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The Role of Gradient Effects in the Piezoelectricity of Bone
~ RODERIC LAKES

Abstract—Stress-gradient effects in piezoelectricity are obtained from
general nonlocality considerations. A nonlocal continuum representa-
tion of bone is appropriate, in view of bone’s structure.

INTRODUCTION

Bone generates an electrical polarization when subjected to
mechanical stress [1]1-[3]. The linearity of this response, as
well as the presence of the appropriate converse effect, i.e.,
the development of strain in response to an imposed electric,
field, suggested to some workers that bone is a piezoelectric
material in the glassic sense [4]. The constitutive equations
for such a material are

D;= dijk Ojk +K1]E] D

2

in which D is the electric displacement, E is the electric field,
d is the piezoelectric tensor, K is the dielectric tensor, S is.the
compliance tensor, € is the strain tensor, and o0 is the stress
tensor. Several investigators have assumed these constitutive
equations to be valid and have determined elements of the ten-
sor d [5]; others have assumed that the material coefficients
are complex and frequency dependent, and have performed
experiments to determine the d’s and the k’s [6], [7]. Re-
cently, evidence has been found that (1) and (2) may be inade-
quate to describe the electromechanical behavior of bone. For
example, the results of studies in bending indicate that polar-
ization may result from the stress gradient as well as the stress
itself [8], [9]. The constitutive equation in this case can be
written

€i; = Sijk10x1 + drijEx

(3

D; = dij Ojxc * fijkn Ojic,n + KijEj

Manuscript received August 13, 1979; revised January 29, 1980.
This research was supported in part by the National Institutes of
Health under Grant 1 R0O1 AM25863-01.

The author is with the Biomedical Engineering Program, College of
Engineering, University of |{wigcopsin

IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. BME-27, NO. 5, MAY 1980

in which fis a fourth rank tensor relating electric displacement
to the stress gradient and the comma denotes differentiation
with respect to the coordinate specified by the index n. It
has been suggested that this theory is ad hoc, and other expla-
nations have been advanced to explain the results in bending.
Indeed, it has been suggested that the postulated fourth rank
gradient tensor f, providing a polarization comparable to that
resulting from the third rank tensor d, has no counterpart for
other materials in nature, and must be regarded in a tentative
manner [10]. In addition, the lack of an explicit relationship
between the phenomenology of the stress-gradient hypothesis
and the known structure of bone is seen as a drawback. The
purpose of the present communication is to examine the role
of the stress gradient theory among continuum theories and
to explore possible relationships between this theory and the
structure of bone.

NONLOCAL THEORY

Nonlocal theories are continuum models in which the effect
at a point depends not only on a cause at that point, but on
the causal variable at all points in the solid [11]. Nonlocal
theories of piezoelectricity and dielectric response have been

proposed, particularly in relation to ferroelectrics {12]. For
‘example, consider
Di(Xp) = ﬁijk(xp - X}) 0j(Xp) dX; @

in which A is a function which expresses the nonlocal cou-

pling between stress and electric displacement; the electric

field E is assumed to be zero for simplicity. In this expres-

sion, the electric displacement D at a point specified by the
position vector X depends on the stress at points, specified

by the vectors X, s 1n a neighborhood of X,. To illustrate how

this expression can be specialized, we follow a procedure simi-

lar to that used in [13]. Expand the stress in a power series

about the point X,

. 00;%(Xp)
0ji(Xp) = 0ji(Xp) + 5= (X = Xp) - (5)
n
Substitute this in (4).
Di(Xp) = ﬁijk(Xp - Xp) 05 (X,p) dX,
, 00, (Xp) ,
¥ f DXy = Xp) =5 B2 (6 = X3) dX;. (6)
If we define ,
dijx EfAijk(Xp - Xp) dXp,
fijkn EfAijk(Xp = Xp) (X, - Xp) dX, N
then (6) can be written
Di(Xp) = diji 03 (Xp) + fijien Ojre, n(Xp) + 8)

The first term in this last expression represents the classical
(local) theory of linear piezoelectricity: the electric displace-
ment at a point depends on the stress at that point. The sec-
ond term is the stress-gradient effect term discussed above; it
has emerged in a natural fashion from considerations of non-
locality and should not be regarded as ad hoc. The higher
order terms contain higher spatial derivations of the stress and

represent a closer approximation to the general nonlocal

theory.
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PROPERTIES OF REAL MATERIALS

Both the nonlocal and classical theories of piezoelectricity
are continuum representations and as such make no reference
to structure. Lattice theory, which considers the atomic
structure of crystals, can be used to derive classical piezoelec-
tricity and elasticity in a zeroth-order or long wave limit ap-
proximation. Lattice theory can also be used to derive non-
local representations, if higher order terms are retained. For
most macroscopic applications of ionic crystals, e.g., quartz,
the classical (local) theories are entirely adequate, since effects
due to nonlocality are neither predicted [14] nor observed to
be significant at wavelengths many orders of magnitude longer
than the atomic spacing. In ferroelectric materials, however,
there is a long range interaction from which a nonlocal piezo-
electric effect can be predicted [12]; this is related to phase
transitions and is unlikely to constitute a dominant mechanism
for such effects.in bone. Experimental evidence for nonlocal-
ity in ferroelectric materials has been found [15], therefore
bone is not the only material for which gradient effects have
been reported.

Compact bone has a complex structure which is a significant
impediment to the development of rigorous theoretical con-
nections between structure and properties. Theoretical studies
have been performed, however, on simple laminated and lat-

“tice structures: a continuum representation of the elastic be-

havior of such structures contains a dependence on elements
of the strain gradient [16], [17]. The characteristic length
which appears in these theories is of the order of the size of
the structural elements; significant deviations from classical
theory are expected for specimens ten times the characteristic
length or less. The largest structural elements in human com-
pact bone are osteons, which have a diameter of about 0.25
mm. Since specimens of bone used in studies of electrical
effects are typically only a few millimeters thick, it is con-
ceivable that effects of microstructure will contribute to the
total effect, and that extended continuum theories could be
used in a description of such effects.

Gradient effects in the elastic properties could enter a piezo-
electric constitutive equation as follows. In the linear local
theory, piezoelectric coupling may be represented by any one
of four tensors, depénding on the choice of field variables
[18]. The equations which interrelate pairs of these tensors
contain the elastic tensor or the dielectric tensor. So if the
elastic properties are perturbed by a gradient effect and one
piezoelectric tensor represents a purely local effect, then at
least one of the other piezoelectric representations will suffer
a perturbation. Unfortunately, no data concerning elastic
gradient effects in bone are presently available.

DiscussION

Stress gradient effects in piezoelectricity arise in a natural
way from the nonlocal relationship between stress and elec-
tric’ displacement. Nonlocal continuum representations can be
derived from microstructural considerations. Since the micro-
structural features of bone are not negligibly small compared
with typical specimen dimensions, a nonlocal representation,
to which the stress-gradient theory is an approximation, may
be appropriate. It has yet to be established that all observa-
tions of stress-generated potentials in bone can be modeled by
a continuum theory. To the extent that such modeling is pos-
sible, investigation of nonlocal representations is likely to be
fruitful. :
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