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Dynamical Study of Couple Stress

~ R.S. Lakes

Ettects in Human Compact Bone

Torsional resonance experiments performed on wet human compact bone disclose
effects due to couple stress. The characteristic length, which is an additional
material coefficient which appears in couple-stress theory, is of the order of the size
of osteons and appears to be smaller at high frequencies than at low frequencies.
The presence of couple-stress effects implies a reduction in the stress concentration
Jactor around holes, particularly small holes.

Introduction

Extended Continuum Theories. In the 19th century, Voigt
[1, 2] considered the idea that models of a physical body
should include effects associated with direction assigned to
points within the body, leading to the idea of couple stress. E.
and F. Cosserat in 1909 [3] systematically developed a theory
of elasticity which included the effects of a couple per unit
area upon a material volume as well as of force per unit area
[3]. The stress tensor ¢ in the Cosserat theory is not sym-
metric; it satisfies the equation

1/2(oij— aji) =m¥* , 0y

in which m¥ is a third rank tensor which represents the
couple-stress field [4].

In the couple-stress theory, or theory of asymmetric
elasticity, the stress is related not only to the infinitesimal
strain, which represents the symmetric part of the
displacement gradient tensor, but also to the local rotation, or
the antisymmetric part of the displacement gradient. Little
was done with these ideas until the early 1950s when similar
theories were proposed for anisotropic crystals [5, 6].
Huntington, in a review of work in this area, concluded that
in materials without internal electric or magnetic fields, the
long-range electromagnetic forces between atoms cannot to
first order cause the torques required by such theories [7]. In
addition, the foundations of the theories in references [5] and
[6], but not those of the Cosserat theory, contain errors or
lack of mathematical precision [8].

Generalized elasticity theories of the couple-stress type
became subject to renewed interest in the early 1960s:
Eringen, Mindlin, Tiersten, and Toupin developed continuum
theories which admit an asymmetric stress tensor [9-11]. For
example, the following are constitutive equations for a linear,
anisotropic solid with couple stress [8]. The usual Einstein
summation convention is used:

0™ = Cljpr gy + by gy » and 2)
D_
wi- = b€ + gk 3)

in which ¢®™ is the symmetric part of the usual force-stress
tensor, ¢ is the strain, u” is the deviator of the couple-stress
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tensor, ¢ is the usual fourth-rank elastic modulus tensor, a
and b are material property tensors related to couple stress,
and «is the gradient of the small rotation vector. « is given by

Kmy = 1/2 €nkt ulc,nm (4)

in which u is the displacement vector, e is the alternating
symbol, and the comma denotes differentiation. In terms of
the strains, ¢,

Kl = €nic €mic n (5)
The antisymmetric part of the stress is given by

1
o’ =1/2e515,; + 1/ 240N + 2 &k (wii/3),) ©®

in which p is the density and \ is the body torque per unit
mass.

In isotropic materials, constitutive equations (2) and (3)
become

U?jym = )\Gkk 6,‘,‘ + 2#6,'!' (7)
pG =dne; + 40k, (8)
1=~/n/u ®)

The quantity / has dimensions of length and is referred to as
the characteristic length in isotropic couple-stress theory.

In the classical (force-stress) elasticity theory, the coef-
ficients @ and b in equations (2) and (3) and also 4, ', and / in
equation (8) are zero, so that neither local rotations nor strain
gradients contribute to the stress. In the couple-stress theory,
the stress depends on the strain and on some components of
the gradient of the strain. A more complete theory would
include all components of the strain gradient

07" = Cijkt €kt + Eijkin €itn (10

Following these developments, literally hundreds of papers
have been published dealing with the solution of specific
boundary value problems in couple-stress elasticity. In ad-
dition, the theory itself has been further generalized to include
nonlinear effects [10, 11], viscoelastic behavior [12], and
general nonlocal effects in which the stress at a point is ex-
pressed as a functional of the deformation histories of all
material points in the solid [13].

Salient consequences of couple-stress theory are as follows:

Transactions of the ASME



(/) Calculation of stress concentration factors around a
circular hole, taking into account couple stresses, results in
lower values than accepted heretofore [14].

(if) Stress concentration around a rigid inclusion in an
elastic medium is greater when couple stress is present than
when it is not present. The maximum stress occurs at the
interface rather than in the medium itself, when couple stress
is present. The maximum stress around a soft inclusion is
reduced by the presence of couple stress [15].

(iify Dilatational waves propagate nondispersively, i.e.,
with velocity independent of frequency, in an isotropic elastic
medium with couple stress. Shear waves propagate disper-
sively in the presence of couple stress [9, 16].

