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Abstract

An approximate analytical solution for the displacement and microrotation vector fields is
derived for pure torsion of a prismatic bar with square cross-section comprised of homogeneous,
isotropic linear Cosserat elastic material. This is accomplished by analytical simplification
coupled with use of the principle of minimum potential energy together with polynomial rep-
resentations for the desired field components. Explicit approximate expressions are derived for
cross-section warp and for applied torque versus angle of twist of the bar. These show that
torsional rigidity exceeds the classical elasticity value, the difference being larger for slender
bars, and that cross section warp is less than the classical amount. Experimental measurements
on two sets of 3D printed square-cross-section polymeric bars, each set having a different mi-
crostructure and four different cross-section sizes, revealed size effects not captured by classical
elasticity but consistent with the present analysis for physically sensible values of the Cosserat
moduli. The warp can allow inference of Cosserat elastic constants independently of any sensi-
tivity the material may have to dilatation gradients; warp also facilitates inference of Cosserat
constants that are difficult to obtain via size effects.

1



1 Introduction

Solutions of boundary value problems are of use in the interpretation of experiments; they also
reveal the physical meaning of elastic constants within a continuum theory. For example, an exact
solution for torsion of a round rod of a Cosserat elastic solid is known [1]. Using this, one can obtain
the Cosserat characteristic length for torsion by size effect tests on rods of different diameter, as
was done for bone [3]. Similarly for bending, the exact solution for bending of a round Cosserat rod
[2] may be used to interpret size effect measurements to extract the Cosserat characteristic length
for bending. In principle, one may obtain all six isotropic Cosserat elastic constants from torsion
and bending experiments. Such experiments have disclosed Cosserat effects in a dense isotropic
foam and enabled determination of the six constants [4]. Bending, however, entails gradients of
dilatation as well as gradients in rotation, so if the material exhibits any sensitivity to such gradients
(as in void elasticity or micro-stretch elasticity), then one can no longer interpret effects in bending
as due to Cosserat elasticity alone. Therefore alternative modalities are of interest. Torsion of a
square section bar involves no gradients in dilatation and provides sensitivity to both characteristic
lengths. Also, for many structured material types, fabrication of a bar with a round cross-section
is not possible, and there are multiple applications in which the structural component has a square
cross-section.

As no exact solution exists for torsion of a prismatic Cosserat elastic bar with square cross-
section, we derive here an approximate solution that provides concise analytical expressions useful
for characterization of torsion experiments on square bars comprised of materials whose response
is not purely classically elastic. We confirm this utility by exhibiting excellent agreement of the
new analytical results with recent experiments on two different 3D printed square polymeric lattice
structures; this comparison shows that the lattice response is nonclassical but can be well-described
by the Cosserat torsion results derived here, for physically sensible values of the Cosserat moduli
that the comparison provides.

2 Theoretical Analysis

2.1 Full Governing Equations and Analytical Simplification

Here we derive an approximate solution to torsion of a homogeneous, isotropic, Cosserat linear
elastic prismatic bar having a square cross section of side length 2a.

The constitutive equations for an isotropic Cosserat [5] or micropolar [6] elastic solid are

σij = 2Gεij + λεkkδij + κeijk(rk − φk) (1)

mij = αφk,kδij + βφi,j + γφj,i (2)

in which σij is the force stress tensor (symmetric in classical elasticity but asymmetric here), mij is
the couple stress tensor (moment per unit area, asymmetric in general), εij = (ui,j + uj,i)/2 is the
(symmetric) small strain tensor, ui the displacement vector, and eijk is the permutation symbol.
The microrotation vector φi in Cosserat elasticity is kinematically distinct from the macrorotation
vector ri = (eijkuk,j)/2. φi refers to the rotation of points themselves, while ri refers to the rotation
associated with movement of nearby points. The usual Einstein summation convention for repeated
indices is employed, and a comma denotes differentiation with respect to ensuing subscripts, which
represent Cartesian coordinates.

As Eqns. (1, 2) show, six independent elastic constants are required to describe general three-
dimensional deformations of an isotropic Cosserat linear elastic solid: α, β, γ, κ, λ and G. (Eringen
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[6] uses 2µ+ κ = 2G, so µ differs from the shear modulus G in his notation.) Classical elasticity is
a special case, achieved by allowing α, β, γ, κ to become zero. The classical Lamé elastic constants
λ and G then remain, and there is no couple stress. Technical constants are as follows:

Y oung′s modulus E =
2G(3λ+ 2G)

2λ+ 2G
(3)

Shear modulus G (4)

Poisson′s ratio ν =
λ

2(λ+G)
(5)

Characteristic length, torsion ` =

√
β + γ

2G
(6)

Characteristic length, bending `b =

√
γ

4G
(7)

