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Abstract

Chiral materials are not invariant to inversions: there is a distinction between right- and left-handed
material. Material properties such as piezoelectricity and pyroelectricity, represented by tensors of odd rank,
can only occur in chiral materials. Chiral e!ects in elasticity cannot be expressed within classical elasticity
since the modulus tensor, which is fourth rank, is unchanged under an inversion. We consider e!ects of
chirality in elastic materials described by a generalized continuum representation, speci"cally Cosserat
elasticity. Analysis of several con"gurations discloses a chiral material to generate reaction moments when
compressed as a slab. A chiral plate bent to hyperbolic shape is predicted to exhibit size e!ects from the
Cosserat characteristic length, and a shear force from the chirality. This analysis can be used for the
interpretation of experiments on compliant chiral materials, in particular the evaluation of the elastic
constants. Viscoelastic chiral solids are examined in the context of the correspondence principle. ! 2001
Elsevier Science Ltd. All rights reserved.
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1. Introduction

A solid which is not isotropic with respect to inversions is called noncentrosymmetric, acentric,
hemitropic, or chiral. Such a solid can be isotropic with respect to direction (coordinate rotations).
Chirality is well known in electromagnetics [1]; it gives rise to optical activity in which left or
right handed circularly polarized waves propagate at di!erent velocities; applications and
recent developments are summarized at the bottom of this section. Chirality, however, has no
e!ect on the classical elastic properties of a material. To demonstrate this, consider the tensorial
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Hooke's law
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The transformation law for the modulus tensor under coordinate changes is
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For an inversion, the transformation matrix is just the negative of a Kronecker delta
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So the classical elastic modulus tensor is unchanged by chirality. Similarly, other material
properties, such as density and thermal expansion which are describable by tensors of even rank,
are unchanged by chirality.

Tensor properties of odd rank are zero if there is inversion symmetry, and can only be nonzero if
there is chirality. Examples include piezoelectricity, governed by a third rank tensor, and strain
gradient elastic theories which are governed by a "fth rank tensor. Some materials behave as
generalized continua which allow more freedom than classical elasticity. For example, Cosserat
elasticity [2] also referred to as micropolar elasticity [3] has a characteristic length scale. The
non-classical behavior is in#uenced by chirality [4].

Materials may exhibit chirality on the atomic scale, as in quartz and in biological mol-
ecules. Materials may also exhibit chirality on a larger scale, as in composites with helical
or screw-shaped inclusions. Such materials can exhibit odd rank tensor properties such as
piezoelectric response. They may exhibit torsional deformation when stretched. A material such as
aluminum crystallizes in a face-centered cubic lattice which has a center of symmetry, hence no
chirality.

Chirality of materials is presently probed by optical methods involving observation of rotation
of the plane of polarization of polarized light [5,6]. Recently, a chiral composite was developed,
based on a periodic array of conducting nonmagnetic split ring resonators and continuous wires,
that exhibits a frequency region in the microwave regime with simultaneously negative values of
e!ective permeability and permittivity [7]. In such a medium, such phenomena as the Doppler
e!ect, Cherenkov radiation, and even Snell's law are inverted. Chiral thin "lms made of nanometer
scale helical columns exhibit controllable optical rotation [8]. Transparent solids, clear single
crystals, or solutions may be studied optically, but polycrystalline aggregates, composites, foams,
and other opaque materials are not amenable to optical methods. Chiral mechanics, described in
this article, may be of use as an alternate probe. Chiral mechanics may also be of use as a guide in
the synthesis of high damping viscoelastic composites, as well as novel materials for use in
actuators which couple axial and twisting motion.
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2. Cosserat elasticity

2.1. Isotropic solids

Cosserat solids [2,3] have an extra kinematical degree of freedom: the micro-rotation ! of points
in addition to the translation u considered in classical elasticity. There is a corresponding
dynamical degree of freedom, the couple stress m

