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Abstract
The behavior of solids can be represented by a variety of continuum theories. For example,

Cosserat elasticity allows the points in the continuum to rotate as well as translate, and the
continuum supports couple per unit area as well as force per unit area.

We examine experimental methods for determining the six Cosserat elastic constants of an
isotropic elastic solid, or the six Cosserat relaxation functions of a Cosserat viscoelastic solid. We
also consider other generalized continuum theories (including micromorphic elasticity, Cowin's
void theory, and nonlocal elasticity). Ways of experimentally discriminating among various
generalized continuum representations are presented. The applicability of Cosserat elasticity to
cellular solids and fibrous composite materials is considered as is the application of related
generalized continuum theories.

I Introduction
The classical theory of elasticity is presently used in engineering analyses of deformable

objects at small strain. However there are other continuum theories for linear isotropic materials.
Some have more freedom, and some have less freedom than classical elasticity. The various
continuum theories are all mathematically self consistent. Therefore a discrimination among them is
to be made by experiment.

It is the purpose of this article to explore the physical consequences of various continuum
theories, and how these consequences may be used in the design of experiments to discriminate
among the theories. The constitutive equations for several theories are presented, and some of the
salient consequences of each theory are stated and discussed. Some of the causal physical
mechanisms associated with each theory are briefly discussed. Experimental methods for
evaluating materials as generalized continua are presented, with emphasis on Cosserat elasticity.
The treatment is restricted to linearly elastic behavior; study of Cosserat plasticity and related issues
is presented elsewhere in this volume. A discussion of experimental aspects of generalized
continua is considered particularly appropriate in view of the fact that most of the work done thus
far in generalized continuum mechanics has been theoretical.

II Constitutive Equations

Uniconstant Elasticity
The early uniconstant elasticity theory of Navier is based upon the assumption that forces

act along the lines joining pairs of atoms and are proportional to changes in distance between them
(Timoshenko, 1983).  The constitutive equation is as follows.
 σkl =  G εrr δkl + 2G εkl (1)



σ is stress, ε is strain, and G is an elastic constant, the shear modulus. This uniconstant theory was
used by Navier, Cauchy, Poisson, and Lamé during the early days of the theory of elasticity. The
theory contains less  freedom than the classical theory of elasticity now in common use. There is
no length scale in uniconstant elasticity.

Classical Elasticity
The constitutive equation for classical  isotropic elasticity (Sokolnikoff, 1983; Fung,

1968), is as follows, in which there are the two independent elastic constants λ and G, the Lamé
constants.

σkl =  λεrr δkl + 2G εkl (2)

The Poisson's ratio ν = λ/2(λ + G) is restricted by energy considerations to have values in the
range from -1 to 1/2. There is no length scale in classical elasticity.

Cosserat (micropolar) Elasticity
The Cosserat theory of elasticity (Cosserat, 1909) incorporates a local rotation of points  as

well as the translation assumed in classical elasticity; and a couple stress (a torque per unit area) as
well as the force stress (force per unit area). The force stress is referred to simply as 'stress' in
classical elasticity in which there is no other kind of stress. The idea of a couple stress can be
traced to Voigt (1887,1894) during the formative period of the theory of elasticity. In more recent
years, theories incorporating couple stresses were developed using the full capabilities of modern
continuum mechanics (Ericksen and Truesdell, 1958; Grioli, 1960; Aero and Kuvshinskii, 1960;
Toupin, 1962; Mindlin and Tiersten, 1962; Mindlin, 1965; Eringen, 1868; Nowacki, 1970). A
survey of the interrelation between generalized continuum analysis and material defects,
dislocations and other inhomogeneities was presented by Kunin (1982, 1983). Eringen (1968)
incorporated micro-inertia and renamed Cosserat elasticity micropolar  elasticity. Here we use the
terms Cosserat and micropolar interchangeably. In the isotropic Cosserat solid there are six elastic
constants, in contrast to the classical elastic solid in which there are two, and the uniconstant
material in which there is one. The constitutive equations for a linear isotropic Cosserat elastic solid
are, in the symbols of  Eringen, (1968):

σkl =  λεrr δkl + (2µ + κ  )εkl + κεklm(rm-φm) (3)

mkl =  α φr,r δkl + βφk,l + γφl,k (4)
The usual summation convention for repeated indices is used throughout, as is the comma
convention representing differentiation with respect to the coordinates.  σkl is the force stress,
which is a symmetric tensor in equations 1 and 2 but it is asymmetric in Eq. 3. mkl  is the couple

stress, εkl = (uk,l + ul,k)/2 is the small strain, uk is the displacement, and eklm  is the permutation

symbol. The microrotation φk in Cosserat elasticity is kinematically distinct from the macrorotation
rk = (eklmum,l)/2 obtained from the displacement gradient. Components of stress and couple stress
on a differential element of a Cosserat solid, and the corresponding increments of force and
moment on the structural elements of a real material are shown in Fig. 1.



In three dimensions, the isotropic Cosserat elastic solid requires six elastic constants λ, µ, α, β, γ,
and κ for its description. A comparison of symbols used by various authors was presented by
Cowin (1970a). The following technical constants derived from the tensorial constants are more
beneficial in terms of physical insight. These are (Eringen, 1968; Gauthier and Jahsman, 1975):

Young's modulus E = (2µ+κ)(3λ+2µ+κ)/(2λ+2µ+κ),
shear modulus G = (2µ+κ)/2,

Poisson's ratio ν = λ/(2λ+2µ+κ),
characteristic length for torsion lt = [(β+γ)/(2µ+κ)]1/2,

characteristic length for bending lb =  [γ/2(2µ+κ)]1/2,

coupling number N = [κ/2(µ+κ)]1/2, and

polar ratio  Ψ = (β+γ)/(α+β+γ).

When α, β, γ, κ vanish, the solid becomes classically elastic. The case N = 1 (its upper bound) is
known as 'couple stress theory' (Mindlin and Tiersten, 1962; Cowin, 1970b). This corresponds to
κ → ∞, a situation which is permitted by energetic considerations, as is incompressibility in

classical elasticity. The case κ = 0 corresponds to a decoupling of the rotational and translational
degrees of freedom. Although some theoretical writers choose to solve problems for this case since
the analysis is simpler, the limit κ → 0 presents physical difficulties (Lakes, 1985a).

