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Couple stress theory, which admits an internal moment per unit area as well as the
usual force per unit area, is a generalization of classical elasticity. Experimentally
we have demonstrated the existence of couple stress by measuring the effect of size
on apparent stiffness of compact bone in quasi-static torsion. From these
measurements, we obtain the characteristic length for bone in couple stress theory.

Introduction

In classical continuum theory, the basic assumptions are
that the medium is continuous and the constitutive equations
have to meet the principle of determination, local action and
objectivity. The assumption of continuous media means the
atomic, molecular, pore and grain structure of real materials
is to be disregarded. Under such assumptions, all material
properties can be defined as a continuous point function. The
classical continuum theory of elasticity has been very suc-
cessful in its determination of stress and strain fields in most
engineering materials. But it fails to correctly predict the
fatigue behavior of machine elements with high stress gradient
[1]. The discrepancy between prediction and observation is
more marked for materials with a coarse grain structure [2]. A
possible explanation is that the constitutive equation of
classical elasticity theory may not be sufficiently general. To
remedy this, several generalized continuum theories have been
introduced which have additional degrees of freedom. One
such theory is the couple stress theory introduced by the
Cosserats [3], and developed further by Mindlin, Tiersten [4]
and others.

The basic distinction between the classical elasticity theory
and the couple stress theory is the nature of the assumed
interaction of the material on the surface element. The
assumption, neither proved nor disproved, in classical theory,
is that the load acting on the infinitesimal surface element is
described only by a force vector. In the couple stress theory,
one assumes that the surface element may transmit both a
force vector and a couple vector. The stress, which in this
theory may become asymmetric, depends not only on the
strain but on some elements of the strain gradient tensor [5].
Some important problems have been solved by several authors
under this theory, and it is found that the couple stress effects
become significant when some physical dimension of the body
approaches a certain characteristic length which is an ad-
ditional material coefficient. Mindlin [6] has investigated the
effect of couple stress in the stress concentration problem. He
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found that stress concentration factors for holes calculated
from couple stress theory are less than the factors obtained
from classical elasticity. The reduction in the stress con-
centration factor is significant when the hole radius ap-
proaches the characteristic length. Micropolar theory, in-
troduced by Eringen [7, 8], also admits an asymmetric stress
tensor, and includes degrees of freedom not present in the
couple stress theory or classical theory of elasticity. As in
couple stress theory, the rigidity of slender rods in bending [9]
and in torsion [10] is predicted to be greater than what is
expected on the basis of classical elasticity.

Theoretical investigations have dealt not only with the
solution of boundary value problems in extended continuum
theories, but also with the calculation of the material coef-
ficients in such theories from structural considerations.
Continuum models have been developed for laminates [11],
lattice structures built up from elastic beams [12], and a
structure composed of elastic cubical cells [13]. In such
models, the characteristic length / is related to the size of the
structural elements. Bone, a natural fibrous composite, has
also been modeled in light of extended continuum theory. It
has been suggested that cancellous {14] and compact [15] bone
may obey couple stress theory.

Experimental work supporting couple stress and related
theories has been sparse. The classical theory of elasticity has
been most successful in dealing with the usual engineering
materials below the yield point. Experiments seeking to
measure couple stress effects in aluminum [16, 17], steel [17],
and a model composite [10] have yielded results consistent
with the classical theory. Optical studies on crystalline KNO;,
interpreted in light of micropolar theory [18] suggest a
characteristic length of the order of the lattice parameter, far
too small to be observable in a macroscopic mechanical
situation. Study of a foam material [19] suggests that couple
stress effects may occur. The method used loaded resonance
of a hollow cylindrical layer of foam, in which layer thickness
was an independent variable. This method has the drawback
that time/frequency dependence (viscoelasticity) and spatial
derivatives (couple stress theory) in the stress strain relation
both contribute to an effective stiffening of the layer. As the
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layer thickness is reduced, both the strain gradient and the
resonant frequency of the system increases. Thus, since the
polyvinyl chloride foam used is strongly viscoelastic, the
interpretation of the results in terms of couple stress theory is
far from straightforward.