#$
, or couple per unit area. The constitutive

equations for a linear isotropic Cosserat solid are as follows [3]:
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where !
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is the force stress, which is a symmetric tensor in classical elasticity but it is asymmetric in
Eq. (6). m
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is the couple stress, "

#$
"(u

#"$
#u

$"#
)/2 is the small strain, u

#
is the displacement, and

e
#$%

is the permutation symbol. The microrotation !
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from the macrorotation r
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)/2 obtained from the displacement gradient.
In three dimensions, the isotropic Cosserat elastic solid requires six elastic constants &, ', ), *, +,

and ( for its description. A comparison of symbols used by various authors was presented by
Cowin [9]. The following technical constants derived from the tensorial constants are more
bene"cial in terms of physical insight. These are [3,9,10]

Young'smodulusE"(2'#()(3&#2'#()/(2&#2'#(), (8)

shearmodulusG"(2'#()/2, (9)

Poisson's ratio ,"&/(2&#2'#(), (10)

characteristic length for torsion l
%
"[(*#+)/(2'#()]#$%, (11)

characteristic length for bending l
&
"[(+/2(2'#()]#$%, (12)

coupling numberN"[(/2('#()]#$%, and (13)

polar ratio-"(*#+)/()#*#+). (14)

When ), *, +, ( vanish, the solid becomes classically elastic. The case N"1 (its upper bound) is
known as &couple stress theory' [11].

Isotropic Cosserat elasticity has the following consequences.

(i) A size-e!ect is predicted in the torsion of circular cylinders of Cosserat elastic materials.
Slender cylinders of diameter of the same order of magnitude as l

%
appear more sti! then expected

classically [10]. A similar size e!ect, governed by l
&
, is also predicted in the bending of plates [10]

and of round rods [12]. No size e!ect is predicted in tension.
(ii) The stress concentration factor for a circular hole, is smaller than the classical value, and

small holes exhibit less stress concentration than larger ones [13].
(iii) Dilatational waves propagate non-dispersively, i.e. with velocity independent of frequency,

in an unbounded isotropic Cosserat elastic medium as in the classical case. Shear waves propagate
dispersively in a Cosserat solid [3]. A new kind of wave associated with the micro-rotation is
predicted to occur in Cosserat solids.
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Fig. 1. Di!erential element of a Cosserat continuum showing elements of stress ! (force/area) and couple stress
m (moment/area). Also shown is a schematic chiral inclusion in a composite.

(iv) The mode structure of vibrating Cosserat bodies is modi"ed from that of classical elastic
bodies [11].

(v) The range in Poisson's ratio is from !1 to #0.5, the same as in the classical case [5].

Cosserat-type theories were intensively developed in the 1960s and 1970s. Metals [14] and
a particulate composite [10] were experimentally found to behave entirely classically. More
recently, such theories have been used in interpreting observations in geomechanics [15] and in
biomechanics as discussed in Section 4.

2.2. Chiral elastic solids

For a chiral Cosserat elastic solid which is isotropic with respect to direction, the constitutive
equations are as follows [4]. Such materials are also called hemitropic [16], noncentrosymmetric
or acentric. Chirality has no mechanical e!ect in classical elasticity.
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The constants & and (2'#()"2G have the same meaning as in classical elasticity; ), *, + and ( are
as in isotropic Cosserat elasticity; and C

#
, C

%
and C

&
represent the e!ect of chirality. A somewhat

di!erent form was developed from the general Mindlin microstructure elasticity [17] by Weitsman
[16]. In chiral materials qualitatively new phenomena are predicted. A rod under tensile load
deforms in torsion [4]. Wave speed for transverse circularly polarized waves depends on the sense
of polarization. This leads to rotation of the principal plane of elliptically polarized transverse
waves [18,19]. Examples of chiral materials include crystalline materials such as sugar which are
chiral on an atomic scale, as well as composites with helical inclusions or spiraling "bers.
A schematic micro-element of such a composite is shown in Fig. 1.