Coupling number N =

√
κ

2G+ κ
(8)

Polar ratio Ψ =
β + γ

α+ β + γ
. (9)

The complete governing equations for three-dimensional infinitesimal deformations of a homo-
geneous, isotropic linear elastic Cosserat medium in equilibrium when no body forces nor body
couples act are the constitutive equations (1) and (2), the strain-displacement and macrorotation-
displacement equations

εij = (ui,j + uj,i)/2 (10)

ri = (eijkuk,j)/2, (11)

and the equations of force and moment equilibrium, respectively

σij,i = 0 (12a)

mij,i + ejklσkl = 0. (12b)

The force traction vector ti and the moment traction vector mi on a specimen’s boundary are
related through the boundary’s outward unit normal vector ni to the force and couple stress tensors
as

ti = σjinj , mi = mjinj . (13)

Correct and complete boundary conditions require that at every point on the boundary’s surface:
the full displacement vector u and the full microrotation vector φ are prescribed; or the full force
traction vector t and the full moment traction vector m are prescribed; or some combination of
these are prescribed so that at every surface point, two vector components from those just listed
are prescribed in each of three independent directions, in such a way that one component of every
term in the two sums appearing in the surface integral in Eq. (19) is prescribed; see e.g. Mindlin
[7].

The six equilibrium governing field equations (12) can be expressed purely in terms of the
displacement and microrotation components by substitution of Eq. (1, Eq. 2) using Eq. (10, Eq.
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11); the resulting full set of governing equations is

(2G+ λ)ux,xx + (G+
κ

2
) (ux,yy + ux,zz) + (G+ λ− κ

2
) (uy,xy + uz,xz) + κ (φz,y − φy,z) = 0 (14a)

(G− κ

2
+ λ) (ux,xy + uz,yz) + (G+

κ

2
) (uy,xx + uy,zz) + (2G+ λ)uy,yy + κ (φx,z − φz,x) = 0 (14b)

(G− κ

2
+ λ) (ux,xz + uy,yz) + (G+

κ

2
) (uz,xx + uz,yy) + (2G+ λ)uz,zz + κ (φy,x − φx,y) = 0 (14c)

(α+ β + γ)φx,xx + (α+ β) (φy,xy + φz,xz) + γ (φx,yy + φx,zz) + κ (uz,y − uy,z − 2φx) = 0 (14d)

(α+ β + γ)φy,yy + (α+ β) (φx,xy + φz,yz) + γ (φy,xx + φy,zz) + κ (ux,z − uz,x − 2φy) = 0 (14e)

(α+ β + γ)φz,zz + (α+ β) (φx,xz + φy,yz) + γ (φz,xx + φz,yy) + κ (uy,x − ux,y − 2φz) = 0. (14f)

For a prismatic bar of square cross-section with side length 2a, Cartesian coordinates x, y lie
in the cross-section and z is directed along the bar’s centerline. We take the in-plane displacement
components to have the classical linear elastic form, corresponding to rigid rotation of each cross-
section of amount θz, where θ is angle of twist per unit length; symmetry requires uz = uz(x, y),
φx=φx(x, y) and φy=φy(x, y). Substituting these, Eq. (14a, b) require φz to be independent of x, y;
both are then satisfied identically. Applying these restrictions, Eq. (14f) reduces to an ordinary
differential equation for φz(z), whose exact particular solution is φz = θz; its homogeneous solution
must be discarded because it would produce purely z-dependent nonzero σxy and σyx, which would
violate the zero-traction boundary conditions on the bar’s lateral surface. We have thus deduced
that the solution form is

ux = −θzy, uy = θzx, φz = θz, uz(x, y), φx(x, y), φy(x, y). (15)

As noted, this solution form identically satisfies Equations (14a, b, f), leaving the three undeter-
mined functions uz(x, y), φx(x, y) and φy(x, y) to be determined by simultaneous solution of the
three remaining equations (14c, d, e), which simplify via application of Eq. (15) to:

(G+
κ

2
) (uz,xx + uz,yy) + κ (φy,x − φx,y) = 0 (16a)

(α+ β + γ)φx,xx + (α+ β)φy,xy + γφx,yy + κ (uz,y − θx− 2φx) = 0 (16b)

(α+ β + γ)φy,yy + (α+ β)φx,xy + γφy,xx − κ (uz,x + θy + 2φy) = 0. (16c)

The exact round bar solution of [1] also has the form Eq. (15), but in that simpler case, uz ≡ 0,
and the in-plane components of microrotation are more simply expressed as φr = φr(r), φθ ≡ 0.