Void Elasticity
The theory of elastic materials with voids (Cowin, 1983) incorporates a change of volume

fraction, rather than rotation, as an additional kinematical variable. The constitutive equations for
the elastic case (no rate dependence) are as follows.
σkl =  λεrr δkl + 2µεkl + βφδkl (5)

hk = αφ,k (6)

g = -ξφ -βεrr (7)

with σ as the stress, h as the equilibrated stress vector, λ and µ as the classical Lamé elastic

constants, g as the intrinsic equilibrated body force, φ as the change of volume fraction, and φ,k as
the gradient of the change of volume fraction. The change of volume fraction can be interpreted as
a dilatation of points  in the continuum.

Nonlocal Elasticity
In an isotropic nonlocal solid, the points can only undergo translational motion as in the

classical case, but the stress at a point depends on the strain in a region  near that point (Kröner,
1967, Eringen, 1972). The constitutive equation for stress σij  is, in terms of the position vector x
of points in the solid,

σij (x) =  ∫
v

λ(|x '  -  x |)εrr(x' ) δi j  +  2µ(|x '  -  x |)εij(x' ) dV(x' ). (8)

A simpler, alternative representation is (Eringen, 1981):

σij (x)=  ∫
v

α(|x '  -  x |) [λ εrr(x' ) δi j  +  2µεij(x' )] dV(x' ), (9)

with the nonlocal kernel α(|x |) subject to



 ∫
V

α(|x |)dV = 1 (10)

 requiring the kernel to be a member of a Dirac delta sequence. So, in the limit of the nonlocal
distance of influence or characteristic length 'a' becoming vanishingly small, Hooke's law (Eq. 2
for classical elasticity) is recovered.

An example of a finite range kernel is α(|x|) = 
1
a  [1 - 

|x|
a  ], for |x| < a (11)

= 0, for |x| > a.

An infinite range kernel is α(|x|) = 
1
2a  e-|x|/a. (12)

A simple finite range kernel  is α(|x|) = 
1
2a , for |x| < a (13)

= 0, for |x| > a.
Characteristic lengths can be defined in nonlocal elasticity, in terms of the effective range
associated with a kernel.

Microstructure (micromorphic) Elasticity
In microstructure (Mindlin, 1965) or micromorphic (Eringen, 1968) elasticity the points  in

the continuum representation of the solid can deform microscopically as well as translate and
rotate. There are 18 elastic constants in the isotropic case. The constitutive equations for isotropic
microstructure elasticity are:
τpq =  λδpqεii  + 2µεpq+ g1δpqγii  + g2(γpq + γqp) (14)

σpq =  g1δpqγii   + 2g2εpq  + b1δpqγii  + b2γpq + + b3γqp (15)

µpqr =  a1(ξiipδqr + ξriiδpq ) + a2(ξiiqδpr + ξiriδpq ) + a3ξiirδpq+ a4ξpiiδqr+

a5(ξqiiδpr + ξipiδqr )+ a8ξiqiδpr+ a10ξpqr+a11(ξrpq+ ξqrp )+ a13ξprq+ a14ξqpr+ a15ξrqp  (16)

Here τpq is the symmetric Cauchy stress, σpq  is the asymmetric relative stress, and µpqr is the

double stress. The g's, b's, and a's as well as λ and µ are elastic constants.  The antisymmetric
part (with respect to the last two indices) of the double stress represents the couple stress of
Cosserat elasticity. ε is strain, γ is the macro-deformation minus the micro-deformation, and ξ is
the micro-gradient of micro-deformation, the antisymmetric part of which corresponds to the
rotation gradient in Cosserat elasticity.

Microstructure elasticity includes Cosserat elasticity and the theory of voids as special
cases. Classical elasticity is a special case of Cosserat elasticity and of void theory. Uniconstant
elasticity is a special case of classical elasticity.

Viscoelastic materials
Time dependence or frequency dependence can be incorporated in any of the above

constitutive equations by use of the correspondence principle of linear viscoelasticity. For
classically viscoelastic materials, the transition is well known. Each elastic constant becomes a
complex number in the viscoelastic case in the frequency domain. In the time domain, the
constitutive equations assume a convolution form. Eringen (1967) has developed a viscoelastic
version of the micropolar theory. The theory of voids as originally presented has a simple time
dependence built in.

III Consequences of constitutive equations
The uniconstant theory predicts a Poisson's ratio of 1/4 for all  materials. Since most

common isotropic materials exhibit a Poisson's ratio close to 1/3, the uniconstant theory was
rejected based on experimental measurements of Poisson's ratio. Decisive experiments were



difficult to perform in the late 1800's, so the issue was not decided until well after the introduction
of the theories.

In several segments below we refer to size effects. These size effects, and all other
phenomena presented in this article, are within the framework of linear (but possibly nonclassical)
elastic or viscoelastic behavior. Size effects in the current context refer to a non-classical
dependence of the rigidity of an object upon one or more of its dimensions. This type of size
effects are to be distinguished from size effects in the fracture behavior; fracture is a nonlinear
process not considered here.

Classical  elasticity is, according to its name, the currently accepted theory of elasticity.
Several salient predictions are as follows.
(i) The rigidity of circular cylindrical bars of diameter d in tension goes as d2; in bending and
torsion, the rigidity goes as d4.
(ii) Plane waves in an unbounded medium propagate without dispersion (the wave speed is
independent of frequency) for shear waves and dilatational waves.
(iii) There is no length scale in classical elasticity, hence stress concentration factors for holes or
inclusions in an infinite domain under a uniform stress field depend only on the shape of the
inhomogeneity, not on its size.
(iv) Poisson's ratio ν can have values in the range -1 ≤ ν ≤  1/2.

