumptions. Zero or 
large positive or large negative thermal expansions are possible in composite materials with void 
spaces, and by careful design of their micro structure (Lakes, 1996, 2007). The present 
manuscript describes the design and analysis of two dimensional lattices made of curved bi-
material rib elements that are capable of achieving zero thermal expansion. The lattices are 
optimized for stiffness by varying the cross sectional shape of their rib elements. Lattice 
structures are compared to prior lattices including those with ribs of different materials.  
 
Previous analysis has been performed to provide a method to calculate the overall thermal 
expansion coefficient (CTE) and mechanical stiffness of the entire 2D lattice (Lehman and 
Lakes, 2012). These results are applicable to triangular honeycomb lattices constructed of 
curved, bi-material rib elements. The structure of each rib element is made of two different 
metals each with different positive thermal expansion coefficients. This difference of thermal 
expansion coefficients results in bending of the element, which causes a reduction of the distance 
between the ends of the rib element. By carefully specifying geometric parameters including a 
slight initial curvature, the material’s thermal elongation can be counteracted, resulting in a 
honeycomb or lattice structure of zero thermal expansion. The following Equations (1-2) were 
obtained previously and are only applicable to ribs with a rectangular cross section and provide 
the overall thermal expansion coefficient (α) and mechanical stiffness EH (Lehman and Lakes, 
2012). 
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in which θ represents the included angle, t is the total thickness of the rib element, Larc is the 
length of the rib element, E1 and E2 are the Young’s Moduli of materials one and two, α1 and 
α2 are the CTEs of materials one and two, m is the thickness ratio of material one to material 
two, and n is the Young’s Modulus ratio of material one to material two. To achieve zero thermal 
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expansion, material one is required to have a smaller CTE and to be positioned on the inner 
portion of the curved element. 
 
In order to maximize mechanical stiffness a triangular honeycomb lattice was chosen and 
analyzed, as is shown in Figure 1 (Lehman and Lakes, 2012). 

 

 
Figure 1 shows the chosen lattice design consisting of curved, bi-material rib elements. Material 
one is designated in white, while material two is shown in black. This lattice structure is the 
same as the one previous analysis (Lehman and Lakes, 2012) except the rib cross section shape 
is optimized in the present analysis. 
 
This lattice allows an overall expansion coefficient of zero, at the cost of a moderate stiffness 
reduction. The stiffness reduction is attributed to bending deformation as a result of the rib 
element’s slight curvature. An optimally stiff lattice structure is stretch dominated with no 
bending of ribs, such as a straight-rib, triangular lattice structure. 
 
The reduction in stiffness due to bending can be mitigated by specifying a modified cross section 
of each rib element. Both Tee and I shaped sections are studied. Modified equations for overall 
thermal expansion and stiffness moduli are provided, as well as a study of interfacial shear stress. 
Results are compared to previous results (Lehman and Lakes, 2012) and to prior triangular and 
hexagonal lattices.  
 

CROSS SECTION DESIGN 
It is possible to increase the mechanical stiffness of the lattice structure by altering the shape of 
an individual rib element’s cross section. For previous analyses (Lehman and Lakes, 2012) the 
cross section has been assumed to be rectangular, with the thickness specified as t and the width 
fixed as unit length. The parameters that are allowed to be varied are a1 and a2, corresponding to 
the respective material thicknesses. The ratio of variables a1 to a2 is defined by m. Figure 2 
illustrates the cross section and its defining parameters specified for a simple rectangular cross 
section.  
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Figure 2 shows the rectangular cross section and its defining parameters shown where m = a1/a2 
is equal to one. 
 
 
It is desirable to modify the cross section to a shape that better resists bending, which is a 
significant cause for stiffness reduction. This analysis allows the cross section to be modified 
into both Tee and I-sections.  
 