4 R.S. Lakes / International Journal of Mechanical Sciences 000 (2001) 000}000

MS 858



UNCORRECTED PROOF

3. Deformation of chiral solids

3.1. Deformation of a chiral slab

Consider a slab of chiral elastic material compressed in the z direction, and bounded by surfaces
z"$H. Assume one component of displacement u

*
(z), and one component of microrotation,

!
*
(z) to be nonzero. The equilibrium equations [3] for stress !,
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The equilibrium equations for couple stress m,
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with a coupling coe$cient de"ned as
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The solution for the microrotation "eld is
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In view of Eq. (18) and the fact that in the absence of chirality we have classical deformation, the
displacement "eld is

u
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with !
'

to be determined from the boundary conditions.

Several boundary conditions may be considered as follows:
Case 1: !

*
(z)"0 at z"$H: glued.

This corresponds to a glued or built-in condition at the top and bottom surfaces. Since
sinh pzO0 for zO0, !

*
(z)"0 everywhere, so u

*
(z)"ez with e as a strain. The stress is

!
**

"(&#2'#()e. (25)
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The axial couple stress is

m
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"(C
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)e. (26)

Therefore a reaction torque is generated via the chiral degrees of freedom in the material. This
torque could be readily detected with a tension}torsion test machine.

The stress on the lateral constraint is

!
++

"&e. (27)

Moreover, the couple stress on the lateral constraint is

m
**
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#
e. (28)

Case 2: m
**

"0 at z"$H: greased.
This corresponds to lubricated or greased compression platens which allow the micro-rotational

degrees of freedom to unwind at the surface. There is no reaction torque. Application of the
boundary condition gives
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Substitution of !
'

in Eq. (24) and using Eq. (21) gives the surface displacement

u
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Weitsman [16] obtained a similar form with two chiral elastic constants. The physical interpreta-
tion of p, which has dimensions of inverse length, is elucidated by expressing it in terms of the
characteristic length l

%
de"ned in Eq. (11), the coupling number N de"ned in Eq. (13), the polar

ratio - de"ned in Eq. (14), and the chiral coupling coe$cient de"ned in Eq. (21).
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The compressive stress is as follows. Terms containing !
*
(z) sum to zero.

!
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"(!#2'#()e. (32)

The chirality does not contribute to the compressional stress. The apparent compressional sti!ness
is a!ected by chirality since the axial strain changes. The reduction in sti!ness depends on the
characteristic length and tends to zero as the slab thickness 2 H becomes much larger than the
characteristic length.

3.2. Bending of a chiral plate

Consider bending of a chiral elastic plate of thickness h and edge length ¸ to a hyperboloid
shape. The displacement "eld is:

u
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. (33)
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The microrotation "eld is
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with R as a radius of curvature and x as the thickness direction of the plate. The equilibrium
equations are satis"ed by this "eld. The free surfaces x"constant are free of stress and couple
stress as required for an edge-loaded plate. The edge stress !

,,
"(2'#()(x/R) gives rise to

a bending moment (2'#()h&¸/12R as in classical elasticity. The edge couple stress
m

,*
"!(*#+)/R gives rise to an additional bending moment (*#+)h¸/R, which is responsible

for a size e!ect in sti!ness. Such size e!ects are typical in Cosserat elasticity. Chirality has no e!ect
upon the sti!ness in this example, but a shear stress !

,*
"!(C

%
#C

&
)/R must be applied at the

edges to maintain the hyperboloid shape of the plate. Moreover, self-equilibrated distributions of
couple stress m

,,
"!(C

%
#C

&
)(x/R) and m

**
"(C

%
#C

&
)(x/R) appear at the edges.

3.3. Tension of a chiral rod

The displacement "eld of a chiral elastic rod of circular cross section, stretched axially to strain
" and free to twist [4], in cylindrical coordinates is
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The microrotation "eld is

!
*
"b

'
z, !