Ordinary materials have a positive Poisson's ratio, so that the range from zero to 1/2 was
considered for many years to be the physically acceptable range (Fung, 1968). Recently, a new
class of cellular solids with a negative Poisson's ratio has been developed (Lakes, 1987),
extending the range for ν to -0.7 and below. Further developments in negative Poisson's ratio
materials are reviewed by Lakes (1993a).

Cosserat  or micropolar  elasticity has the following consequences.
(i) A size-effect is predicted in the torsion of circular cylinders of Cosserat elastic materials.
Slender cylinders appear more stiff then expected classically (Gauthier and Jahsman, 1975); Fig.
2. A similar size effect is also predicted in the bending of plates (Gauthier and Jahsman, 1975) and
of beams (Krishna Reddy and Venkatasubramanian, 1978); Fig. 2.  No size effect is predicted in
tension.
(ii) The stress concentration factor for a circular hole, is smaller than the classical value, and
small holes exhibit less stress concentration than larger ones (Mindlin, 1963). Stress concentration
around a rigid inclusion in an flexible medium is greater in a Cosserat solid than in a classical solid.
Stress concentration near cracks and elliptic holes is reduced in comparison to classical predictions
(Kim and Eringen, 1973; Itou, 1973; Sternberg and Muki, 1967; Ejike, 1969; Nakamura et al,
1984).
(iii) Dilatational waves propagate non-dispersively, i.e. with velocity independent of frequency,
in an unbounded isotropic Cosserat elastic medium as in the classical case. Shear waves propagate
dispersively in a Cosserat solid (Eringen, 1968). A new kind of wave associated with the micro-
rotation is predicted to occur in Cosserat solids.
(iv) The mode structure of vibrating Cosserat bodies is modified from that of classical elastic
bodies (Mindlin and Tiersten, 1975).
(v) The range in Poisson's ratio is from -1 to +0.5, the same as in the classical case (Gauthier
and Jahsman, 1975).
(vi) In Cosserat solids which lack a center of symmetry, called noncentrosymmetric or chiral
materials, qualitatively new phenomena are predicted. A rod under tensile load deforms in torsion
(Lakes and Benedict, 1982). Wave speed for transverse circularly polarized waves depends on the
sense of polarization. This leads to rotation of the principal plane of elliptically polarized transverse
waves (Lakhtakia, Varadan, and Varadan, 1988; 1990). Examples of chiral materials include
crystalline materials such as sugar which are chiral on an atomic scale, as well as composites with
helical inclusions or spiraling fibers. Chirality has no mechanical effect in classical elasticity.



Void  theory gives rise to the following.
(i) Size effects are predicted by Cowin and Nunziato (1983) in the bending of rods but not in
torsion or tension.
(ii) The stress concentration factor for a hole in a planar region under tension is greater than the
classical value (Cowin, 1984a).
(iii) Dilatational waves in an unbounded medium propagate dispersively (Puri and Cowin,
1985). There are two kinds of such waves. Shear waves exhibit no dispersion.

Microstructure  (micromorphic) elasticity gives rise to the following.
(i) Dispersion of both dilatational waves and shear waves occurs in solids obeying
microstructure elasticity (Mindlin, 1965). Cut-off frequencies for acoustic waves are predicted.
(ii) The stress concentration factor for a spherical cavity can be greater than the classical value
(Bleustein, 1966)

Nonlocal  elasticity gives rise to the following.
(i) The stress concentration near a crack is alleviated (Eringen, et al, 1977).
(ii) Dispersion of elastic waves is predicted (Eringen, 1972).
(iii) Size effects are predicted in tension and bending, as described below. For certain short
range nonlocal behaviors, these size effects can be thought of as surface or 'skin' effects.

IV Further consequences of constitutive equations
In this section we present several new results which are relevant to experimental methods.

A slab is considered in tension and in bending for a Cosserat solid and for a nonlocal solid.
Cosserat solid
Consider  bending of an isotropic Cosserat elastic beam of rectangular section and width B

and depth A, with the following displacement field u and microrotation field φ. R is the radius of
curvature of the bent beam.
{ ux = -(1/2R)[z2+ν(x2-y2)], uy = - νxy/R, uz = xz/R } (17)

{ φx = 0     φy = - z/R  φz = - νy/R }
We use the semi-inverse method. The procedure is the same for Cosserat solids as it is for classical
solids. The displacement field is assumed to be the same as for the classical elastic case, and the
microrotation field is assumed to be the same as the classical macrorotation. Again, size effects in
the rigidity occur. The bending rigidity ratio (ratio of rigidity of a Cosserat beam to that of its
classical counterpart) for a particular rectangular cross section bar of sides A and B is found to be:
Ω = RM/E(BA3/12) = [1+24(lb/A)2(1-ν)]. (18)

Size effects in the rigidity are predicted, in which slender bars (with A ≈ lb) are stiffer than

expected classically. The displacement and rotation fields give rise to an exact solution only if β/γ =
−ν. If β/γ ≠ −ν, then they are valid if a system of couple stresses were applied to the lateral
surface. The exact solution for the general case is not known. If these stresses are not applied, the
displacement field will be different: the inclined lateral surfaces will exhibit some bulge rather than
being straight as they are in the classical case, or in the Cosserat case with β/γ = −ν. Hence

Cosserat elasticity predicts a change of shape  of the cross section of the bent beam, for β/γ ≠ −ν.
The bending rigidity will also be different from the above.

The rigidity size effects in other situations such as bending of a plate or circular rod, or
torsion of a circular rod, have a similar form. For example, Gauthier and Jahsman (1975) give, for
cylindrical bending of a plate,

Ω = 1 + 24 
lb2(1-ν)

h2 (19)



with h as the plate thickness. The length parameter of Gauthier and Jahsman was converted into the
characteristic length for bending defined above. In plate bending, the anticlastic curvature due to
the Poisson effect is constrained, in contrast to beam bending. A similar kind of solution for
bending of a void solid was constructed by Cowin, 1984b.