Theory

The constitutive equations of linear, isotropicvcouple stress
theory are [5]:

g% = )\ekkB,»j + 2,ue,-j- 1)
i =4ni; +4n K, 2)

in which ¢ is the symmetric part of the force stress tensor, p¢
is the deviator of the couple stress tensor, ¢ is the strain, « is
the curvature, \ and p are Lamé constants and % and 7’ are
additional elastic constants associated with couple stress
theory. The curvature « is related to the strain gradient by

Kml = €nii €mk,n, (2)

in which e, is the alternating symbol. The quantity / = \/ﬂ
has dimension of length and is the characteristic length of
couple stress theory. The quantity %' /7 represents a ratio of
curvatures [4] and is contained in the interval [—1,1]. The
theory has been applied by Koiter [1] to the case of torsion of
a long circular cylinder of diameter d length z:
4 ’ 2
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in which 7 is the applied torque, € is the angular displacement,
[ is the characteristic length of couple stress theory, G is the
shear modulus. Koiter adopts a modified notation in which
n’ /7 is replaced by n; here we use the same symbols written in
equations (1) and (2). For the special case of classical (force
stress) elasticity, the quantities / and %’ vanish and the
elementary result for torsion of an elastic rod is recovered.
Based on the foregoing result, one should be able to
distinguish between couple stress elastic behavior and classical
elastic behavior by measuring the torsional rigidity 7z/6 of
rods of different diameter. The material coefficients G and
(1+7'/9)? =12 may be extracted straightforwardly from a
plot of (rz/8) (1/d?) versus d?. If couple stress elasticity
describes the material, the graph is a straight line of slope
(7/32)G and y-intercept (3/2)xGl,?. 1f the material is elastic,
the characteristic length in torsion /, is zero and the straight
line passes through the origin. Koiter’s result may appear
counterintuitive to some observers since it predicts an ap-
parent shear modulus which increases without bound as the
specimen size is reduced. In a real material, the couple stress
theory would most likely break down for specimens of size
equal to or smaller than the characteristic length; a more
general theory would be needed.

Instrumentation and Procedure

To test the hypothesis that bone obeys couple stress theory,
cylindrical specimens of compact bone were tested in torsion,
machined to a smaller diameter and tested again. The
procedure was repeated until the specimen broke or became
too thin to handle effectively. To separate viscoelastic effects
from couple stress effects, isochronal data from the successive
torsion creep experiments were used in the analysis of size
effects.

Specimens of compact bone were obtained from human
long bones from donated autopsy tissue. Specimens were cut
slowly, while wet, on a precision lathe into a cylindrical shape
with flared, threaded ends as shown in Fig. 1. The long axis of
each specimen was parallel to the bone axis. Bone specimens
1-4 were from the femur of a male 175 ¢cm (5 ft 9 in.) in
height, 59.1 kg in mass (130 Ib weight), who died at age 27 of
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Fig.1 Specimen configuration — dimensions are in mm
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Fig. 2 Experimental apparatus — A barrel of free-core LVDT, B bone
specimen, C ball-bearing pulley, D dead weight, E torque rotor, F base
plate, G plexiglass cell, H temperature probe, | thermoelectric heater

hepatic failure. Specimens 5, 6 were from the right femur of a
male 178 cm (5ft 10in.) in height, 72.7 kg in mass (180 lb
weight) who died at age 57 of Hodgkin’s disease. During the
course of experiments the specimens were kept in Ringer’s
solution with a bactericidal additive, and maintained at body
temperature (36.5°C+0.2°C) by means of a closed loop
temperature controller of original design. Specimens of
polymethylmethacrylate (PMMA) were also prepared, and
were tested dry at room temperature (22.5°C).