)
"A

(
I
#
(pr)!#

%
b
'
r, !!"0 (36)

with I
#

as the modi"ed Bessel function of the "rst kind and b
'
, ,

'
and A

(
as constants.

A tensile strain " in the z direction gives rise to a torsional deformation with b
'

as the twist. The
Poisson e!ect is not uniform as shown by the A

(
term in u

)
. This is an exact solution, but the

expression for the twisting response to stretch is a complicated function of all nine elastic constants.

3.4. Viscoelasticity of chiral materials

As in the case of classical elasticity, the elastic}viscoelastic correspondence principle may be
applied to the constitutive equations and to the elastic solutions derived from them. In the
time domain, each elastic constant is replaced by its s-multiplied Laplace transform; the solution
for the corresponding viscoelastic problem is obtained by inverse Laplace transformation. In the
frequency domain, each elastic constant is replaced by a complex function of frequency. The
imaginary part of a modulus term is related to energy dissipation; in passive materials it must be
nonnegative. It is simpler to work with the correspondence principle in the frequency domain since
the equations are algebraic rather than integral. Cross properties such as Poisson's ratio, piezoelec-
tric coe$cients, and the chiral terms C

#
can be positive or negative in the elastic case. They can

have positive or negative imaginary parts in the viscoelastic case.
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UNCORRECTED PROOFFig. 2. Dissipation of mechanical energy by coupled "eld process. Left: conversion of mechanical energy to electrical
energy by a piezoelectric material, adapted from Ref. [28]. Energy densities= are shown as shaded areas.=

#
represents

the work per volume of material done by the material on the electrical load, while=
#
#=

%
is the maximum energy per

unit volume stored in the material at maximum stress. Right: conversion of mechanical energy from axial to rotational
form in a chiral elastic solid.

The constitutive equations of chiral materials are of a coupled-"eld type. If one of the "eld
variables undergoes relaxation, the overall stress}strain relation becomes viscoelastic [20].
Coupled "elds can be of use in making new kinds of viscoelastic materials. For example,
piezoelectric materials [21] combined with electrical resistance or resistivity have been used where
both high sti!ness and high mechanical damping are required. The freedom of coupled "elds allows
conversion of energy as shown in Fig. 2. Chiral composites o!er potential as damping materials
provided that the chiral degrees of freedom, perhaps embodied as screw or helical inclusions, can
relax. The strength of the viscoelastic response due to coupled "elds is limited by the dimensionless
coupling coe$cient with range from zero to one; it describes the degree to which the "elds are
coupled. In piezoelectric materials the largest coupling coe$cient is about 0.7. This is more
favorable than the coupling in thermoelastic materials. Some simple centrosymmetric composite
microstructures which give rise to high sti!ness and high damping have been studied [22].
Referring to Eq. (30), if the coupling coe$cient were to approach 1, a large reduction in sti!ness
could occur with time, corresponding in the frequency domain to a high mechanical damping.
However the maximum coupling coe$cient for chiral composites is not known, and the potential
for viscoelastic composites remains to be explored. Chirality is a subject for future study in this
context.

4. Guidelines for experiments

Isotropic structured materials have been studied as Cosserat solids, and all six Cosserat elastic
constants have been determined for several foam materials [23,24]. The moduli E and G were
revealed by asymptotic rigidity measurements on large specimens. The characteristic lengths l

%
and
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l
&

were determined by measurements of rigidity as a function of diameter for cylindrical specimens
in torsion and bending. The dimensionless ratios N and - were inferred from the asymptotic form
of the size e!ects for small specimens in torsion and bending. Similar size e!ects have been observed
in human bone; the e!ective shear modulus appeared more than four times larger in slender
specimens than in thick ones [25]. The predictive power of generalized continuum mechanics is
illustrated by the fact that elastic constants derived from size e!ect measurements allow one to
correctly predict strain distributions in bone [26].