Nonlocal solid
Chirita (1978) has examined Saint Venant's problem in nonlocal elastic solids; this includes

simple tension, bending, and torsion of a slender bar. Chirita writes the constitutive equation much
as in Eqs. (8,9) but with x' called z', α called K, and extra terms outside the integral,
corresponding to classical elasticity. For both tension and bending, the displacement field is
predicted to be identical  to the classical displacement field. So, nonlocal elasticity predicts no
shape  changes in comparison with classical elasticity for bending. Compare the bending of a
Cosserat elastic bar, considered above. Chirita gives integral forms for the rigidities but not explicit
forms or interpretation.

In the following, consider the origin of coordinates to be the center line of the slab, which
has width W and breadth V >> W.

In simple tension, we have uniform strain so (away from a boundary),

σ(x) = Eε ∫
x-x'=-a

a

α(x -  x') dx'  (20)

 σ(x) = 1 Eε, from Eq.10. (21)
 The nonlocal region of influence has dimensions ±a and is shown in Fig. 4. To first order there is
no size effect in tension, however to second order there will be a size effect due to integration over
part of the domain as a result of interception of a portion of the nonlocal influence by the
boundaries. We remark that this effect has been neglected in prior treatments of crack problems in
nonlocal elasticity (see Eringen, 1983).

Let us now consider the surface effect of interception of a portion of the kernel's region of
influence. In the one dimensional slab geometry, the problem is tractable.

σ(x) = Eε ∫
x-x'=-a

a

α(x -  x') dx', for -  W/2 + a < x < W/2 - a (22)

σ(x) = Eε ∫
x-x'=-W/2 - x

a

α(x -  x') dx', for -  W/2 + a > x (23)

σ(x) = Eε ∫
x-x'=-a

W/2 -  a

α(x -  x') dx', for x > W/2 - a. (24)

Near the surface, only a portion of the kernel's region of influence is integrated over, hence
contributes to the stress. Suppose that the kernel is positive definite throughout its range, as has
been done in several analyses of stress around cracks. Then there is a surface layer of depth a in
which the stress is less  than Eε. Such a surface effect has a negligible effect on the rigidity if a <<
W, however it becomes progressively more important for thinner slabs. For such a kernel, the
stiffness is smaller  for a slender specimen than for a thick one. The tensile force is, for the
constant kernel of Eq. 13,
F = ∫σ dx dy = Eε V((W-2a)+ (2)3a/4) = EεV(W-a/2). (25)
The stress drops to half its central value at the edge of the slab (Fig. 5), since half the nonlocal
zone of influence then extends beyond the edge, where there is no material.
So the normalized rigidity Ω is, for W ≥ 2a,

Ω = [EεV(W-a/2)]/EεVW = 1 - a/2W. (26)



The size effects above are of softening of small specimens, but that need not always be the
case. For example consider the kernel

α(|x|) = 2δ(x) - 
1
2a , for |x| < a; α(|x|) = 0, for |x| > a. (27)

The delta function represents classical behavior but the negative term gives a surface effect of the
opposite sign as that considered above, hence a stiffening effect of thin specimens.

The above analysis is one dimensional. In two dimensions the nonlocal region of influence
may be circular and in three dimensions it may be spherical. Computation of segments intercepted
by such boundaries would be more complex, however we expect that, as in Eq. 26, the rigidity
would depend on some fraction of a/W.

In cylindrical bending of a plate, ε = gx and we consider one dimension only.
We consider first x = 0.

Then, σ(0) = E ∫
x'=-a

a

α(x -  x')gx' dx'. (28)

σ(0) = E ∫
x'=-a

a

α(-x')gx' dx'. If α is an even function, then the integral is zero. For example,

σ(0) = E ∫
x'=-a

a

(x'2)gx' dx' = [(x'4)/4]-a
a = 0. (29)

So in cylindrical bending of a plate, in which the classical displacement field gives rise to
strains varying in one direction, the one dimensional nonlocal theory predicts stresses at the origin
identical to the classical values.

Consider now the stress distribution.

σ(x) = E ∫
x'=-∞

∞

α(x -  x') gx' dx' (30)

Suppose that the kernel is constant over a range as in Eq. 13.

σ(x) = E ∫
x-x'=-a

a

 gx'/a  dx' = E ∫
x'=x+a

x-a

 gx'/a  dx' (31)

σ(x) = 
gEx'2

2a   [x+a
x-a = 

gE
2a  ((x-a)2 - (x+a)2) = 

gE
2a  (x2 - 2ax +a2- (x2 + 2ax +a2)) (32)

σ(x) = 
gE
2a (-2ax) = -gEx (33)

There is no  influence of nonlocality on the stress field (away from the free surfaces); the stress
field is purely classical for this kernel. Consequently there are no size effects in rigidity except for
those associated with surface phenomena, as was the case in tension. The surface effects will be
similar to those for tension, provided that a<<W; so size effects in bending can consist of a
softening effect of thin specimens for a positive definite kernel, or a stiffening effect of small
specimens for a kernel which goes negative over part of its range.

Since the nonlocal theory is linear, we may consider a more general kernel as a
superposition of functions of the form in Eq. 13, but with different values of a. Specifically, αj(|x|)

= 
1

2aj
 , for |x| < aj, α(|x|)= 0, for |x| > aj. Then the superposed kernel is

αj(|x|) = Σ j 
qj
2aj

, for |x| < aj, α(|x|)= 0, for |x| > aj, with Σ jqj = 1. (34)

A wider variety of functional forms of the kernel could be accommodated by passing to the limit as
an integral. Since each component of such a superposition gives rise to a classical stress field away
from the edges, then the superposed kernel as well gives rise to a classical stress field.



We remark that for a Poisson's ratio of zero, the displacement field for bending of a bar is
identical to that for cylindrical bending of a plate (which we have considered), but for nonzero
Poisson's ratio, strains in a bent bar are nonzero in all three coordinate directions.

Observe that the Cosserat bending equation differs from Eq. 26 for nonlocal size effects in
that the latter has a linear term in the length scale ratio, for simple kernels. Consequently nonlocal
and Cosserat solids can be distinguished by the functional form of the size effects. A comparison
between predicted size effects is shown in Fig. 6. Observe that the Cosserat and nonlocal curves
cross each other and have different shape.