The solution form Eq. (15), when substituted into Eqs. (10) and (11), corresponds to the
vanishing of the following strain components and a specific expression for rz:

εxx = εyy = εzz = εxy = εyx = 0; rz = θz =⇒ rz − φz = 0. (17)

Employing these, Eqs. (1) and (2) show that the following stress and couple stress components are
identically zero:

σxx = σyy = σzz = σxy = σyx = 0; mxz = mzx = myz = mzy = 0. (18)
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2.2 Approximate Solution via Principle of Minimum Potential Energy

We will employ the principle of minimum potential energy to determine an approximate solution
for uz(x, y), φx(x, y) and φy(x, y). For a general three-dimensional body of homogeneous, isotropic,
linear elastic Cosserat material contained in volume V having surface S, the total potential energy
is given by

Π =

∫
V
WdV −

∫
St

(tiui +miφi)dS, (19)

where St is the portion of S on which force and/or moment tractions are prescribed, and

W = Gεijεij +
λ

2
(εkk)

2 + κ(ri − φi)(ri − φi) +
1

2

[
α(φk,k)

2 + βφi,jφj,i + γφi,jφi,j
]
. (20)

Here is how we prescribe correct and complete boundary conditions in the present problem:
On the bar ends, we prescribe ux, uy, φz to be as given in Eq. (15), and we prescribe tz = 0 and
mx = my = 0 [these force-traction and couple-traction components are guaranteed to be zero on
the bar ends due to Eq. (18)]. On the bar’s lateral surfaces, we prescribe t = 0 and m = 0.
Thus, everywhere on the bar’s surface where force and/or moment tractions are prescribed, these
are zero; therefore, the surface integral in Eq. (19) is identically zero.

Our approximate solution proceeds by assuming the following polynomial forms for the dis-
placement and microrotation components that are not yet determined, where the a’s, b’s and c’s
are undetermined constants:

uz(x, y) = a1x
2 + a2xy + a3y

2 + ...+ a25y
6 (21a)

φx(x, y) = b1 + b2x+ b3y + ...+ b21y
5 (21b)

φy(x, y) = c1 + c2x+ c3y + ...+ c21y
5. (21c)

Eq. (21a) is substituted into Eq. (10) and Eq. (11); the results and Eq. (21b, c) are then
substituted into Eq. (20) to calculate the strain energy density W . Because this will be a function
of x, y only, the volume integral in (19) need only be evaluated over the cross-section of the bar; the
result of this integration is then minimized with respect to all of the coefficients appearing in Eq.
(21). This gives the optimal approximate solution according to the principle of minimum potential
energy.

The potential energy minimization just explained shows that most of the coefficients in Eq. (21)
vanish, and that several of the nonzero ones are related; renaming coefficients (the new ones are
dimensionless), the solution forms for these quantities are found to be, where now and henceforth
x, y are nondimensionalized by the cross-section half side length a:

uz(x, y)

θa2
= a1(x

3y − xy3) + a2(x
5y − xy5) (22a)

φx(x, y)

θa
= b1x+ b2x

3 + b3xy
2 + b4x

5 + b5x
3y2 + b6xy

4 (22b)

φy(x, y)

θa
= b1y + b3x

2y + b2y
3 + b6x

4y + b5x
2y3 + b4y

5. (22c)

The potential energy minimization gives the eight equations (A.1) of the Appendix for the eight
coefficients in (22). In writing equations (A.1), we have employed Eq. (6, 7) to express the
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results in terms of the characteristic lengths for torsion and bending, and we have then defined the
dimensionless quantities:

¯̀=
`

a
, ¯̀

b =
`b
a
, κ̄ =

κ

G
, ᾱ =

α

a2G
. (23)

It is clear from Eq. (A.1) that the full solutions for the coefficients are very lengthy.
From Eq. (A.1), the full solutions for the coefficients a1, a2 in terms of the other coefficients

are:

a1 =
15− κ̄

(
15b1 − 3b2 + 15b3 − 5b4 + 5b5 − b6 + 15

2

)
24(2 + κ̄)

(24a)

a2 =
33

304

1− κ̄
[
b1 + 3b2 + b3 + 85

33b4 + 1
10(14b5 + 42b6 + 5)

]
2 + κ̄

. (24b)

2.3 Explicit Results for Warping Displacement in Important Limiting Cases

As noted above, the full solutions for the coefficients a1, a2, and hence for the warping displacement
uz, are very lengthy. Here we give results for uz in some practically-important limiting cases in
which it simplifies dramatically. In all results, x and y have been normalized by a, the bar half-
width.

