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Abstract

Tensile fracture experiments were performed upon specimens of wet mature bovine
Haversian bone, with short, controlled notches. Stress concentration factors were found to
be significantly less than values predicted using a maximum stress criterion in the theory
of elasticity. Results were also modeled with the aid of linear elastic fracture mechanics.
Agreement of experiment with theory was better in this case, however deviations were
seen for short notches. Two mechanisms were evaluated for the behavior: plasticity near
the crack tip, and effects of the Haversian microstructure, modelled by Cosserat
elasticity, a generalized continuum theory. Plastic zone effects were found to be
insignificant. Cosserat elasticity, by contrast, predicted stress concentration factors
which better approximated observed values. To explore strain redistribution processes,
further experiments were conducted upon notched specimens in torsion at small strain.
They disclosed a strain redistribution effect consistent with Cosserat elasticity. These
microelastic effects are attributed to the Haversian architecture of bone.

INTRODUCTION

The ultimate properties of a material such as bone are specified not only by strength
measures such as the ultimate tensile strength and yield strength, but also by measures of
toughness. An investigation of toughness is of particular importance in materials such as
bone and synthetic composites, which exhibit comparatively little nonelastic deformation
prior to failure. Studies of fracture toughness in bone have been performed by Bonfield
and Datta (1976) and by Behiri and Bonfield (1980), in which controlled cracks were
introduced in bone specimens of well defined geometry.

Living bone contains microcracks which originate as a result of fatigue microdamage
consequent to repetitive loading of bone during locomotion and other activities (Carter, et
al., 1981). The toughness characteristics of bone in the presence of such microcracks are
consequently of interest. In the present investigation, fracture experiments have been
performed on bone specimens with short, controlled notches. The notch sizes were
comparable to the size of the Haversian architecture of the bone. Consequently, analytical
procedures incorporating some of the internal degrees of freedom of the microstructure
have been utilized in the interpretation of the results. To explore some of the structural
mechanisms for the toughness of bone, further experiments were conducted in which the
deformation around notches was examined by holographic interferometry.

EXPERIMENTAL METHODS

A tensile fracture mechanics study was conducted in which specimens were prepared
following the procedures outlined by Bonfield and Datta (1976). Specimens were
machined slowly from the mid-diaphyses of adult bovine tibiae into standard strips 18
mm wide for tension testing. Bone specimens were examined microscopically and only
those which were completely remodelled into a Haversian structure were retained for
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testing. The long axis of each specimen was aligned with the long axis of the original tibia.
A single edge notch of controlled length and radius of curvature was machined into each
specimen. Notch lengths of 0.25 mm (four specimens), 0.34 mm (four specimens), 0.50
mm (five specimens), 0.75 mm (three specimens), 14 mm (three specimens), 15 mm
(two specimens), and 16 mm (two specimens) were used in this study. By contrast, the
study of Bonfield and Datta involved specimens with relatively long notches 1.25 mm to
14 mm long. The specimens were stored in Ringer's solution at -20° C until testing. The
specimens were loaded in tension until fracture, while saturated in Ringer's solution, in

an Instron testing machine. The nominal strain rate was 3 x 104 s1. Fracture surfaces
were then examined by scanning electron microscopy.

Experiments were also performed, in torsion, in which the deformation field around
a notch was examined, for applied stress well below the yield point. The rationale was to
ascertain whether processes responsible for toughening bone in the presence of stress
raisers also operate in the regime of small stress. Yielding, for example, can effectively
blunt a crack tip and increase the toughness, but the stress must be sufficiently high for
yield to occur. For these experiments, a prismatic specimen of mature bovine Haversian
bone was machined into a prism of square cross section 7.6 mm wide and 93 mm long. A
small notch about 1 mm deep was made in the corner. The wet specimen was subjected to

torsional load so that the maximum strain was 8 x 10°4 or less [well below the yield
point] and the deformation field was evaluated by holographic interferometry (Lakes, et
al., 1985). Briefly, this approach involves making a double exposure holographic
interferogram using a single beam reflection technique ('piggyback holography'). The
technique permits the experimenter to control the density of fringes in a selected region,
in this case, near the notch. This experiment was repeated following air drying of the
specimen. Interpretation of the results is based on the fact that the classical theory of
elasticity predicts zero stress and zero strain at the corners of a twisted square cross
section prism. There should therefore be no tendency for a notch at the corner to displace,
hence any displacement found at the notch may be construed as evidence of nonclassical,
eg., Cosserat elastic behavior predicted analytically by Park and Lakes (1987).