V Physical causes of mechanical behavior
Continuum theories make no reference to structural features, however they are intended to

represent physical solids which always have some form of structure.
The ultimate origin of elastic behavior is the electromagnetic force between atoms in a solid.

The uniconstant theory was derived assuming that such interatomic forces were central forces
along lines connecting pairs of atoms, and that the movement of atoms was affine. Since the
Poisson's ratio for most materials differs experimentally from 1/4, it can be concluded that in most
materials either the interatomic forces are non-central, or non-affine deformation occurs, or both.

The couple stresses in Cosserat and microstructure elasticity represent spatial averages of
distributed moments per unit area, just as the ordinary (force) stress represents a spatial average of
force per unit area. Such moments can occur as a result of the fact that the interatomic forces
propagate further than one atomic spacing (Kröner, 1963). Such effects will occur in all  solids,
but the corresponding characteristic lengths would be of atomic scale and not amenable to
macroscopic mechanical experiment. Moments may be also transmitted on a much larger scale
through fibers in fiber-reinforced materials, or in the cell ribs or walls in cellular solids. The
Cosserat characteristic lengths would then be associated with the physical size scales in the
microstructure, and be sufficiently large to observe experimentally.

The nonlocal theory incorporates long range interactions between particles in a continuum
model. Such long range interactions occur between charged atoms or molecules in a solid. Long
range forces may also be considered to propagate along fibers or laminae in a composite material
(Ilcewicz, et. al, 1981, 1981).

Analytical predictions of Cosserat characteristic lengths have been developed for a variety
of structures. In fibrous composites, the characteristic length l may be the on the order of the
spacing between fibers (Hlavacek, 1975); in cellular solids it may be comparable to the average cell
size (Adomeit, 1967); in laminates it may be on the order of the lamination thickness (Herrmann
and Achenbach, 1967). Structure, however, does not necessarily lead to Cosserat elastic effects.
Composite materials containing elliptic or spherical inclusions are predicted to have a characteristic
length of zero  (Hlavacek, 1976; Berglund, 1982).

A schematic diagram of force increments upon ribs (in the structural view) corresponding
to stress (in the continuum view) and moment increments corresponding to couple stress is shown
in Fig. 1.

One may distinguish the continuum view from the structural view. The continuum view is
useful for making engineering predictions and for visualizing global response of materials. The
structural view is relevant to the underlying causes of the behavior. One may link these views by
developing an analytical model of the material microstructure, and obtaining approximations
(possibly by series expansions for local deformation fields) in order to obtain average values.
Retention of only the lowest order terms in such analysis gives classical elasticity as a continuum
representation. When higher order terms are retained, a generalized continuum representation (such
as Cosserat elasticity) is obtained. In either case the predicted elastic constants are functions of the
structure and properties of the constituents. This is how the microphysics is introduced.

V  Experimental Procedures for Cosserat elastic solids
Methods based on size effects
The bending and torsion rigidities of a classically elastic rod are proportional to the fourth

power of the diameter. In a thin classical elastic plate the bending rigidity is proportional to the



third power of the thickness. The rigidity depends on size in a different way in Cosserat elastic
materials as discussed above. Thin specimens are more rigid than would be expected classically. It
is possible to determine one or more of the Cosserat elasticity constants by measurements of
specimen rigidity vs size. This approach, which we call the method of size effects, has been used
to experimentally determine Cosserat elastic constants. The method of size effects makes use of
analytical solutions for the dependence of rigidity upon size. Most of these solutions have dealt
with isotropic materials. Specifically, Gauthier and Jahsman (1975) demonstrated that no size
effects occur in tension, so that E and ν are determined from a tension test as in the classical case.

Size effects occur in torsion, and the isotropic Cosserat constants G, lt, N, Ψ can be obtained from
size effect data for torsion of rods of circular section. Bending of circular section rods of different
size (Krishna Reddy and Venkatasubramanian, 1978) gives  E, lb, N. Cylindrical bending of a
plate gives E and lb, according to Gauthier and Jahsman (1975). Bending of a circular plate with a
clamped edge depends on E, lb , N, according to Ariman (1968).  Gauthier and Jahsman (1976)
show that bending of a curved bar depends on E and lb. Park and Lakes (1987) show that size
effects in torsion of a square cross section bar depend on G, lt ,N.

Instrumentation capable of determining bending and/or torsion rigidity may be used in the
method of size effects. Rigidity is to be determined over a considerable range, so it is necessary to
make sure that parasitic errors such as those due to instrument friction are minimized or eliminated.
Load may be applied electromagnetically or by dead weights. Cantilever bending is appropriate
since there is no friction associated with dead weight loading. If dead weights are used in torsion,
the pulleys used to redirect the load could introduce errors due to friction. Such errors would be
more important for thin specimens and would obscure the size effects. Frictional errors could be
eliminated by the use of air bearings. Deformation can be measured by holographic interferometry,
other optical methods, strain gages, and free core LVDT's without friction error. Spring loaded
LVDT's with sleeve bearings would by contrast introduce friction errors which are more
problematical in thin specimens.

Size effect methods have been used by several authors to obtain only one Cosserat elastic
constant. A particular form of the method of size effects was found to be useful by the present
author. The rigidity of the same circular rod specimen was tested in both torsion and pure bending
using the same apparatus, which makes use of electromagnetic torque generation and
interferometric detection of angular displacement. Each specimen was then cut to a smaller size and
the rigidities again determined. All six of the Cosserat elastic constants can be determined this way.
Moreover, cross verification of the results is possible, in a manner similar to the measurement of
E, G, and ν in classical elasticity, with verification of their interrelation.