(iv) A size effect is predicted in the torsion of circular
cylinders of elastic materials with couple stress. The effective
shear modulus associated with such cylinders increases as
their size decreases [17].

(v) A similar size effect is also predicted in the bending of
plates and of beams [18, 19].

(vi) The mode structure of vibrating bodies is modified [9].

Couple-stress theory, like classical elasticity, is a continuum
theory which makes no reference to atoms or other structural
features of the material which is described. Nevertheless,
consideration of structural information for a particular
material can lead to a greater understanding of its behavior
and to quantitative prediction of its mechanical properties.
The physical origin of stress lies in the interatomic forces of
attraction and repulsion. Elasticity theory represents more
than an analytic description of the phenomenological
behavior since it can be derived as a first approximation of the
interaction between atoms in a solid. Interatomic forces are
short range, but they exert influence farther than one atomic
spacing. Therefore, there must be some resistance to lattice
curvature [20]. Indeed the very general nonlocal elasticity
theory is able to predict the dispersion of elastic waves of
wavelength comparable to atomic spacing [21, 22]. Quoting
Kroner regarding couple-stress elasticity: ‘It is therefore no
question whether this kind of elasticity exists or not. The
question is rather how large the effect might be. Certainly the
effect is small in most cases, otherwise one should get
remarkably different results in experiments of measuring
Young’s modulus in a simple tension test first and in a
bending test secondly.’’ [20]. One measure of the magnitude
of couple-stress effects is the characteristic length / defined as
the square root of the ratio of a curvature modulus to an
elastic modulus [14]. It might be of the order of the grain size
in polycrystalline or granular materials [14].

Explicit calculations of couple-stress coefficients of various
model materials with microstructure have been carried out by
a number of investigators. For example, in a two-dimensional
model composed of orientable points, joined by extensible
and flexible rods, the equations obtained in a continuum
approximation are identical with those of couple-stress theory
[23]. Both the classical elastic constants and the couple-stress
coefficients can be expressed in terms of the properties of the
classically elastic beams composing the latticework [23]. In
another model, a three-dimensional honeycomb structure
consisting of thin-walled cubical cells, the model material
behaves like a couple-stress solid and the elastic coefficients
are calculated from structural considerations [24]. In com-
posites with a laminated structure, couple-stress effects also
are predicted to occur and their magnitude is a function of the
classical elastic constants of the composite’s constituents [25].

Experiments. Experiments on a macroscopic scale upon
metal have disclosed no evidence of couple stress. Bending
experiments were performed in order to ascertain whether the
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flexural rigidity, and therefore the effective Young’s
modulus, would increase with decreasing specimen thickness
as predicted by couple-stress theory. The experiments
disclosed that the characteristic length / must be less than
0.002 in. (0.05 mm), about the size of the grains in the steel
and aluminum used [26]}, or less than 0.03 mm in aluminum in
a different set of tests [27]. Couple stresses, therefore, will not
significantly perturb the stress distributions in a macroscopic
piece of metal, calculated using classical elasticity [27]. Ex-
periments performed on a model composite also disclosed no
evidence of couple stress [28].

Bone Biomechanics. Study of elastic behavior in bone dates
to the nineteenth century works of Wertheim and Rauber [29,
30]. The latter investigator demonstrated that bone is
anisotropic as well as viscoelastic, but did not explore fully
these aspects of its behavior. Many researchers in recent years
have determined the Young’s modulus E and the shear
modulus G for bone under a variety of conditions. Many of
these data have been tabulated and discussed in a review by
Reilly and Burnstein [31], which presents results prior to 1974.

Bone is anisotropic; that is, its properties are dependent on
direction [32]. Therefore, more than two elastic constants are
required to describe its behavior. The constitutive equation
for an anisotropic solid is

Oij = Cijki €kt

in which ¢y, is the fourth rank elastic modulus tensor and the
stress o is assumed to be symmetric. For the general
anisotropic solid, there are 21 independent coefficients in c;
for the hexagonal crystal or for the texture symmetry w7,
there are five, and for the isotropic solid there are two. The
five elements of the modulus tensor in bone at ultrasonic
frequencies are known [33]. Since bone is viscoelastic, the
elements of the modulus tensor may be considered to depend
on time or on frequency. The constitutive equation in the
linear domain of the behavior is given by

g d.
UU=S_°° Cijk/(t—T) %dT

Of the five elements of the modulus tensor, only C,3y; is
known over an appreciable domain of time [34].