As for chiral solids, the slab modality is most appropriate for compliant materials such as foams
and rubbery polymers and polymer composites. The reason is that sti!er materials are more
di$cult to constrain laterally; moreover the structural sti!ness of the squat specimen geometry
may be excessive in comparison with test machine sti!ness. Constrained compression experiments
on slabs are more di$cult than tension, bending, or torsion tests on slender rods. For slabs one
must take care that the assumed boundary conditions correspond in detail to the reality of the
experiment since one cannot appeal to Saint}Venant's principle.

The classical elastic constants E and G are obtained via tests on specimens much larger
than the characteristic length. They may be obtained directly by conventional tension and torsion
tests upon rods or inferred from the LameH elastic constants extracted from compression tests on
slabs.

In the glued slab compression test, measurement of m
**

by a torque sensor in the compression
platen gives (C

#
#C

%
#C

&
) via Eq. (26). By measuring the moment due to m

++
in the side

constraint by a torque sensor, one determines C
#

via Eq. (28). Since couple stress has dimensions of
stress times length, the larger the characteristic length scale associated with the material, the larger
the couple stress. Following Eq. (21), the chiral coupling coe$cient is also involved in the
magnitude of couple stresses arising from chirality. Since it is di$cult to measure a small torque in
the presence of a large force, materials which are chiral on the atomic or molecular scale are not
suitable for characterization by slab compression.

In the lubricated slab compression test, measurement of !
+,

by a shear force sensor embedded in
the side constraint gives ( from !

+,
"!(!

*
via Eq. (15), hence N via Eq. (13). Similarly, Eq. (16)

gives m
++

")d!
*
/dz#C

#
du

*
/dz. Since C

#
has been determined above, measurement via a torque

sensor of the moment due to m
++

gives ). Measurement of compressional sti!ness versus specimen
thickness gives p and K%

'
in Eq. (28); from Eq. (29) and the above constants, l

%
and - and may be

calculated. The remaining characteristic length l
&

is not revealed by this type of experiment.
Therefore the slab compression experiments provide eight of the nine elastic constants of the chiral
material.

The plate bend test provides the shear modulus G"(2'#()/2 and by size e!ects in the sti!ness,
the characteristic length l

%
"[(*#+)/(2'#(]#$%. Measurement of the shear force required to

maintain the hyperboloid shape gives C
%
#C

&
"!R!

,*
.

The rod tension test is simple experimentally, and is suitable for sti! materials as well as
compliant ones. Observation of a twisting deformation in response to axial load demonstrates
clearly the chirality of a material; some such experiments have been conducted on bone [27].
However interpretation in terms of elastic constants is di$cult since the twisting response to stretch
depends upon all nine elastic constants in a complicated way. Even so, great sensitivity is possible
since end rotation can be measured with great precision. As a result, an atomic scale characteristic
length would give rise to a measurable twist in a stretched chiral "ber of macroscopic size.
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5. Conclusions

Chiral material generate reaction moments when compressed as a slab. Constrained compres-
sion experiments can be used to extract eight of the nine elastic constants of a directionally
isotropic, chiral solid. Chiral viscoelastic solids may be understood by applying the correspondence
principle to the solutions for the corresponding elastic solids.

References

[1] Post EJ. Formal structure of electromagnetics. North-Holland, Amsterdam, 1962.
[2] Mindlin RD. Stress functions for a Cosserat continuum. International Journal of Solids and Structures

1965;1:265}71.
[3] Eringen AC. Theory of micropolar elasticity. In: Liebowitz H, editor. Fracture vol. 1. NewYork: Academic Press,

1968. p. 621}729.
[4] Lakes RS, Benedict RL. Noncentrosymmetry in micropolar elasticity. International Journal of Engineering Science