Specimen preparation for size effect method
In the method of size effects a set of specimens of different diameter or thickness is used. If

the characteristic lengths are small, thin specimens must be studied. Stiff materials, such as bone
and the stiffer polymer foams, may be successfully cut on a lathe with conventional cutting tools.
Circularly cylindrical specimens thinner than about 3 mm in diameter down to 0.2 - 0.5 mm are
prepared on a lathe by an abrasive machining technique. The lathe is operated at high speed and a
strip of abrasive cloth is applied  to the surface using a small force. Rectangular section specimens
may be cut with a low speed saw, and the surfaces polished with graded abrasives. Flexible
polymer foams can be cut into circular cylinders by use of a coring tool driven by a power drill.
The coring tool consists of a metal tube with a sharpened end and thin walls. Rectangular section
specimens of foam can be cut from these by compressing the foam between platens and cutting
with a scalpel.

Since surface damage to the specimen would cause a softening size effect, the opposite of
that expected in Cosserat solids, considerable care should be taken to avoid surface damage. In the
case of cellular solids, a layer of damaged or incomplete cells has been shown to cause such a



softening size effect by Brezny and Green (1990). To minimize the effect of surface damage,
removal of the damaged layer by polishing is recommended if it is possible.

Data reduction for size effect method
Data analysis in the method of size effects makes use of the exact analytical solutions for

the geometry used in the experiments. For torsion of a circular cylinder (Gauthier and Jahsman,
1975), the ratio of rigidity to its classical value is

Ω = 1 + 6(lt/r)2 [1 - 4ΨΧ/3)/(1 - ΨΧ)], (35)

with r as the rod radius, Ψ = ( β + γ)/(α + β + γ) and Χ = I1(pr)/pr I0(pr), and p2 = 2κ/(α + β +
γ). I1 and I0 are the modified Bessel functions of the first kind. A special case of interest, referred

to as 'couple stress elasticity',  is for N = 1 (κ → ∞) in which the [] bracket in equation 4 becomes

unity. If the rod diameter is large, the corresponding rigidity ratio is Ω ≈ 1 + 6(lt/r)2.
For bending (Krishna Reddy and Venkatasubramanian, 1978)  of a circular section rod of

radius r, the rigidity ratio Ω  is

Ω = 1 + 8(lb/r)2 (1 - (β/γ)2) + [(8N2(β/γ + ν)2 / (ζ(δa) +N2(1 - ν))(1 + ν)]      (36)

with  ζ(δr) = (δr)2 [(δr I0(δr )  - I1(δr)) / (δr I0(δr)  - 2I1(δr))], and  δ = N/lb .

Data may be plotted as Ω vs radius; however one may also plot rigidity divided by the
square of the diameter vs. the square of the diameter for torsion (Fig. 2) and bending (Fig. 3).
Such plots are useful since the characteristic lengths can be extracted from the intercept of the
extrapolated straight portion of the curve upon the ordinate. They are not stress strain curves.

In classical elasticity, the torsion size effect plot is a straight line through the origin with
slope proportional to the shear modulus G. The Young's modulus E is obtained from the slope in
the bending case. Comparison of experimental plots and theoretical curves permit the determination
of the Cosserat elastic constants.  The characteristic lengths are obtained by intercepts as described
above, and as indicated in the figures, either graphically or by numerical procedures. The shape of
the torsion plot is then used to extract the coupling number N. A large value of N (the upper bound
is 1) leads to a large apparent stiffening for slender specimens. The structure of the torsion plot in
the vicinity of the origin is used to determine Ψ; this is difficult since it requires very thin
specimens. In our laboratory, a numerical algorithm has been used to minimize the mean-square
deviation between the experimental data and the theoretical graphs, to extract the elastic constants.

For some combinations of elastic constants, the apparent modulus tends to infinity as the
bar or plate size goes to zero. Large stiffening effects might be seen in composite materials
consisting of very stiff fibers or laminae in a compliant matrix. However, infinite stiffening effects
are unphysical. For very slender specimens, it is likely that a continuum theory more general than
Cosserat elasticity; or use of a discrete structural model, would be required to deal with the
observed phenomena.

In the bending of long rods, one can invoke Saint Venant's principle in order to eliminate
the need to consider end effects. For that reason, we consider rod bending to be a more attractive
experimental modality than plate bending. Moreover, the same rod can be used for bending,
torsion, and tension experiments.

As for the cross sectional shape of the rod, circular sections currently have the advantage
that the available analytical solutions are exact and not excessively complex. However square cross
section rods can also be studied and the results interpreted using the analysis presented by Park and
Lakes (1987).



Field methods
Discrimination among generalized continuum theories can also be accomplished by

examining the distribution of strain in deformed objects. This is in contrast to the above method of
size effects in which the rigidity, a global quantity, is measured. For example, Park and Lakes
(1987) presented analysis of the distribution of strain in a bar of rectangular cross section under
torsion. The surface strain does not vanish at the corner of the cross section, in contrast to the case
of classical elasticity. A screening method based on this prediction was developed by Lakes, et al
(1975): a holographic image of a small notch in the corner discloses any motion of the notch under
torsion. Such motion would occur in a Cosserat solid but not in a classical one. A lecture
demonstration based on displacement of a corner notch was presented by Lakes (1985b). Another
field method involves measuring the distribution of strain around a stress concentrator such as a
circular hole, for which analytical solutions are available in classical elasticity (Sokolnikoff, 1983;
Fung, 1968) and for Cosserat elasticity (Eringen, 1968, Cowin, 1970; Mindlin, 1963).

Wave methods
The propagation of stress waves can be used as a probe into the constitutive equation

governing materials with structure. Plane waves in an unbounded classically elastic material
propagate without dispersion: their speed is independent of frequency. The elastic moduli can be
extracted from the speeds of transverse and longitudinal waves and from the material density.
Dispersion of waves is predicted to occur in Cosserat solids (Eringen, 1968), in micromorphic/
microstructure solids (Mindlin, 1964), in nonlocal solids (Eringen, 1972), and in void solids (Puri
and Cowin, 1985). Measurement of wave dispersion could be used to determine generalized
continuum characteristics of a material. A wave method was used by Gauthier (1982) to examine
the particulate composite which had appeared classical in the size effect studies of Gauthier and
Jahsman (1975). The micro-inertial characteristics were determined, and it was found that N2 =
0.0039, so small that the static behavior would indeed appear classical.