Although experiments intended to explore couple-stress
effects in bone have not been reported in the literature, several
reports are suggestive of a failure of classical theory to
adequately describe bone. For example, Frasca’s study of
single osteons and osteon groups discloses size effects [35]
which should not occur in a classically elastic solid.

Methods

The experimental technique is aimed toward the deter-
mination of effects of specimen size and mode of vibration on
the torsional resonance frequency of circular cylinders of
bone. Size effects are predicted by couple-stress theory [9],
but not by classical elasticity or viscoelasticity. A modified
composite piezoelectric oscillator approach is used [36]. The
apparatus, shown in Fig. 1, makes use of two torsion mode
quartz crystals and a cylindrical specimen cemented end-to-
end with a cyanoacrylate adhesive. One crystal, driven
electrically by a gated burst sinewave signal, excites torsional
vibrations in the system, and the other crystal produces an
electrical signal in response to these vibrations. The signal is
amplified and highpass filtered, and fed into a storage
oscilloscope. In the gated burst approach, the exciting signal
is switched on and off periodically and the free decay of
vibration is monitored during the off period. This procedure
eliminates capacitively coupled interference from the driver to
the sensor crystal. Such interference is more of a problem in
continuous wave experiments on bone than in studies on
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Fig.1 Experimental apparatus for torsion resonance studies

metals and ionic crystals reported earlier using the composite
oscillator. Bone’s loss tangent is comparatively large;
therefore its amplitude at resonance for a given level of ex-
citation is small, which results in a reduced ratio of signal to
interference. Each crystal is supported at its center by four
wires; therefore only odd modes, which have a nodal surface
at the center, are generated.

The resonant frequency »; of the specimen is calculated
from the masses m;, m,, m; and radii r,, r,, r; of each
component, the resonant frequency of the composite
oscillator »;, and the resonant frequencies of the quartz
crystals »; and », [36]:

3 3
vy E mirf = E vimr?
i=1 i=1

The mechanical quality factor Q; of the composite oscillator
is given by

QT_I =1/7I'V7"t

in which ¢ is the time required for the vibrations to free-decay
to an amplitude 1/e times the initial amplitude. The quality
factor Q; of the specimen is obtained from

3 3
-1 __ 2 -1 2 -1
Qr '= E vimiri Q; /VTE miri +Q,
i=1 i=1

in which Q, of the gage circuit is very large and Q, and Q, are
the quality factors of the quartz elements. In the present
apparatus, Q, ~' is negligible. If the specimen quality factor is
much greater than one, we have

Q; ! =tand

for the specimen. The peak strain, determined from the
voltage output of the sensor crystal and the geometry of the
plated electrodes, is limited from above by 103, the strain at
which the quartz crystals fracture, and from below by 10713,
at which thermal fluctuations exceed the signal. Actual strain
levels were 1078 to 10~7, well within the linear range for
bone.

The elastic compliance of the cement used to assemble the
oscillator exceeds that of the quartz and the specimen. Errors
due to cement compliance are avoided by using identical
quartz crystals and choosing the specimen length so that the
specimen resonant frequency is very close to that of the quartz
crystals (32.7kHz). Specimen lengths were 27 to 32 mm.

The composite oscillator was tested by examining the
resonance of the quartz crystals alone and by examining
resonance with a cylinder of polymethyl methacrylate
(PMMA). For quartz, a measured shear modulus of 58
GN/m? and @~! = 4 to 7 x 1077 are consistent with the
literature [36]. The mechanical dissipation depends upon the
nature of the nodal support, which cannot occur at a
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Fig. 2 Observed size effect in the effective shear modulus for wet
human compact bone. Curves are based on dynamical theory [9]. Points
are experimental. Solid circles are for femoral bone from a maie subject
5 ft 9 in., 130 Ib, who died at age 27 of hepatic failure, Other symbols
represent femoral bone from a male subject 5 ft 10 in., 160 1b, who died
at age 57 of Hodgkin’s disease. (1in. = 2.54cm, 1 ft = 0.3048m, 11b =
0.4536 kg)
mathematical point. If the wires are bent, the dissipation
changes, which necessitates repetition of these measurements
prior to testing of an unknown. For PMMA, we obtain G = 2
GN/m? and tan & = 0.03 at 32kHz, values which are com-
parable to Koppelmann’s [37] data at 3kHz, G 1.85
GN/m?, tan 6 0.04. The difference is what one might
expect from dispersion between 3kHz and 32kHz.