When κ̄ and the ¯̀’s are small, meaning that the coupling number N is small, the full warping
displacement expression Eq. (22a) reduces to:

uz(x, y)

θa2/16
= 5

(
1 +

21

2

854¯̀2 + 363¯̀2
b

D
ᾱκ̄

)
(x3y − xy3) +

33

38

(
1− 105

2

922¯̀2 + 297¯̀2
b

D
ᾱκ̄

)
(x5y − xy5)

(25)

where

D = 266ᾱκ̄+ 2¯̀2 [3255ᾱ(κ̄+ 2) + 4259κ̄] + 33¯̀2
b [945ᾱ(1 + κ̄/2) + 499κ̄] . (26)

When the Cosserat moduli vanish, this reduces to the following classical approximate solution:

uz(x, y)

θa2/16
= 5(x3y − xy3) +

33

38
(x5y − xy5). (27)

More precisely, as is clear by inspection of Eq. (25) with Eq. (26), Eq. (25) reduces to Eq. (27)
when either: (i) ᾱ→ 0; or (ii) κ̄→ 0; or (iii) both ¯̀→ 0 and ¯̀

b → 0. These same facts are true of
the full solution for uz except that it does not reduce to Eq. (27) in the ᾱ → 0 case when κ̄ and
the ¯̀’s are not small.

Observe by comparison of Eq. (25) to Eq. (27) that Cosserat effects modify both the amplitude
and the distribution of the cross-section’s warp; when ᾱ > 0, this comparison shows Cosserat effects
increase warp near the square cross-section center in the interior of the bar but decrease it on and
near the cross-section edges. Also, examination of Eq. (25) with Eq. (26) shows that, speaking
roughly since D also depends on the ¯̀’s, the effect of ¯̀ on the warp is about a factor of 3 larger
than that of ¯̀

b.
The effect on warp in Eq. (25) is to reduce the peak warp on the surface; this effect increases

with ᾱ and decreases with ¯̀
b/¯̀. The effect on warp is small in this regime: even for κ̄ = 0.5 and ¯̀

= 0.5, assuming ᾱ = ¯̀2 and ¯̀
b = 0.5¯̀, the deviation of the warp from the classical curve (Eq. (27))

is only about 5% near the peak of the warp curve. If ᾱ < 0, which is allowed provided α is not too
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negative, then the Cosserat effect on warp is reversed, so the peak warp can exceed the classical
value. Observe that ᾱ = 2¯̀2(Ψ−1 − 1). The range [1] of Ψ for stability is from 0 to 1.5.

For κ̄→∞, corresponding to coupling number N = 1, the full warping displacement expression
Eq. (22a) reduces to the following:

uz(x, y)

θa2/16
=

10
(
38 + 2211¯̀2 + 2772¯̀2

b

)
(x3y − xy3) + 33

(
2− 315¯̀2

)
(x5y − xy5)

4
(
19 + 465¯̀2 + 990¯̀4

)
+ 742.5

(
6 + 49¯̀2

)
¯̀2
b

. (28)

In cases when the ¯̀’s are small, neglecting their quartic terms compared to their quadratic ones in
the denominator simplifies Eq. (28) to

uz(x, y)

θa2/16
= 5

(
1 + 3

854¯̀2 + 363¯̀2
b

D∞

)
(x3y − xy3) +

33

38

(
1− 15

922¯̀2 + 297¯̀2
b

D∞

)
(x5y − xy5). (29)

where

D∞ = 4
(
19 + 465¯̀2

)
+ 4455¯̀2

b . (30)

The effects noted on warp by the Cosserat moduli in result Eq. (25) are clearly true here also,
except that here the κ̄→∞ limit has been taken, which also eliminates ᾱ from the warp expression.

To illustrate graphically the effects of Cosserat elasticity, a range of elastic constants must be
chosen. If the material has a positive definite strain energy, there are restrictions on the elastic
constants. For classical elasticity, we have the familiar conditions that the shear modulus G > 0
and (3×) the bulk modulus 3λ + 2G > 0. For Cosserat solids, additional restrictions apply [6]:
κ > 0; γ > 0; −γ < β < γ; 3α + β + γ > 0. Regarding the bending characteristic length, γ > 0
implies `b > 0. As for the relation between the characteristic lengths, at the upper limit β

γ = 1,

`b = 1
2`; for β

γ = 0, `b = 1√
2
`, and for β

γ → −1, `b >> `.

The effect of Cosserat elasticity on warp is shown for N = 1 in Fig. 1 by plotting Eq. (28). An
increase in ` results in a reduction in warp on the cross-section boundary. The principal effects of
`b are to change the shape of the warp curve, and also to further reduce the cross-section boundary
warp. The shape effect is subtle particularly for small ¯̀; substantial resolution would be required
to discern it in an experiment.
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Figure 1: Warp of the cross-section edge y = a for N = 1 and various ¯̀, ¯̀
b, from Eq. (28) (in

which both x, y are normalized by a). The classical elasticity warp curve is that labeled ¯̀= 0.