A drawback of wave methods is that wave dispersion also arises from viscoelasticity of
materials. Therefore wave methods are most suitable if the wave attenuation due to viscoelasticity
is small enough to be neglected. By contrast, the method of size effects can be made independent
of viscoelasticity by conducting all measurements at the same time following loading, or at the
same frequency. If a material exhibits Cosserat viscoelasticity, the time or frequency dependence of
the six Cosserat coefficients can be extracted from size effect plots generated at different times or
frequencies. This cannot be done in wave methods, since the wavelength which governs the strain
gradient cannot be decoupled from the frequency. However wave methods can be used for large
scale structures such as layered rock formations, which are too large to study in the laboratory.

Resolution of the characteristic length l
In all methods there is a limit to the smallest value of characteristic length l which can be

resolved. In the method of size effects, preparation of very thin specimens can present difficulties.
In field methods the specimen can be large but the effects of generalized continuum mechanics
depends on strain gradients, and measurement of strain in the presence of the large strain gradients
required to reveal a small l is difficult. One can examine the strain at the corner of a square section
bar in torsion, as a null experiment, but again the resolution is limited by the fact that strain can be
measured only over a nonzero length. In wave methods, the resolution of small l requires waves of
high frequency, but in many materials the attenuation of stress waves becomes large at sufficiently
high frequency.

VI Experimental Results: a review
Cosserat elastic constants
The results of some published experimental studies of materials as Cosserat solids are

presented in Table 1. The relationship between Cosserat characteristic lengths and the structure size
is evident. Characteristic lengths on the millimeter scale are not observed unless there are
corresponding structural features of a similar size scale. For example polymethyl methacrylate
(PMMA) is an amorphous polymer for which the relevant structure scale is atomic and molecular.



It was used as a control in experiments upon bone (Yang and Lakes, 1981), which is a natural
composite in which the largest structural elements are large fibers up to 250 µm in diameter. No
macroscopic evidence of Cosserat elasticity was expected or found in PMMA. Although structure
appears to be necessary to produce Cosserat elastic effects, it is not sufficient. Particle reinforced
composites exhibit Cosserat characteristic lengths of zero (Gauthier and Jahsman, 1975). That
observation is in harmony with micromechanical analysis (Hlavacek, 1976; Berglund, 1982)
which predicts characteristic lengths of zero. We remark that the syntactic foam which was found
to be nearly classical, is composed of glass micro-balloons in an epoxy matrix, a structure which is
particulate in nature.

Several authors have used 'couple stress theory' for interpretation. This corresponds to a
Cosserat solid for which N = 1. Since the characteristic lengths are defined differently, the
characteristic length in Cosserat elasticity is √3 times the length in couple stress theory. Results
have been converted to the Cosserat form in Table 1. In the study of the PVC foam, a resonant
thickness shear size effect approach was used. Viscoelasticity could be a confounding variable here
since as the layer thickness was reduced, the resonant frequency increased. In viscoelastic
materials, stiffness increases with frequency even if they are classical. The graphite was nonlinear
in its stress-strain relation, but most of the others were studied in the linear domain. The studies of
bone and dense polyurethane and syntactic foams incorporated error analysis from which a
meaningful discrimination between Cosserat and classical behavior was achieved.

Cosserat viscoelasticity has been studied in human bone. In a Cosserat viscoelastic solid,
the characteristic lengths as well as the stiffnesses can depend on time or frequency. The torsional
characteristic length in bone was  a factor of 1.6 larger under quasistatic conditions equivalent to a
frequency of about 0.1 Hz (Yang and Lakes (1981) than at 32 kHz (Lakes, 1982). This was
attributed to the viscoelastic attributes of the cement substance between the large fibers (osteons) in
bone.

Study of predictive power
The experimental determination of Cosserat elastic constants is useful if it permits one to

predict stresses and strains under conditions which differ from those in the experiments used to
find the elastic constants. Several experimental tests of predictive power have been conducted.
Cosserat elastic constants (based on isotropic theory) for bone, which is actually anisotropic, were
used to predict the strain distribution around a hole in a strip under tension, and the results were
compared with experiment. Reasonable agreement was found by Lakes and Yang, (1983) even
though the anisotropic solution was not available. The same Cosserat elastic constants, derived
from size effect studies, were used to predict strain distributions in a square bar under torsion.
Comparison with experimental results by Park and Lakes (1986) was favorable. In this case,
anisotropy is less of a problem, since the same elastic constants lt and N are relevant in this
geometry as in the torsion size effect study.  Consequently, with the specimen aligned the same
way in both cases, the same elastic constants appear in both cases.

In torsion of a Cosserat square cross section bars a small notch in the corner of the cross
section is predicted to displace as the bar is twisted. The displacement should be zero in a classical
solid, since the stress is zero at the corner (Park and Lakes, 1985). Holographic studies were
conducted, and corner notch displacement was zero in solid polymethyl methacrylate (PMMA), but
was nonzero in dense polyurethane foam (Lakes, et al, 1985) which was shown by size effect
studies to be Cosserat elastic (Lakes, 1986). Similar displacements were easily observed visually
in large cell foams (Lakes, 1986) which had been identified as Cosserat elastic (Lakes, 1983).

Interpretation via void, nonlocal, and microstructure theories
If we attempt to interpret the size effect results in Table 1 with the void theory of Cowin

and Nunziato (1983), there arises the difficulty that the theory predicts size effects in bending but
not in torsion. Among the materials studied, none exhibits a size effect only in bending. We
conclude that a material describable by the void theory has not yet been found. Materials with a
small volume fraction of voids have not, however been studied in this context.



As for nonlocal elasticity, some cases of wave dispersion have been interpreted via that
theory by Ilcewicz et al (1981, 1985). In a particle board composite, the characteristic length was
found to be about 0.3 mm, and that value was linked to the fracture toughness.