One end of the specimen was fixed in the base plate as
shown in Fig. 2. The other end was mounted in a loading
wheel which enabled a step torque to be applied by means of
an arrangement of dead weights and low friction, ball bearing
pulleys. Step loading was applied with a risetime of less than
one second and sustained for periods of time greater than 240
s. The base plate was mounted on a special foundation which
was designed to isolate the instrument from external vibration
and shock. To minimize friction, precision ball bearings used
in the pulleys were vibrated in ‘‘dither” at 3.4 kHz by
magnetic coils or by piezoelectric transducers. The magnetic
vibrator was more effective.

The angle of twist we determined from linear displacement
measurements made using two DC to DC LVDTS’s, the cores
of which were mounted on the torque wheel in the direction
tangential to the wheel and were powered by a Tektronix
power module, TM506. The LVDT’s were calibrated using a
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Table 1

Specimen Load A(N) B(MN/mZ) G(GN/mz) [,(mm) Time of test
time (s) (days)
Bone no. 1 0.3 488 534 5.44 0.14 7
60 427 513 5.23 0.13
Bone no. 2 0.3 263 423 4.31 0.11 38
120 156 408 4.15 0.09
240 165 401 4.09 0.09
Boneno. 3 0.3 273 408 4.16 0.12 21
120 292 373 3.80 0.13
240 306 364 3.71 0.13
Boneno. 4 0.3 433 402 4.09 0.15 13
120 366 385 3.92 0.14
240 362 379 3.86 0.14
1800 368 366 3.73 0.145
Boneno. 5 0.3 656 344 3.50 0.20 13
120 682 318 3.24 0.21
240 677 314 3.20 0.21
1800 552 327 3.33 0.19
Bone no. 6 0.3 704 347 3.53 0.21 15
120 762 309 3.15 0.23
240 768 303 3.09 0.23
1800 686 304 3.09 0.22
PMMA 0.3 -23 124 1.26 9
24 -27 111 1.13
72 —15 106 1.08
120 —-17 105 1.07
bench micrometer. The LVDT outputs were connected to a o L
two-channel chart recorder (Gould). It was necessary to x -
eliminate any effect of parasitic bending of the specimen since
the top torque rotor was unconstrained, to minimize friction.
The LVDT outputs were summed to eliminate any con-
tribution from parasitic bending. In addition, microscopic g_
examination of the center of the torque rotor revealed no
significant bending. Linearity of response was checked by
repeating the tests at different load levels. Maximum strain % x
did not exceed 10~% which ensured both material and =
geometrical linear behavior. Sufficient time for creep recovery & o

was allowed between tests. Specimens were also allowed to
recover strains introduced in machining, after they were cut to
a smaller size. Straight lines based on equation (4) were fitted
to the data by defining y=(rz/8) (1/d*),x=d? and using a
least-squares analysis to obtain the coefficients B and A4 in y
= Bx+A.

Results

Results are shown in Table 1. Several typical graphs
illustrating equation (4) are shown in Fig. 3. For the
polymethylmethacrylate (PMMA), the isochronal curves for
t=0.3s,24s,72s, and 120 s all pass through the origin within
the limits of experimental scatiter. The scatter may be ex-
plained by allowing for reasonable tolerance in specimen
manufacture, specimen preparation and measurement error.

Compact bone exhibits nonuniformities over a cross
section; therefore measurements of mechanical properties can
be expected to exhibit some additional scatter. To reduce the
effects of this scatter, several specimens must be examined. In
this experiment, we tested six specimens of compact bone.
During testing of specimen no. 1, we did not have temperature
controller, so we tested it at room temperature (24.4 +£0.5°C).
From Table 1, we see that for all six specimens the isochronal
curves corresponding to ¢ =0.3 s, 120 s, 240 s, and 1,800 s, do
not pass through the origin since the offsets A are not zero.
The mean value of the characteristic length of compact bone
at 0.3 s is 0.155 mm, which is of the order of the radius of an
osteon.