To create a Tee-section, the assumption that the two materials are of equal width is relaxed. The 
analysis requires the addition of two dimensions (b1 and b2) and one dimensionless parameter 
(j). b1 and b2 represent the respective widths of materials one and two and j is the ratio of the 
width of material one to material two ( j = b1/b2). The dimensionless parameter j is able to be any 
positive number, but is restricted by the effect of the size of the material interface. The larger the 
deviation of j from one the smaller the material interface on the interfacial stress that results from 
temperature change. If j is equal to one the previous rectangular section is obtained. Figure 3 
shows a Tee cross section with all of its characteristic parameters.  The following analysis varies 
these parameters in order to obtain an optimal design, while restricting the cross sectional area to 
remain constant. 
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Figure 3 shows a Tee-section with its defining parameters, where m equals one and j = b1/b2 
equals three. 
 
An I section can be created by specifying two additional dimensions and two additional 
dimensionless ratios. I-sections used in this analysis are constrained to have flanges of equal 
width (b1), but allow for varying flange thicknesses. The flange thicknesses for material one and 
material two are specified by c1 and c2 respectively. The newly defined dimensionless ratios are 
k1 and k2 where k1 is the ratio of c1 over a1 and k2 is the ratio of c2 over a2. The values of these 
new ratios can vary between zero and one. If the value of k1 is equal to one and k2 equals zero 
than the section becomes a Tee-section, specified as it is in Figure 3. Furthermore if the value of 
j is equal to one a rectangular section is specified. This allows the I-section solution to be 
compared to the previous results for these special cases. Figure 4 illustrates the dimensioning 
scheme used for the I-section analysis. 

 
Figure 4 shows the relevant dimensions for a typical I shaped cross section. 
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RESULTS 
 The analysis of Tee-section and I-section rib elements follows that of rectangular cross 
sections, while allowing for additional geometry parameters. Throughout the analysis the cross 
sectional area remains constant as the parameters j, k1, and k2  are varied. That is to say the area 
already existing is merely redistributed to create either a Tee or I shape. This allows for a 
meaningful comparison of lattices for differing parameters since the overall cross section does 
not change in size. 
 
The analysis makes use of several assumptions. The standard elementary beam bending 
assumptions of a slender bar subjected to small deformations are applied. The material interface 
is assumed to have no slip. The lattice structure is assumed to be connected by pin joints, and the 
rib elements do not interfere with one another. Small angle approximations are made resulting in 
a 5% error in thermal expansion for included angles equal to 0.62 radians. Additionally it is 
assumed that material properties do not vary with time or temperature. The following analysis 
first modifies the previous equation for thermal expansion, and then that of overall stiffness. An 
equation for thermal shear stress at the material interface is derived for a subset of cross sections. 

Thermal Expansion Coefficient α  of a Tee-Section      
 The thermal expansion coefficient can be determined by simply replacing the values for 
material one and two’s moment of inertia and cross sectional area in Timoshenko’s (1925) 
equations. These modifications result in new formulas for the change in curvature as well as 
overall thermal expansion. For instance, the area of material one is changed from a1 for a 
rectangular cross section to a1 times b1.  Equation 3 provides the area moments of inertia used 
for materials one and two. 
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1
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3 ,  I2 = 
1
12 b2 a2

3      (3) 
From these formulas and Timoshenko’s (1925) relationships, the change in curvature can be 
determined to be as shown in Equation 4 for a given change in temperature (ΔT). 
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 Using the relationship for the change in curvature it is possible to determine the thermal 
expansion due to bending, the derivation of which follows closely that of previous analysis 
(Lehman and Lakes, 2012). Equation 5 relates the expansion due to bending for a T shaped cross 
section, using small angle approximations. 

αBend  = ( )α1 _ α2  
Larc

t  )*
+

,
-
.θ

12  
6( )m +  1 2

3( )m + 1 2 + ( )mnj + 1 )*
+

,-
.m2 + 

1
mnj

   (5) 