1982;29:1161}7.
[5] Lowry TM. Optical rotatory power. London: Longmans and Green, 1935.
[6] Barron LD. Molecular light scattering and optical activity. Cambridge: Cambridge University Press, 1982.
[7] Smith DR, Padilla WJ, Vier DC, Nemat-Nasser SC, Schultz S. Composite medium with simultaneously negative

permeability and permittivity. Physical Review Letters 2000;84:4184}7.
[8] Robbie K, Brett MJ, Lakhtakia A. Chiral sculpted thin "lms. Nature 1996;384:616.
[9] Cowin SC. Stress functions for Cosserat elasticity. International Journal of Solids and Structures 1970;6:389}98.

[10] Gauthier RD, Jahsman WE. A quest for micropolar elastic constants. Journal of Applied Mechanics
1975;42:369}74.

[11] Mindlin RD, Tiersten HF. E!ect of couple stresses in linear elasticity. Archive for Rational Mechanics and Analysis
1962;11:415}48.

[12] Krishna Reddy GV, Venkatasubramanian NK. On the #exural rigidity of a micropolar elastic circular cylinder.
Journal of Applied Mechanics 1978;45:429}31.

[13] Mindlin RD. E!ect of couple stresses on stress concentrations. Experimental Mechanics 1963;3:1}7.
[14] Ellis RW, Smith CW. A thin plate analysis and experimental evaluation of couple stress e!ects. Experimental

Mechanics 1968;7:372}80.
[15] Dai C, MuK hlhaus HB, Meek J, Duncan Fama ME. Modelling of blocky rock masses using the Cosserat method.

International Journal of Rock Mechanics and Mining Sciences and Geomechanical Abstracts 1996;33:425}32.
[16] Weitsman Y. Initial stresses and skin e!ects in a hemitropic Cosserat continuum. Journal of Applied Mechanics

1967;34:160}4.
[17] Mindlin RD. Micro-structure in linear elasticity. Archive for Rational Mechanics Analysis 1964;16:51}78.
[18] Lakhtakia A, Varadan VK, Varadan VV. Elastic wave propagation in noncentrosymmetric, isotropic media:

dispersion and "eld equations. Journal of Applied Physics 1988;64:5246.
[19] Lakhtakia A, Varadan VK, Varadan VV. Re#ection of elastic plane waves at a planar achiral-chiral interface.

Journal of Acoustical Soceity of America 1990;87:2314}8.
[20] Nowick AS, Berry BS. Anelastic relaxation in crystalline solids. New York: Academic Press, 1972.
[21] Forward RL. Electronic damping of vibrations in optical structures. Journal of Applied Optics 1979;18:690}7.
[22] Brodt M, Lakes RS. Composite materials which exhibit high sti!ness and high viscoelastic damping. Journal of

Composite Materials 1995;29:1823}33.
[23] Lakes RS. Experimental microelasticity of two porous solids. International Journal of Solids and Structures

1986;22:55}63.
[24] Anderson WB, Lakes RS. Size e!ects due to Cosserat elasticity and surface damage in closed-cell polymethacrylim-

ide foam. Journal of Materials Science 1994;29:6413}9.
[25] Lakes RS. On the torsional properties of single osteons. Journal of Biomechanics 1995;28:1409}10.

10 R.S. Lakes / International Journal of Mechanical Sciences 000 (2001) 000}000

MS 858



UNCORRECTED PROOF

[26] Park HC, Lakes RS. Cosserat micromechanics of human bone: strain redistribution by a hydration-sensitive
constituent. Journal of Biomechanics 1986;19:385}97.

[27] Lakes RS. Is bone elastically noncentrosymmetric? Proceedings of the 34th ACEMB, Houston, September 1981.
p. 286.

[28] IEEE Standard on Piezoelectricity, IEEE 176-1978; Institute of Electrical, Electronics Engineers, New York, 1978.

R.S. Lakes / International Journal of Mechanical Sciences 000 (2001) 000}000 11

MS 858