Confidence intervals for the regression coefficients are
given in Table 2. Times of loading are as in Table 1. Coef-
ficient A is related to the characteristic length and B is related
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Fig.3 Behavior of bone and PMMA
1 PMMA, 1=0.3s
A PMMA,t=120s
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to the shear modulus by equation (4). For all bone specimens
except 3, we can state with better than 95 percent confidence
that the regression line does not pass through the origin, i.e.,
that the specimen obeys the couple stress theory rather than
the classical theory of elasticity. For four of the specimens,
this one-sided confidence limit is better than 99 percent. For
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Table 2

Confidence
interval
for line Confidence interval
Not passing 90 percent 95 percent
Specimen origin Points B A B
Boneno. 1 98% 11 488£312 53426 488 +385 534+32
75% 6 427 £ 680 513+51 427 + 886 51367
Boneno. 2 99.5% 10 263 +125 423+10 263 £155 423+12.5
80% 10 156208 40816 156+ 258 408 £20
75% 10 165 +238 40118 165 £295 401 +23
Bone no. 3 78% 12 273 £377 408 31 273 £463 408 + 38
78% 12 292 +406 373+33 292 +499 373 x40
78.5% 12 306 +419 364+34 306515 364 +42
Bone no. 4 99.9% 15 433122 402+ 8 433149 402+ 10
99.9% 14 366+ 78 385+ 5 366+ 96 385+ 7
99.9% 14 362+ 77 379+ 5 362+ 94 379+ 6
93% S 368 +322 366+ 4 368 =436 366+ 54
Boneno. 5 99.5% 9 656+311 344 £23 656+ 388 344 +28
99.6% 9 682 +290 318421 682 362 318+26
99.6% 9 677 +£290 314+21 677 £362 31426
94% 3 5523341 327+33 552+ 686 327+67
Boneno. 6 99.8% 10 704 266 347 £22 704 £330 347 £28
99.9% 10 762 + 260 30920 762323 30925
99.9% 10 768 =249 30320 768 +309 30325
96% 5 686 +358 30428 686 484 304 +38
PMMA 63% 10 —-23+ 47 124£3.5 ~23+ 58 124 +4.4
55% 10 -27+ 60 111+4.3 ~27x 74 111£5.3
25% 10 —-15+ 82 106 6.1 — 15101 106 +7.6
26% 10 —-17+ 87 105 6.5 — 17108 105+8.1

PMMA, the behavior is classical within the experimental
scatter. The characteristic length of the bone specimens ap-
pears to be independent of the time following application of
the load.

The testing periods for these six bone specimens are given
in Table 1. The effect of soaking in Ringer’s solution in
dissolving mineral and softening the specimen is more severe
for thin than for thick specimens. This would lead to an
underestimate of the characteristic length. The soaking ar-
tifact can be reduced by the time of immersion, but the
necessity for repeated tests places a lower bound on this time.
Analysis of the relationship between the characteristic length
for initial loading (0.3 s} and total time T of immersion during
testing yields the following regression line: /,(mm) =
0.191-0.00205 T (days). The soaking artifact indeed appears
to be associated with a reduction in the apparent characteristic
length. The regression equation suggests that if all the testing
could have been done in zero days, the average value of the
characteristic length would be 0.191 mm rather than 0.155
mm actually observed.

Discussion and Conclusion

Human compact bone appears to behave in a fashion
describable by couple stress theory. Polymethylmethacrylate
(PMMA) obeys the classical theory of viscoelasticity. We
attribute this difference in behavior to the fact that bone is a
structured material, the major structural elements of which,
the osteons, are ca 0.15-0.25 mm in diameter. PMMA is an
amorphous polymer, the major structural elements of which
are on the molecular scale.

The shear moduli determined in this study may be com-
pared with the literature. For PMMA at a temperature near
25°C, the dynamic shear modulus in the range 10-2 to 10!
Hz is about 1.1 GN/m? [20]. For wet human tibial bone at
37°C, in relaxation at 10 s, G is about 4.15GN/m?[21]. In this
approximate comparison, interchange of the viscoelastic
functions is justified on the basis of the smallness of time-
dependent response in bone and PMMA at these times and
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temperatures. The relatively large shear modulus exhibited by
specimen no. 1 in this study presumably results from the fact
that it was tested at room temperature rather than body
temperature.