The effect of various N on warp for ¯̀ = ¯̀
b = 0.2 based on the full solution is shown in Fig.

2. Larger values of N are associated with a greater reduction in warp from classical values. When
the characteristic length is larger, ¯̀ = ¯̀

b = 0.5, as shown in Fig. 3, the warp is further reduced.
Increasing ᾱ increases (slightly) the warp provided 0 < N < 1 but the effect of ᾱ is small over the
range considered.

� = � α = 0� l = l� = 0.2
N = 0, 0.25, 0.5, 0.75, 1

� = �

-1.0 -0.5 0.5 1.0

x

a

-0.15

-0.10

-0.05

0.05

0.10

0.15

uz
θ a2

Figure 2: Warp of the cross-section edge y = a for various N and for ¯̀ = ¯̀
b = 0.2, from the

full solution (in which both x, y are normalized by a).
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Figure 3: Warp of the cross-section edge y = a for various N and for ¯̀ = ¯̀
b = 0.5, and for

several ᾱ from the full solution (in which both x, y are normalized by a).

The overall effect of Cosserat elasticity is to reduce warp in comparison with the classical
prediction. The warp reduction effect becomes more marked with an increase in ¯̀ or with an
increase in N . For large N , `b further reduces the warp and alters the shape of the warp curve. In
the regime of small ¯̀ and N the warp deviates little from classical elasticity. In this regime, warp
can increase above the classical value if ᾱ < 0. By contrast ᾱ has no effect if N = 1.

2.4 Cosserat Effects on Total Torque

The total applied torque T needed to produce an angle of twist per unit length θ is calculated as
(where, recall, x, y are normalized by a)

T = 4a3
∫ 1

0

∫ 1

0
[xσzy − yσzx +mzz] dxdy. (31)

Employing the constitutive equations (1, 2) together with our solution forms, this evaluates to, in
terms of the eight coefficients appearing in Eq. (22)

T =
8

3
Ga4θ

[
1

2

(
2(1 + 3¯̀2) + κ̄+ 3ᾱ

)
− (2− κ̄)

(
a1
5

+
2

7
a2

)
+ (3ᾱ+ κ̄)

(
b1 +

b3
3

+
b6
5

)

+ (5ᾱ+ κ̄)

(
3

5
b2 +

b5
5

)
+

3

7
(7ᾱ+ κ̄)b4

]
. (32)

Here are some explicit simplified results for the torque in important limiting cases. When κ̄ is
small (meaning that the coupling number N is small) and the `’s are small, Eq. (32) reduces to:

T =
898

399
Ga4θ

[
1 +

21ᾱκ̄(89¯̀2 + 363
898

¯̀2
b)

266ᾱκ̄+ 2¯̀2[3255ᾱ(κ̄+ 2) + 4259κ̄] + 33¯̀2
b [945ᾱ(1 + κ̄/2) + 499κ̄]

]
. (33)
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Observe from this that the approximation in the classical elasticity case – when the Cosserat moduli
vanish – is

T =
898

399
Ga4θ. (34)

This is a mere 0.05% higher than the exact value given by Timoshenko and Goodier [8]. More
precisely, as is evident by inspection of Eq. (33), it reduces to Eq. (34) when either: (i) ᾱ → 0;
or (ii) κ̄ → 0; or (iii) ¯̀→ 0 and ¯̀

b → 0. Furthermore, Eq. (33) shows that when κ̄ and the ¯̀’s
are small, and ᾱ > 0, Cosserat effects cause an increase in torsional rigidity. Result Eq. (33) also
shows that in this small parameter regime, the effects of ¯̀

b on the torsional rigidity are essentially
negligible (two orders of magnitude smaller) compared to those of ¯̀.

When κ → ∞, which corresponds to the coupling number N = 1, the total torque expression
simplifies to

T =
4

21
Ga4θ

1796 + 126
(
449 + 2740¯̀2 + 3960¯̀4

)
¯̀2 + 693

(
152 + 2280¯̀2 + 6615¯̀4

)
¯̀2
b

8
(
19 + 465¯̀2 + 990¯̀4

)
+ 1485

(
6 + 49¯̀2

)
¯̀2
b

. (35)

Observe that the result is independent of ᾱ. When the ¯̀’s are small, retaining only terms through
second order in them in the numerator and denominator simplifies Eq. (35) to:

T =
898

399
Ga4θ

[
1 +

267

898

449¯̀2 + 363
178

¯̀2
b

19 + 465¯̀2 + 4455
4

¯̀2
b

]
. (36)