RESULTS

Scanning electron micrographs of typical fracture surfaces are shown in Fig. 1.
These micrographs display the Haversian architecture of mature bovine cortical bone. The
dependence of nominal tensile fracture strength of upon notch length c is displayed in Fig.

2 in which the strength is plotted vs ¢ 1/2, both for the present results and those of
Bonfield and Datta(1976) for specimens with longer cracks. Fig. 2 also shows theoretical
curves based on the classical elastic Inglis formula for a blunt notch, as well as the
classical linear elastic fracture mechanics (LEFM) result for a sharp notch. Observe that
the Inglis formula, which in the present context entails a fracture criterion based on
maximum stress at the notch tip, severely underestimates the strength of bone in the
presence of a notch. The LEFM curve, based on energy considerations, is obtained by curve
fitting of the analytical curve to the experimental data as described by Bonfield and
Datta(1976). The empirical relationship is:
of(in MPa) = 2.2 c¢(in meters) 1/2 -6.0.

This equation embodies a correction for the finite width of the strip; the correction
becomes important for relatively long notches. Fig. 3 shows the results plotted in terms of
stress concentration factor for fracture vs crack length divided by crack radius of
curvature. Theoretical curves based on different constitutive assumptions for the bone
material are given for comparison.
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The torsion experiment at small strain resulted in the holographic fringe patterns
shown in Fig. 4. Each fringe corresponds to an out of plane displacement of 0.316 ym. In
the wet bone, the observed discontinuity in fringe order across the notch (shown by an
arrow) implies a shearing motion across the notch. By contrast the same specimen when
dried displays no discontinuity in fringe order and hence no shear deformation of the notch.

ANALYSIS OF FRACTURE STUDY

Overview

In the analysis, a choice is to be made concerning the fracture criterion and
concerning the constitutive equation for the bone material. Two fracture criteria are
considered in this article. These are: a maximum stress criterion and a linear elastic
fracture mechanics criterion. The maximum stress criterion specifies that fracture
occurs when the maximum tensile stress anywhere in the specimen equals the ultimate
tensile strength of the bulk material. Calculation of the maximum stress involves both the
length of the crack and the tip radius of curvature. The linear elastic fracture mechanics
approach involves consideration of fracture energy; only the crack length is considered.

As for the constitutive behavior, bone may be considered as (i) an elastic material,
(ii) a Cosserat elastic material, (iii) as an elastoplastic material, or (iv) not a material
but a structure. Cosserat elasticity is a continuum theory which incorporates some of the
internal degrees of freedom of structured materials (Eringen, 1968, Cowin, 1970).
Recent experimental studies have shown that Haversian bone behaves as a Cosserat elastic
solid (Yang and Lakes, 1981, 1982, Park and Lakes, 1986). As for the other
possibilities, it is well known that bone exhibits yield and is highly structured. Each
constitutive assumption is treated individually below, both assuming a sharp notch and a
blunt notch. The actual notches were blunt.

Elastic material

Bone may be considered to be a linearly elastic material for which the constitutive
equation in one dimension is o = Eg, in which o is the axial stress, ¢ is the strain and E is
Young's modulus. In three dimensions, we have, for an isotropic material,

tkl = 7\8”- 6k| + (2G)Ek|

in which ty is the stress tensor, gy is the small strain tensor, and A and G are the elastic

constants; G is the shear modulus. Bone is elastically anisotropic; the effect of anisotropy
in the geometry used here is to increase the predicted stress concentration. Inasmuch as
the observed stress concentrations for fracture are substantially less than values
predicted by isotropic classical elasticity, the complications of anisotropic analysis will
be dispensed with.

If the notch is viewed as perfectly sharp, a curve based on linear elastic fracture
mechanics may be fitted to the data as was done by Bonfield and Datta, (1976). The the
fracture strength o5 of a specimen with an edge notch of length c is given in linear elastic

fracture mechanics by oy = Kyo/Yc1/2. Y is a correction factor to account for the finite

width of the specimen(Brown and Srawley, 1966). In the case of short notches, the
experimental data deviate from such a curve, as seen in Fig. 2. Moreover, for short
notches, the notch root radius cannot be neglected in comparison with the notch length. It
may be therefore more appropriate to view the notch as having a nonzero root radius of
curvature. The notch may be considered as half an ellipse and the Inglis formula of =

oui/I1 + 2(c/r)1/2]Y applied for an elliptic hole. Here, o is the ultimate tensile
strength of an un-notched specimen, c is the notch length, and r is its radius of curvature.
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Such a model underestimates the strength of bone in the presence of a notch by more than a
factor of two, as seen in Fig. 2.