Equation 5 leads to a negative bending contribution if the thermal expansion coefficient of 
material one is less than that of material two, where material one is located on the inside of the 
curved rib element. This effect is counteracted by the lengthwise growth of the rib element. This 
lengthwise or axial thermal expansion can be described by Equation 6. The derivation of 
Equation 6 follows the axial expansion derivation used in earlier analysis (Lehman and Lakes, 
2012), and uses the longitudinal strain equations given by Timoshenko (1925). 
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Equation 6 produces a positive longitudinal expansion given that both materials have a positive 
coefficient of thermal expansion. This relationship assumes that the included angle is small 
which is valid for the range of curvatures studied. 
 To obtain an overall thermal expansion coefficient for an individual rib element and thus the 
total curved triangular lattice the bending and axial contributions can simply be added to one 
another. Equation 7 provides a formula to determine the overall thermal expansion coefficient 
(α). 
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By carefully selecting material and geometric parameters, the above equation can be tuned to 
obtain a zero thermal expansion. It should be noted that by specifying a rectangular cross section 
(j = 1) Equation 7 reduces to the previous solution given by Equation 1. 
 
 Equation 7 provides the capability to improve the overall lattice stiffness by requiring less 
initial curvature to obtain zero expansion as well as increasing the bending stiffness of the 
individual rib elements. Figure 5 illustrates the effect of j on the included angle required to 
achieve a CTE of zero. This plot was generated using typical material values of Invar for 
material one, and steel for material two. The rib aspect ratio (AR) or the length to thickness ratio 
is a constant value of 10. The invar thickness percentage (a1/t) is varied numerically while the 
overall expansion is constrained to be zero. 
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Figure 5 shows the impact of varying section dimension ratio j upon the required angle θ for an 
aspect ratio of 10 to achieve a zero thermal expansion in latttices with Tee section ribs. 
 
From Figure 5 it can be seen that increasing the width ratio j allows for a smaller initial 
curvature. Conversely, reducing j leads to a larger minimum initial curvature. In addition the 
optimum thickness percentage of material one changes with changing j. This implies that a 
higher value for j will result in an overall more rigid lattice. This formula is limited in 
applicability by the assumption of slenderness, no-slip interface at the material boundary as well 
as the small angle approximation. 
 
Lattice Elastic Modulus of a Tee-Section 
The total elastic modulus (EH) is found by following a process similar to that of the rectangular 
cross section, with modifications to allow for the additional obtainable geometry. This analysis 
restricts the total cross sectional area to remain constant. This ensures an equitable comparison 
between various rib geometries. A new deformation (δ) in terms of applied load P is found by 
applying standard curved beam equations found in Roark’s Formulas for Stress & Strain 
(Young, 1989). Equation 8 provides the deformation in the chord direction for a curved bi-
material rib with a T-shaped cross section. The formula neglects shear effects which are small for 
slender beams. 
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The previous equation for deformation valid for a rectangular cross section is obtained when j is 
equal to 1. Using Equation 8 and following the methods outlined by Hunt (1993), the total 
mechanical stiffness for a curved triangular lattice can be found. Equation 9 provides the 
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relationship for the overall lattice Young’s modulus. The derivation treats the ribs as pin 
connected, allowing rotation about the lattice nodes. 
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Figure 6 illustrates the effect of j on overall lattice stiffness. The plot was generated by 
specifying an aspect ratio of ten, zero thermal expansion, typical values of modulus and CTE for 
Invar and steel, and then varying the thickness fraction of material one (Invar). Each curve 
represents a different j value. 

 
Figure 6 shows Tee section lattice Young's modulus versus Invar thickness fraction for curves 
A-F representing different values of rib section dimension ratio  j . The lattice has zero thermal 
expansion.  
 
Figure 6 indicates that larger j values give rise to larger optimal Young’s moduli. These 
optimum values occur at smaller and smaller Invar height fractions. The j value is limited by 
practical concerns from assuming no slip conditions at the material interface and manufacturing 
considerations. A comparison can be made with other honeycomb lattice structures. This is done 
by plotting relative stiffness (EH / ES) versus relative density (ρ* / ρs) in which the subscript s 
indicates the solid rib material.  Relative density for a curved triangular lattice is given by 
Equation 10. 
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Figure 7 compares the relative stiffness ratios versus relative densities for several lattices. The 
dashed lines represent either an equilateral triangular lattice or a regular hexagon lattice, the 
equations for which come from Gibson and Ashby (1997). 
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Figure 7 compares relative stiffness versus relative density for different lattice geometries 
including triangular lattices with Tee-cross sections of optimal ratio a1/t. 
 