Bone specimens were obtained from fresh frozen donated
cadaver tissue. Prismatic sections were rough-cut with a
bandsaw from the cortices of long bones and cut slowly on a
precision lathe, into a cylindrical shape. Specimens were kept
wet with Ringer’s solution during cutting and were
refrigerated under Ringer’s solution between tests. During
testing, specimens were kept moist with Ringer’s solution by
means of a cotton swab. It proved impractical to fully im-
merse the specimen during testing since viscous drag on an
immersed specimen increased its apparent loss tangent by
about 60 percent and decreased its resonant frequency by 0.7
percent. Testing was done at room temperature, 29+1°C.
The mass of each specimen was determined using a balance
with resolution 0.1 mg. Length and diameter were measured
with a dial micrometer. These measurements were done on
moist specimens; in the mass measurement, the fluid layer was
allowed to evaporate to minimize errors due to the mass of
adhering fluid. Density was calculated from the mass and
dimensions.

Results

In the lowest mode of torsional vibration, the specimen
resonant frequency was found to depend on specimen
diameter. Figure 2 shows these results in terms of effective
shear modulus versus diameter. Classical elasticity and
viscoelasticity predict no dependence of modulus on diameter;
this corresponds to / = 0 in the couple-stress theory. Couple-
stress theory predicts an increase in resonant frequency and
therefore effective stiffness, with a decrease in specimen
diameter [9]. A theoretical curve for / = 0.09 mm, also shown
in Fig. 2, fits the data. The behavior of human compact bone
appears to be consistent with couple-stress theory.

The loss tangent had an average value of 0.0525 and a
standard deviation of 0.01243. The loss tangent was in-
sensitive to specimen diameter d: A linear regression
analysis yielded tan 6 = 0.0580 —0.0017 d(mm). The value of
the loss measured in this study, as well as the apparent shear
modulus, is compared with earlier work in Fig. 3.
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Fig. 3 Loss tangent and effective shear modulus of compact
bone—A present study, wet human femoral bone, 29°C; B after
Thompson [46], dry whole canine radius; C after Lakes, Katz, and
Sternstein [34], wet human tibial bone, 37°C; C' after Lakes and Katz
[47], wet human tibial bone, 37°C (based on a constitutive equation
obtained from relaxation data [34]; D after Adler and Cook [48], wet
canine bone (from ultrasonic attenuation measurement)

In a later study of fibular bone, a heat lamp was used to
vary the specimen temperature. The apparent shear modulus
decreased 0.24 percent +0.08 percent/°F increase in tem-
perature (0.43 percent/°C). This may be compared with 0.25
percent/°F change in bending compliance of wet human tibial
bone observed by Smith and Walmsley [49].

Specimen density exhibits a small dependence upon
diameter, as shown in Fig. 4. The range of density variations
is 6.4 percent and a linear regression analysis results in
0=2.102-0.025 d(mm) (in g/cm’). The correlation coef-
ficient between density and diameter is r = 0.572; therefore
about one-third of the fitted density variation is actually
associated with specimen size. This may arise from a porosity
gradient across the cortex, the mass of adherent Ringer’s
solution, or from other causes.

Discussion and Conclusion

Torsional vibration studies at 32 kHz disclose size effects in
bone which are consistent with couple-stress theory. Let us
consider several alternative hypotheses for the observed ef-
fects. Size effects may result from a modified constitutive
equation, e.g., that of couple-stress theory, or from a
dependence of the elastic constants on density, which may in
turn depend on size, or from a combination of the two. In a
porous material, the Young’s modulus £ depends on the
volume fraction V of pores, as follows [38]: E=E (1-
1.9V +0.9V?). In compact bone, a density variation of 6.4
percent should therefore result in a modulus variation of
about 12 percent. The graph of modulus versus diameter
predicted by the density effect is nearly linear: Substitution of
the regression line for the density into the foregoing equation
for E/E, yields

E£ =1-0.0226d+1.27 10~ *d*
in which d is in millimeters. The form of the expected density
effect differs from the form of the observed size effect and, in
addition, the magnitude of the former is too small (<12
percent) to account for the latter (~63 percent). Indeed, the
foregoing estimate of the density artifact is probably too high
in view of the relatively small correlation r between density
and diameter. Since r2=0.33, only 0.33 of the density
variation is actually associated with specimen size. The
modulus variation associated with this is (12 percent)(0.33) =
4 percent. :

o
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Fig.4 Density versus specimen diameter. Symbols are as in Fig. 2.
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Fig. 5 Transmitted light micrograph of a typical specimen. Specimen
diameter is 2.62 mm.