Elastoplastic materials
Materials which exhibit yielding are predicted to form plastic zones near the tip of a
crack. The radius fy of the plastic zone is given approximately by the Dugdale solution

(Knott, 1973):
2ry = n2020/80y2
in which o is the nominal applied stress, oy is the yield stress, and c is the crack length.

The influence of plastic deformation is to effectively blunt the crack. Consider c = 1 mm, o
= 64 MPa, oy = 100 MPa in the context of the present experiments, then ry = 0.25 mm.

This is less than the root radius of the notches machined in the specimens. The crack
blunting effect of plastic deformation is therefore minimal in the present experiments.

Cosserat elastic material

Bone may be considered to be a linear Cosserat (micropolar) elastic material. The
rationale is that (i) experimental evidence of Cosserat elasticity has been found in bone by
Yang and Lakes(1981-82); (ii) the Cosserat theory predicts stress concentrations
around holes (Eringen, 1968, Cowin, 1970; Kaloni and Ariman, 1967) and cracks
(Ejike, 1969; Sternberg and Muki, 1967) to be less than values based on classical
elasticity; and (iii) the theory includes some of the freedom associated with material
microstructure in a continuum form from which predictions can be made. The constitutive
equations are (Eringen, 1968), in the isotropic case, as follows.

th = Mepr O + (2u + x ey + ke m(rm=0m)
My = o O O + Bk | + V0| k

in which t is the asymmetric force stress, my, is the couple stress, ¢ = (uyg | + uj k)/2
is the small strain, u is the displacement, and ey, is the permutation symbol. The
microrotation ¢ in Cosserat elasticity is kinematically distinct from the macrorotation ry
= (ekimUm,1)/2. In three dimensions, the isotropic Cosserat elastic solid requires six

elastic constants A, u, a, B, v, and k for its description. These are (Eringen, 1968, Cowin,
1970): Young's modulus E = (2u+x)(3A+2u+k)/(2h+2u+x), shear modulus G = (2u+x)/2,

Poisson's ratio v = A/(2A+2u+k), characteristic length for torsion It = [(B+y)/(2u+x)]1/2,
characteristic length for bending Iy = [y/2(2u+x)]1/2, coupling number N =

[k/2(u+x)]1/2, and polar ratio W = (B+y)/(a+p+y). When a, B, v, k vanish the solid becomes
classically elastic.

In a sharp crack model, the Cosserat analytical solution (Sternberg and Muki,
1967) predicts a modest reduction in stress intensity at the crack tip, hence a
corresponding increase in strength, for short cracks of length approaching the Cosserat
characteristic length. The dotted curve shown in Fig. 2 was prepared under the assumption
of a characteristic length of 0.2 mm (Lakes and Yang, 1983). The dependence of fracture
stress upon notch length is modelled more accurately under the assumption of Cosserat
elasticity than with classical elasticity, particularly for a short notch. The difference is,
however, not large.

A blunt notch model is more appropriate in view of the experimental configuration
used in this and earlier studies. For this model, some analytical results are available for
elliptic holes in a Cosserat elastic material (ltou, 1973, Kim and Eringen, 1973), but not
for the narrow ellipses required to model a notch. In this study, therefore, a finite element
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analysis(Nakamura, et al., 1984; Nakamura and Lakes, 1988) is used to obtain
theoretical values of the stress concentration factor for elliptic notches. Stress
concentrations were computed for various Cosserat characteristic lengths, including zero,
which is equivalent to classical elasticity. These results, with the experimental values,
are shown in Fig. 3. The finite element results for classical elasticity are seen to coincide
with the results of the corrected Inglis formula, which is an exact solution. The predicted
stress concentrations for Cosserat elasticity are substantially smaller than those for
classical elasticity. The reduction in stress concentration depends on the Cosserat
characteristic length. Characteristic lengths of 0.2 mm for torsion and 0.45 mm for
bending have been measured for bone(Lakes and Yang, 1983), however owing to the
anisotropy of bone, other characteristic lengths may be operative in the tensile fracture
experiments.