The equilateral triangle lattice represents a purely axially dominant structure while a hexagonal 
lattice is bending dominant. The data points represent curved, bi-material, triangular lattices. As 
the value of j increases the lattice shifts toward the fully axially dominated triangular lattice. The 
value of m is optimized to obtain zero thermal expansion.  Design of the rib cross section gives 
rise to an improvement in relative stiffness of as much as a factor of 1.6 for a j value of 5. 
 
Thermal Expansion Coefficient α  of an I-Section      
The same analysis is performed for an I-section. Timoshenko’s (1925) equations are applied to 
determine the curvature. Modifications to these are made to accommodate different values for 
area, area moment of inertia, and newly located neutral axes of the two materials. From the 
expected change in curvature both an axial and bending contribution can be obtained. Because of 
the more complex nature of the geometry a large number of terms exist in the derived equations. 
For this reason only the final total thermal expansion result is presented. Additionally a sequence 
of four X coefficients has been defined to reduce the size of any single expression. Each X 
coefficient is entirely dependent upon specified cross sectional geometry and is non-dimensional. 
The expressions for these coefficients as well as that for the overall thermal expansion are given 
by Equations 11-15. 
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Equation 15 follows previous results containing both a bending component and an axial 
component which serve to counteract one another. By specifying k1 equal to one and k2 equal to 
zero, the Tee-section result is obtained. Additionally by constraining j to be equal to one the 
previous rectangular result is obtained.  
Lattice Elastic Modulus of an I –Section 
The stiffness modulus derivation for a curved rib lattice with I-shaped cross sections follows that 
used for the Tee-section. The notable changes include modifying the relationships used to define 
the areas, area moment of inertia and neutral axis of the new geometry. The complicated 
geometric properties are simplified by defining a sequence of dimensionless terms, for this 
analysis X5 through X9 are used. Equations 16-21 define these dimensionless parameters and the 
total stiffness modulus. 
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Equation 21 reduces to the previous result found for a Tee-section when k1 is specified as equal 
to one and k2 is set equal to zero. Additionally, constraining j equal to one obtains the previous 
solution for rectangular sections.   
 The relative density of the lattice can be obtained using the same relationship given by 
Equation 10. The relative density is a function of lattice geometry (initial curvature, rib length, 
and rib thickness), and is independent cross-section geometry. A relative stiffness versus relative 
density plot can be generated by specifying the thermal expansion to be zero, varying the rib 
aspect ratio, and using numeric methods to maximize the stiffness as a function of the 
dimensionless cross section constants. Using this technique it was found that the larger the value 
of j becomes, the larger the total stiffness becomes. Additionally stiffness is maximized by 
allowing k1 to be equal to 1. For each j value, an optimal value for k2 and m exists which 
minimizes the required angle theta that results in a zero thermal expansion.  Results comparing 
normalized modulus vs. normalized density for optimized zero expansion triangular lattices with 
other lattices are shown in Figure 8. For example, for a j value of 20, relative stiffness improves 
by a factor of 2.4 for an optimized I section in comparion with a zero expansion lattice with 
rectangular section ribs.  
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Figure 8 plots relative stiffness versus relative density for zero expansion lattices with several 
cross sectional shapes. Shapes are optimized for stiffness, for a given value of j and k1. The 
dashed lines represent equilateral triangle and regular hexagon lattices, with straight ribs and 
non-zero thermal expansions.  
 
 
Thermal Shear Stress γT at the Material Interface 
A possible limiting factor in the design of curved rib zero expansion bi-material lattices is the 
shear stress at the material interface. Shear stress develops as a result of the difference in 
material CTE’s. This stress causes bending, which allows for zero thermal expansion. It is 
desirable to quantify the shear stress and ensure it is not large enough to de-bond materials. 
 The shear stress is calculated by dividing the shear force, P, by the material interface area 
Ai. The shear force P is given by Timoshenko (1925), and is shown below in Equation 22. The 
force P is assumed to be uniformly distributed at the interface. This equation differs from 
Timoshenko in that it allows for I shaped cross sections having differing distances to the neutral 
axis (Yc1 and Yc2) from the interface, for materials one and two. 