As for microstructure elasticity, little comparison has been made with experiment since few
analytical solutions are available for this theory. However, wave dispersion and cut-off frequencies
were observed in dynamic studies of foams, including foams with negative Poisson's ratios (Chen
and Lakes, 1989), and the results interpreted in view of microstructure elasticity. Wave dispersion
has been observed in several other structured materials (Sutherland and Lingle, 1972; Kinra, et. al,
1980), without interpretation via generalized continuum mechanics.

Studies of fibrous composites
The fracture strength of graphite epoxy plates with holes depends on the size of the hole

(Karlak, 1977). Moreover the strain around small holes and notches in fibrous composites well
below the yield point is smaller than expected classically (Whitney and Nuismer, 1974; Daniel,
1978), while for large holes, the strain field follows classical predictions (Rowlands et al, 1973).
Further results are given in a review by Awerbuch and Madhukar (1985). Such results are in
harmony with the predictions of generalized continuum mechanics. However, thus far in the
fibrous composites community, it has been fashionable to interpret results of this kind in terms of
ad hoc  criteria rather than to use generalized continua. One such criterion involves attempting to
predict fracture by calculating the average stress in a region near a stress raiser, rather than using
the actual maximum stress.

VII Discussion
A variety of experimental procedures are capable of revealing non-classical aspects of the

behavior of materials and of determining the elastic constants according to generalized continuum
theories. The procedure which has been the most used is the method of size effects. Since the ratio
of surface area to volume of a specimen varies with its size, the experimenter is wise to take care
with the method of cutting, since surface damage can also generate size effects.

Continuum theories are available with a range of complexity. The degree of complexity
which is appropriate depends on what kinds of experiments are done and how carefully we wish to
examine material response. Size effects predicted by Cosserat theory can involve apparent torsional
or bending stiffness tending to infinity as the specimen thickness tends to zero. This is unphysical
unless the material is a composite with one constituent very much stiffer than the others. It is
possible that the additional freedom of the microstructure / micromorphic theory would be required
for a better description. However the problems of torsion and bending in that theory have not to the
writer's knowledge, been solved.

Experimental work reveals metals, an amorphous polymer, and several particulate
composites to behave essentially classically. Cosserat elastic constants have been found for several
cellular and fibrous materials. The characteristic lengths are on the order of the largest structure size
as expected theoretically. However in some cellular materials, the characteristic length can exceed
the cell size, in contrast to theory  which predicts it should be smaller. There is the intriguing
possibility that tough materials could be created with characteristic lengths significantly larger than
the structure size (Lakes, 1993b).

VIII Conclusions
1 Determination of Cosserat elastic constants can be achieved by the method of size effects.
2 Size effects for Cosserat and nonlocal elastic solids are predicted to differ.
3  Polycrystalline and particulate type material microstructures behave classically or nearly

classically.
4 Several cellular solids, exhibit behavior consistent with Cosserat elasticity.
5  The continuum theory of voids does not adequately describe the microelastic effects

observed in cellular solids of solid volume fraction less than 0.5.
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1 Left, structural view of increments of force and moment upon structural elements in a

cellular solid.

Right, continuum view of stress and couple stress on a differential element.
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2 Determination of Cosserat elastic constants from size effect data in torsion of a circular

cylindrical rod. Rigidity/ diameter squared vs diameter squared.
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3 Determination of Cosserat elastic constants from size effect data in bending of a circular

cylindrical rod. Rigidity/ diameter squared vs diameter squared.

Please see original publication

4 Slab geometry and nonlocal region of influence (over distance a) when that region is

entirely within the slab dimensions, from -W/2 to W/2.

Please see original publication

5 Distribution of stress for a nonlocal slab in tension, for a constant kernel over range [-a,a].
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6 Comparison of size effects expected in a Cosserat solid and in a nonlocal solid. Normalized

rigidity vs slab width. Nonlocal curves are for several kernels. As slab width becomes smaller,

Cosserat solid always becomes more rigid, but nonlocal solid can become more or less rigid,

depending on the kernel. Observe cross-over of Cosserat and nonlocal curve for a stiffening type

nonlocal kernel.



Table 1
Classical and Cosserat elastic technical constants of materials

Elastic constants
Classical Cosserat Structure

Material E(MPa)       G(MPa)      ν                lt(mm)       lb(mm)  N2                   Ψ                 Size                                                     Comment
1  Aluminum 73000 -- -- -- <0.03 * -- Bend plate
2  Aluminum 69000 -- -- -- <0.05 * -- @0.05mm Bend plate
3  Steel 212000 -- -- -- <0.05 * -- @0.05mm Bend plate

4  KNO3 @36000 -- -- @6x10-8 @0.03 atomic Waves

5  Foam, PVC -- 2.8 -- 0.95 -- * -- @1mm Resonance
shear thickness

6  Epoxy/ -- 7000 -- 0 -- -- -- @1.4mm Torsion, rod
aluminum Classical
particle

7  PMMA -- 1000 -- @0 * -- @0.1nm Torsion, rod

8  Human bone 12000 4000 -- 0.22 0.45 ≥0.5 1.5 @0.2mm Bend, torsion
Anisotropic

9  Graphite, 4500 -- 0.06 1.6 2.8 * -- @1.6mm Bend bar
H237

10 Foam, 0.6 1.1 0.07 3.8 5.0 0.09 1.5 @1mm Bend, torsion
PS of rods

11 Foam, dense 300 104 0.4 0.62 0.33 0.04 1.5 @0.18mm Bend, torsion
polyurethane of rods

12 Foam, 2758 1033 0.34 0.065 0.032 0.1 1.5 @0.15mm Bend, torsion
syntactic Nearly 

classical

*: Interpretation based on couple stress theory for which N = 1 (its upper bound) by assumption.
All except waves were done by a size effect approach.
References: 1, Schijve, 1966; 2, Ellis and Smith, 1968; 4, Askar, 1972; 5, Perkins and Thompson, 1973;
6, Gauthier and Jahsman, 1975; 7, Yang and Lakes, 1981; 8, Yang and Lakes, 1981; Yang and Lakes, 1982;
Lakes and Yang, 1983; 9, Tang, 1983; 10, Lakes, 1983; 11, Lakes, 1986; 12, Lakes, 1986.