Clearly, conclusions drawn in the small κ̄ case are true here as well: Eq. (36) reduces to the
classical approximate result Eq. (34) when ¯̀→ 0 and ¯̀

b → 0; Cosserat effects produce an increase
in torsional rigidity; and the effects on torsional rigidity of ¯̀

b are negligible compared to those of ¯̀.
The effect of Cosserat elasticity on rigidity is illustrated in Fig. 4 by plotting the full torque

solution for the case N = 0.5,Ψ = 0. Slender specimens become stiffer than expected classically, as
is the case for circular cylinders. Increasing ` results in increasing torsional rigidity. Observe that
the full solution shows in this case what the explicit small and large κ̄ solutions just derived show
analytically: `b has negligible effect on torsional rigidity compared to that of `. Fig. 5 shows the
effect of varying N for Ψ = 1.5 and for Ψ = 1.0. For Ψ = 1.5 the effect of N is evident in the size
effects, but not for Ψ = 1.0. This behavior is similar to that of round rods: size effects depend on
`, N and Ψ, but the sensitivity to parameter changes is not uniform; the effect of N is substantial
only for large Ψ at or near its upper limit 1.5.
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Figure 4: Size effect for N = 0.5 and Ψ = 0 as a function of `/a, plotted two ways. Here,
Ω is the torsional rigidity T/θ normalized by its classical elasticity approximate value: Ω =
T
θ /
(
898
399Ga

4
)
, so that Ω = 1 in the absence of Cosserat effects (` = 0).

Figure 5: Left, size effect for Ψ = 1.5 and various N , as a function of `/a. Right, size effect
for Ψ = 1.0 and various N , as a function of `/a. Ω is the torsional rigidity T/θ normalized by
its classical elasticity approximate value: Ω = T

θ /
(
898
399Ga

4
)
, so that Ω = 1 in the absence of

Cosserat effects (` = 0).

3 Comparison with Experimental Results

Several lattices were examined for size effects. Each lattice was a polymeric structure prepared
via 3D printing. Lattices differ from foams in that they are prepared with the desired shape.
There is no cutting or machining therefore no damaged or incomplete cells which can result in
an underestimate of characteristic length. Bar specimens were made with the same structure but
different overall size and with a square cross section. Size dependence of rigidity was determined
via broadband viscoelastic spectroscopy upon specimens of different thickness. This method allows
torsion and bending studies upon the same specimen with zero parasitic error due to friction.
Mechanical damping is readily measured but is not the focus of the study.

Bars comprised of a negative Poisson’s ratio lattice (inset in Fig. 6) with tetragonal symmetry
were tested. Details regarding this lattice and the measurements are reported elsewhere [9]. The
cell size in the transverse direction is about 15 mm. A fit of the theoretical relative stiffness result

11



obtained in Eq. (35) to experimental size effect results for the negative Poisson’s ratio lattice are
shown in Fig. 6. The lattice exhibits a negative Poisson’s ratio combined with relatively high
stiffness [10]. The inferred shear modulus is G = 0.67 MPa, the coupling number N = 1, and
` = 5.6 mm, `b = 5.4 mm; the goodness of fit is R2 = 0.999. The lattice is anisotropic, so the
elastic constants are interpreted as technical constants, not tensorial ones. Anisotropy cannot be a
confounding variable because there are no size effects in anisotropic classical elasticity. A value of
N at or near its upper limit of 1 is sensible for lattices in which rib deformation is bend dominated.
For example, a 2-D chiral negative Poisson’s ratio honeycomb lattice [12] analyzed as a Cosserat
solid had a Cosserat coupling number N approaching 1 [13]. Similarly, experiments on small cell
polymer foam disclosed N ≈ 1 [14]. By contrast, lattices with straight ribs [15] in a fully stretch
dominated mode are predicted to have N << 1 and ` much smaller than the cell size, hence very
weak effects are predicted.

Figure 6: Size effects in bars of square cross-section comprised of a tetragonal lattice (inset;
the scale bar is 1 cm). The points are the experimental values reported in [9], the solid curve
is the best Cosserat fit to them from Eq. (35); Ω is the torsional rigidity T/θ normalized by
its classical elasticity approximate value: Ω = T

θ /
(
898
399Ga

4
)
, so that Ω = 1 in the absence of

Cosserat effects (¯̀= ¯̀
b = 0) as indicated by the horizontal dashed line.

Bars of square cross section comprised of a lattice of cubic cells of width 13 mm were also tested
[11], Fig. 7. The experimental data were again best-fit to Eq. (35), since a coupling number N ≈ 1
is also expected for this microstructure. The inferred moduli are: shear modulus G = 4.2 MPa,
and ` = 3.8 mm, `b = 3.8 mm; the goodness of fit is R2 = 0.86. This material is stiffer than the
tetragonal lattice. Rib extension is therefore more prominent than rib bending in comparison with
the tetragonal lattice. That difference is the likely cause of the smaller characteristic length and
smaller size effects. The dip in the experimental points was a matter of concern, therefore all size
effect measurements were repeated, with no change in the inference. The lattices were examined
visually but no obvious defect or damage was observed. The non-monotonic size dependence is
attributed to imperfection in the 3D printing process.
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For these lattices the inferred Cosserat parameters are reasonable in view of the facts that
bending of structural elements is likely to contribute substantially to the deformation but the
lattices are not optimized for Cosserat elasticity.