INTERPRETATION OF TORSION EXPERIMENT

In the torsion of a notched bar of bone, motion was observed at the corner of the cross
section, where classically it is predicted there should be neither stress nor strain. Thsi
observation is in agreement with the results of Park and Lakes (1985) who reported
strain distributions measured using micro strain gages in similar prismatic bars of
human Haversian bone. These distributions were, in wet bone, in quantitative agreement
with the predictions of Cosserat elasticity based on the torsional characteristic length
reported earlier. By comparison with classical theory, the strian was redistributed in
such a way as to reduce the peak strain and to increase the strain in regions [the corners]
where classically it should be small. The interpretation of these results in the context of
fracture mechanics is that wet bone can redistribute strain in inhomogeneous fields in a
way favorable to the toughness. The redistribution mechanism is operative at small strain
and requires the bone to be wet.

DISCUSSION

In the evaluation of materials, either the continuum view or the structural view may
be taken. The continuum view is useful for making predictions and is essential in
engineering applications. In this view, the complex structure of real materials is ignored
and material properties derived from laboratory tests are used to predict the behavior of
the material in other configurations. The structural view, by contrast, is more useful for
understanding the causal mechanisms for the material behavior. In a highly complex
material such as bone, the structural view is not suitable for the prediction of fracture.
Structural arguments were invoked by Bonfield (1987) to explain the fact that changes in
the crack tip radius of curvature had no influence on the fracture stress(Bonfield and
Datta, 1976; Moyle and Gavens, 1986), contrary to the predictions of linear elastic
fracture mechanics. Specifically, it was suggested that the fracture propagated from a
microscopic flaw at the periphery of the machined notch tip. Moreover, the experimental
results were extrapolated to the fracture stress of an 'non-cracked' specimen to obtain the
'critical flaw size' of the intact specimen. A value of 340um was obtained by Bonfield and
Datta, and a value of 1.82 mm was obtained by Moyle and Gavens. It is nonetheless
remarkable that short notches produced virtually no concentration of stress and that the
crack always started from the notch tip. In the continuum view, the significance of
fracture mechanics results is, as pointed out by Bonfield (1987), that different crack
lengths are associated with different fracture stresses, but with a common fracture
toughness. The present results suggest that greater predictive power can be achieved by
use of a generalized continuum model. As for the underlying causal mechanisms for the
phenomena reported here, the compliant and weak interfaces in the Haversian structure
are likely candidates. Nonetheless, there remain subtleties in the interpretation of
fracture mechanics in bone as opposed to other materials which require further
clarification (Bonfield, 1987).
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CONCLUSIONS

1. Bone in the presence of a notch is tougher than expected on the basis of the theory of
elasticity.

2. The toughness of bone cannot be accounted for in terms of plastic zone effects.

3. Strain is redistributed away from high strain regions to low strain regions. The effect
occurs at small strain and is not dependent on yielding. The effect occurs in wet bone but
not in dry bone.

4. Cosserat elasticity theory can account for much of the additional toughness of bone and
for the strain redistribution phenomenon.
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1. Scanning electron micrographs of fracture surfaces.
Top, scale mark, 100 ym; bottom, scale mark, 10 ym.

120
1------ Tult--------
100
-E an - } B EBED
a & BE&E
= 1 —— Inglis.5
T 50 :
= . —+#— Ingli=.25
[ 4
£ anl LEFM
20
- o
0 £ T T T T T 1
0 1 2 ]

1./ elmm)

2. Nominal stress at fracture in tension vs 1/ v(notch length).

U, squares: experimental results of Bonfield and Datta.

A, triangles: experimental results of present study.

Theoretical prediction of classical elasticity, maximum stress criterion:

+: Inglis formula for root radius 0.5 mm.

x: Inglis formula for root radius 0.25 mm.

Theoretical predictions of fracture mechanics models for assumed sharp crack:

Solid line: linear elastic fracture mechanics model.

Dotted line: Linear Cosserat elastic fracture mechanics model.

Both the fracture mechanics and Inglis formula curves have been corrected for the
finite width of the specimen.
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3.  Stress concentration factor for fracture vs crack length/root radius.

U, squares: experimental results of Bonfield and Datta(1976).

A, triangles: experimental results of present study.

Theoretical prediction of classical elasticity, maximum stress criterion, blunt
crack:

+: Inglis formula.

¢, diamonds: Elasticity theory, finite element analysis.

x: Cosserat elasticity theory, finite element analysis, | = 0.1 mm, N = 0.93.

x-: Cosserat elasticity theory, finite element analysis, | = 1 mm, N = 0.93.
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4. Holographic interferogram of prismatic bar in torsion. (a), top: dry bone; (b),

bottom: wet bone.
Notch at corner of the cross section is shown by an arrow. The jump in fringe order

at the notch in wet bone implies a shear motion.