We observe no evidence of time dependence of the
characteristic length /. Based on the viscouslike character
[22] of the cement lines between osteons it was suggested by
one of the authors [15] that the characteristic length might be
an increasing function of time. Such an effect may in this
study be masked be scattering of experimental results or be
too small to be seen in tests spanning only a few decades of
time scale. Recently, one of the authors has reported evidence
of couple stress at a frequency many times the effective
frequencies used in this study [23]. At 32.7 kHz, /= 0.09 mm,
which suggests a time/frequency dependence of /.

The analytical solution used in the analysis of the present
experimental results is based on isotropic theory. Human
compact bone is anisotropic; it exhibits hexagonal symmetry
and the plane of transverse isotropy is perpendicular to the
osteon axis. In this study, the osteon axis is parallel to the
specimen axis. Measurement of the effective shear modulus of
a classically elastic solid in this configuration yields one of the
five elements of the modulus tensor. We expect that the
characteristic length determined in this study is one of several
such lengths which would be required to fully characterize
bone as a couple stress elastic solid. The additional charac-
teristic length or lengths may also have a microstructural
counterpart, perhaps the length of osteons.

It is also appropriate to explore the possible role of
anisotropy and other factors in generating artifactual results.
Lekhnitskii [24] has solved many problems in the theory of
anisotropic classical elasticity. For example, in the torsion of
a rod with general elastic anisotropy, which includes a
misaligned hexagonal material as a special case, no size effects
are predicted [24]. A parasitic bending deformation in
response to applied twisting moment is, however, predicted to
occur in a rod with general anisotropy. The apparatus used in
this study was designed to reject any contribution of parasitic
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bending to the measurement of torsional deformation.
Parasitic bending was found to be negligible, which confirms
the stated parallelism of specimen and material axes.
Anisotropy, therefore, cannot mimic couple stress elasticity in
these experiments, and is not a source of artifact.
Nonlinearity is rejected as a source of artifact since maximum
strains used did not exceed the proportional limit.
Viscoelasticity is decoupled from couple-stress elasticity by
the use of isochronals and hence cannot be a source of ar-
tifact. Gradients of hardness or other mechanical properties
across the cortex have been considered as possible sources of
artifact; it is concluded that the influence of these effects is
small [23].

The present results do not discriminate between couple
stress elastic behavior [4] and micropolar elastic behavior [7].
For the geometry used in this study [10], the more general
micropolar theory predicts behavior which is essentially the
same as that predicted by couple stress theory over a con-
siderable range of the four isotropic micropolar elastic
constants. )

It must be emphasized that the Mindlin-Tiersten couple
stress theory, like classical elasticity, is purely phenom-
enological, and makes reference neither to underlying cause
nor to structure. A study of mechanisms would complement
the present phenomenological work. We anticipate
microstructural considerations, e.g., the osteonal architecture
and the viscous/compliant nature of the cement line, to be
significant mechanisms for the observed nonclassical
behavior. One could argue that this behavior is caused by
osteons rather than couple stress; we do not regard such an
argument to be cogent since it involves improper mixing of
two levels of description. In the same vein, the classical
elasticity of ordinary materials is caused by the electrostatic
interaction between atoms. One does not reject elasticity
theory because the cause of the behavior is known; instead,
one uses it in practical situations for which the atomistic
description is excessively cumbersome.

The potential significance of these results is that couple
stress effects are predicted to perturb the stress concentration
around holes [4] and the stress level near interfaces with a
harder material [5]. Such holes and interfaces are routinely
generated during orthopaedic surgery upon bone and in the
fitting of endoprotheses. Bone-prosthesis systems are now
analyzed on the basis of classical elasticity, with the aim of
minimizing the likelihood of prosthesis failure, loosening and
of bone resorption. The question of whether couple-stress
effects are sufficiently large to merit their inclusion in such
stress analyses is a subject for future research.
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