Figure 7: Size effects in bars of square cross section comprised of a cubic lattice (inset; the
scale bar is 1 cm). The points are experimental values; the solid curve is our approximate
Cosserat solution Eq. (35) best-fit to them. The horizontal dashed line is the classical elasticity
solution.

4 Discussion

As with rods of circular cross section [1], size effects are predicted in which slender square section
bars have a higher structural rigidity than is predicted classically; the difference increases as bar
width decreases. Size effects depend primarily on `, not perceptibly on `b, as shown explicitly in
Eqs. (33) and (36) and illustrated in Fig. 4. The magnitude of the warp of the cross section edges
decreases as ` increases and as N increases. Warp of the cross-section edges also decreases with `b,
and the shape of the warp curve varies with `b.

As for other solutions, the analysis of torsion of a round bar [1] has been discussed above. The
general problem of torsion in micropolar beams of arbitrary cross section shape has been formulated
in [16], where it was shown that if the three-dimensional displacement and microrotation fields are
assumed to have the forms we have deduced here in Eq. (15), torsion of a micropolar beam
of arbitrary cross section can be reduced to a Neumann boundary value problem in antiplane
micropolar elasticity. A numerical solution for a graphite rod of square cross section was presented
in [17]. An approximation for square cross section done via a semi inverse approach [18] is similar
to the present results in the regime of small κ̄. It is restricted to a range of β/γ between 0 and 0.6
(hence a restricted range of `b); size effect predictions for large N are similar to the present results
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but warp reduction is overestimated. The present approach therefore provides superior results.
The present results enable an enhanced experimental paradigm for determining Cosserat elastic

constants. One may conduct torsional stiffness size effect experiments on specimens of round or
square cross section to reveal `; knowing this, one may then conduct a warp experiment on a bar of
square cross section, from which N may be inferred. If resolution in the warp measurement suffices,
one may obtain `b as well from the shape of the warp curve. In the present experiments, lattices
had sufficiently many cells for size effects but not for warp; specimens with more cells would be
needed. The rationale is as follows. One can in principle obtain all the Cosserat elastic constants
from torsion and bending size effect studies on round specimens. In practice, the rigidity is not
uniformly sensitive to variation in the constants over their ranges. In particular, torsional rigidity
of a round rod in the range Ψ from 0 to 1 shows strong size effects with no roll off of rigidity for
small radius. In this part of the range, the stiffening can be large even for small N . Roll off of
rigidity to a finite value for small radius occurs in the round case if Ψ = 1.5 which entails α at its
lower (negative) limit; similar behavior is predicted in the square case. In summary, warp studies
are revealing because the role of N in the warp effect is very prominent in comparison with its role
in in size effects unless Ψ = 1.5.

These results provide the potential for new experimental modalities that are insensitive to gra-
dients of dilatation; if the material obeys micro-stretch elasticity [19] then it is sensitive to gradients
of rotation as in Cosserat elasticity as well as to gradients in dilatation. Bending experiments entail
gradients of both rotation and dilatation so they reveal `b unambiguously only if the material is
known to be a Cosserat solid without sensitivity to dilatation. If all the experiments are done in
torsion, any hypothetical sensitivity to dilatation gradient cannot obtrude in the interpretation be-
cause there is no dilatation in torsion. By contrast, bending entails gradients both in rotation and
in dilatation so if the material is sensitive to such gradients, interpretation of experiments becomes
much more challenging.

As for α, torsion in both the round and square cases reveals sensitivity to α but bending of
plates [1] and of round rods [2] is insensitive to α. Because α provides sensitivity to the trace of
the rotation gradient, it appears in torsion analyses because the gradient in the axial direction is
forced by torsion, and the gradients in the transverse direction are forced by the requirement that
couple stress corresponding to these gradients is forced to zero at the free surfaces.

Strain distribution in the bar is related to warp. The surface shear strain in a classical elastic
square cross section bar is maximum at the center of each lateral surface and zero at the edges.
Reduced warp associated with Cosserat elasticity implies a reduction of maximum strain and re-
distribution of strain to the edges. This reduction of strain concentration may be beneficial in
enhancing toughness.