P = 
E1 I1 + E2 I2
ρ( )Yc1 + Y1

      (22) 
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ρ represents the change in curvature as a result of the differing CTE’s of materials one and two. 
The interface area (Ai) is dependent upon the dimension less parameters j, k1, and k2. It is 
simplest to restrict the solution to a subset of these dimensionless values. The interface area is 
given by equation 23, and is valid for j values greater than or equal to one, excluding the case of 
k1 = k2 = 1. For this subset of sections, which includes rectangular, Tee shaped, and I shaped 
sections in addition to the sections plotted in Figure 8, the interface area is simply Larc times b2. 
A new dimensionless parameter X10 is defined by equation 24. 

X10 = 
t

Larc 
m[ ]( )j - 1 k1+1

( )m+1       (24) 

 
Interface shear stress is determined by dividing the shear force by the interface area. The results 
are given by equation 25. 

γT = E1( )α1 - α2  ΔT 
X3 X10

X22+X1
    (25) 

Equation 25 was normalized with respect to temperature and solved numerically and plotted to 
illustrate the effect of j and material one thickness percent (a1/t), as well as to quantify the 
relative magnitude of the interface shear stress. Figure 9 plots the interface shear stress versus 
material one thickness percent, for several j values with k1 equal to 1 and k2 equal to 0. These 
curves represent Tee shaped cross sections, where j equals 1 is a rectangular section. Points 
where stiffness is optimal for the specified j value are shown. Figure 10 similarly plots interface 
stresses for various j values, with k1 equal to 1 and k2 equal to 0.2 representing I shaped cross 
sections, where j equals 1 is a rectangular section. 

 
Figure 9 plots temperature normalized interface shear stresses for Tee shaped cross sections. 
Curve A represents a rectangular section. Markers indicate optimal stiffness configurations. 
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Figure 10 plots temperature normalized interface shear stresses for I shaped cross sections. 
Curve A represents a rectangular section. Markers indicate optimal stiffness configurations. 
 
The above figures indicate that as the j value increases so too does the interface shear stress. This 
matches what is expected as a result of the material interface area decreasing with increasing j. 
Shear stress is generally larger for I shaped sections of equal j values. For a large temperature 
excursion of 100 K the shear stress for optimized sections is less than 5 MPa, too small to be a 
problem for bonded metals. 
 

DISCUSSION 
Lattices with zero thermal expansion and composed of bi-material ribs are presented. Design of 
rib cross section shape results in relative stiffness enhancement by a factor of 1.7 for optimized I 
sections with values of rib section dimension ratio  j of 5 and a factor of 2.4 for I sections with j 
values of 20 for a given density, compared with ribs of rectangular section. Tee-shaped cross 
section relative stiffness values increased by a factor of 1.6 for j equal to 5 and a factor of 2.1 for 
j equal to 20. These significant increases in relative stiffness are due in large part to increasing 
the dimensionless parameter j from the rectangular section value of 1. A smaller improvement in 
stiffness is made by specifying an I-section, and choosing an optimum value of parameter k2. 
Cross section optimization allows for both stiffer rib elements in bending, as well as decreasing 
the required curvature needed to achieve zero thermal expansion. This effect is achieved by 
increasing the geometric stiffness of the Invar relative to that of the steel. With a rib aspect ratio 
(length/ total thickness) of 10 it is possible to achieve overall stiffness coefficients as high as 
14.3 GPa for an optimized I-section with a j value of 20, or 10.2 GPa for an I-section with a j 
value of 5. An aspect ratio of 10 for a rectangular section results in a theoretical stiffness value of 
6.0 GPa.  
 
The added stiffness is accompanied with an increase in manufacturing complexity, and is further 
limited by the slenderness and no slip assumptions at the material interface. Shear stresses 
calculated for Tee shaped and I shaped sections are on the order of 10-40 KPa/K for optimal 
stiffness configurations. These results are within the realm of practicality, even for a wide range 
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of temperature values. Cross section optimization results in substantial stiffness improvement at 
a slight cost of increased interface shear stress. 
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