The range in effective modulus for the data shown in Fig. 2
is 63 percent. In view of these considerations, we attribute
most of the size effect, at least 81 percent of it, to couple
stress. Some curious size effects might also result from a
gradient of mechanical properties across the cortex of a long
bone. Yoon and Katz [33] have measured the microhardness
of bone and found it to be uniform over the cross section.
Other properties, e.g., porosity, may vary over the cross
section. Such a variation would perturb the measurement of a
large specimen more so than of a small one since a small
specimen intercepts a smaller portion of the proposed
porosity gradient. The sort of size effect anticipated from a
hypothetical porosity gradient is more pronounced for larger
diameters than small ones, exactly the opposite of what is
observed. The alternative hypotheses are insufficient to ac-
count for the observed behavior. We attribute most of it to
couple stress.

Couple-stress theory, like classical force stress elasticity
theory, is a continuum representation of the phenomenology
of mechanical behavior. Neither theory makes explicit
reference to microstructure or to deformation mechanisms.
Nevertheless, it is possible to derive such theories from
microstructural or atomistic models as continuum ap-
proximations; generally a higher order of approximation is
needed to extract couple stress theory. In derivations of this
sort, the characteristic length / tends to be of the order of the
size of the structural elements [23-25]. It is perhaps not
surprising that the measured characteristic length for bone, /
= 0.09 mm, is of the order of the size of osteons, which are
about 0.15 to 0.25 mm in dia. Typical specimen
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microstructure is illustrated in Fig. 5. This micrograph is a
cross-sectional view of the Haversian architecture of the
specimen. The faint dark outlines of a nearly circular shape
are cement lines which form the boundaries of osteons. The
dark dot at the center of each osteon is a Haversian canal.

The distinction between the phenomenological view and the
mechanistic view is a significant one. Some interaction bet-
ween these views has appeared recently in relation to elec-
tromechanical effects in bone. Williams, et al. [39], suggested,
on the basis of bending experiments, that the piezoelectric
constitutive equation for bone should contain an additional
term involving the strain gradient [39]. The model has been
criticized as ad hoc [40]. The present author pointed out that
the gradient model can be extracted from a more general
nonlocal theory and can be related to microstructure [41]. It
has recently been reported that the results which led to the
gradient-effect model can be accounted for by variations in
piezoelectric properties on the scale of osteons. A model
which deals with osteons is on the mechanism level, whereas
one which contains strains and strain gradients is
phenomenological. The two, if correct, should complement
rather than conflict with each other. A similar situation can be
expected to occur in the case of couple-stress elasticity, which
is phenomenological.

The present results indicate that bone has a characteristic
length of 0.09 mm at 32kHz, a value which is less than the
characteristic length / = 0.15 mm, reported in quasi-static
tests for which the effective frequency is 0.5 Hz, on wet bone
[42]. This suggests that bone might exhibit ‘‘Cosserat
viscoelasticity,”” i.e., a time or frequency dependence of the
couple-stress elastic coefficients. Explanation of such
behavior in terms of mechanisms is likely to involve the time
dependence of the ground substance between osteons. At
ultrasonic frequencies (~1MHz), a model in which the
ground substance is one quarter as stiff as the osteon predicts
anisotropic elastic behavior similar to what is observed [43].
At low frequencies associated with slow quasi-static tests
(~10""Hz), the ground substance at the cement line appears
to behave in a viscouslike fashion [44]. In a model of bone as
an array of parallel fibers (the osteons) embedded in a
compliant matrix (the ground substance), couple-stress effects
are predicted [45]. If the matrix becomes very compliant, the
predicted couple stress effects become larger. A time-
dependent characteristic length, therefore, is an expected
consequence of relaxation of the ground substance.

The results reported here are consistent with couple-stress
theory but are not consistent with classical (force-stress)
elasticity. The results, however, do not discriminate among
extended continuum theories, e.g., couple-siress theory,
micropolar theory, nonlocal theory. Bone may exhibit degrees
of freedom not explored in this study. The examination of
these is a subject for future experimentation.

Significance

Couple-stress effects in compact bone have sufficient
magnitude to significantly affect the response of specimens a
few millimeters or less in diameter. It is unlikely that couple
stress will greatly perturb the overall stress distributions in the
diaphysis of human long bone. The effects are, however, large
enough to modify the stress concentration factors for holes
drilled in bone during surgical procedures. It is premature to
make quantitative predictions of these stress concentrations,
since human compact bone is anisotropic. Although
anisotropic constitutive equations have been published, the
only solutions available for stress concentration problems
appear to be for the isotropic case. Couple stress is also
predicted to have a major effect in the vicinity of interfaces. It
is in this interfacial region, between bone and an implant
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material, that problems may develop in the application of
skeletal prostheses. Further consideration of the effects of
couple stress in bone is therefore warranted.
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