5 Conclusion

The present analysis of torsion of a square cross section Cosserat elastic bar reveals size effects in
which slender bars are more rigid than expected classically. Size effects increase with the torsion
characteristic length ` and the coupling number N ; there is negligible sensitivity to `b in comparison
to the case of a round cross section in which there is zero sensitivity to `b. Warp of cross sections is
reduced compared with a classical solid. Warp reduction increases with ` and N ; to a lesser extent
with `b. The shape of the warp curve depends on `b. These sensitivities can form the basis of new
experimental approaches that are insensitive to dilatation gradients that may occur if the material
has such freedom as well as the Cosserat freedom. The warp analysis can reveal Cosserat elastic
constants such as N which may be difficult to infer via size effects.
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Appendix

The potential energy minimization explained in Section 2.2 gives the following eight equations for the eight
coefficients in Eq. (22). The interested reader, by employing e.g. Mathematica to solve Eq. (A.1) and then
using the results in Eq. (22), will have the full approximate solution employed in this paper. [Provision of
(A.1) is the most concise way to report the full approximate solution; the solution to Eq. (A.1) is far more
lengthy.]
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

135(2 + κ̄) 190(2 + κ̄) 105κ̄ 45κ̄ 105κ̄

627(2 + κ̄) 950(2 + κ̄) 495κ̄ 231κ̄ 495κ̄

21κ̄ 30κ̄ 105
(
κ̄+ 3¯̀2 + 3ᾱ

)
63
(
κ̄+ 5¯̀2 + 5ᾱ

)
35
(
κ̄+ 3¯̀2 + 3ᾱ

)
45κ̄ 70κ̄ 315

(
κ̄+ 5¯̀2 + 5ᾱ

)
45
(
5κ̄+ 63¯̀2 + 49ᾱ

)
105

(
κ̄+ 5¯̀2 + 7ᾱ

)
105κ̄ 150κ̄ 175

(
κ̄+ 3¯̀2 + 3ᾱ

)
105

(
κ̄+ 5¯̀2 + 7ᾱ

)
35
(
3κ̄+ 29¯̀2 + 7ᾱ

)
165κ̄ 270κ̄ 1485

(
κ̄+ 7¯̀2 + 7ᾱ

)
165

(
7κ̄+ 135¯̀2 + 99ᾱ

)
495

(
κ̄+ 7¯̀2 + 11ᾱ

)
171κ̄ 250κ̄ 315

(
κ̄+ 5¯̀2 + 5ᾱ

)
45
(
5κ̄+ 63

(
¯̀2 + ᾱ

))
63
(
3κ̄+ 35¯̀2 + 15ᾱ

)
243κ̄ 370κ̄ 315

(
κ̄+ 3¯̀2 + 3ᾱ

)
27
(
7κ̄+ 35¯̀2 + 55ᾱ

)
45
(
5κ̄+ 71¯̀2 + 11ᾱ

)

25κ̄ 57κ̄ 81κ̄

135κ̄ 275κ̄ 407κ̄

45
(
κ̄+ 7¯̀2 + 7ᾱ

)
21
(
κ̄+ 5¯̀2 + 5ᾱ

)
21
(
κ̄+ 3¯̀2 + 3ᾱ

)
25
(
7κ̄+ 135¯̀2 + 99ᾱ

)
15
(
5κ̄+ 63

(
¯̀2 + ᾱ

))
9
(
7κ̄+ 35¯̀2 + 55ᾱ

)
75
(
κ̄+ 7¯̀2 + 11ᾱ

)
21
(
3κ̄+ 35¯̀2 + 15ᾱ

)
15
(
5κ̄+ 71¯̀2 + 11ᾱ

)
105

(
9κ̄+ 275¯̀2 + 187ᾱ

)
385κ̄+ 7425

(
¯̀2 + ᾱ

)
33
(
9κ̄+ 63¯̀2 + 119ᾱ

)
175κ̄+ 3375

(
¯̀2 + ᾱ

)
9
(
15κ̄+ 273¯̀2 + 32¯̀2

b + 189ᾱ
)

9
(
15κ̄+ 275¯̀2 − 64¯̀2

b + 75ᾱ
)

15
(
9κ̄+ 63¯̀2 + 119ᾱ

)
9
(
15κ̄+ 275¯̀2 − 64¯̀2

b + 75ᾱ
)

175κ̄+ 3549¯̀2 + 1152¯̀2
b + 357ᾱ





a1

a2

b1

b2

b3

b4

b5

b6



= −5

2



21(κ̄− 2)

99(κ̄− 2)

21 (κ̄+ 3ᾱ)

63 (κ̄+ 5ᾱ)

35 (κ̄+ 3ᾱ)

297 (κ̄+ 7ᾱ)

63 (κ̄+ 5ᾱ)

63 (κ̄+ 3ᾱ)



. (A.1)
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