Tensorial elastic moduli (GPa), determined ultrasonically
Fresh bovine phalanx (2.2.9)
Dry human femur (2.2.10)
C1111
19.7 23.4
C1122
12.1 9.06
C1133
12.6 9.11
C3333
32.0 32.5
C2323 5.4 8.71
Elastic anisotropy of bone.
Technical elastic moduli. Wet human femoral bone by mechanical testing (2.2.2) and
bovine femoral bone by ultrasound (2.2.11).
Young's moduli (GPa) Shear
moduli(GPa) Poisson's ratios (dimensionless)
Human Bovine Human Bovine Human Bovine
Elong
17
22 Glong
3.6
5.3 ν
0.58
0.30
Etransv
11.5
15 Gtr
3.3
6.3 ν
0.31
0.11
Etransv
11.5
12 Gtr
3.3
7.0 ν
0.31
0.21
The stiffness of compact bone tissue depends on the bone from which it is taken. Fibular bone has a Young's modulus about 18% greater, and tibial bone about 7% greater, than that of femoral bone. The differences are associated with
differences in the histology of the bone tissue. Bone is elastically anisotropic, i.e. its properties depend on direction. Such behavior is unlike that of steel, aluminum and most plastics, but is similar to that of wood.
Bone
Strength: ultimate properties
(2.2.1)
Human
femur
,
compression. Longitudinal strength, 205 MPa; strain 0.019
Compressive
transverse strength, 131 MPa; strain 0.028-0.087.
Tensile
longitudinal strength, 135 MPa, strain 0.031,
Tensile
transverse strength, 53 MPa, strain 0.007.
Shear
strength, 65-71 MPa.
Bovine
plexiform bone
,
Longitudinal
tensile strength, 167 MPa, strain 0.033
Transverse
tensile strength, 52 MPa, strain 0.008
Radial
tensile strength, 30 MPa, strain 0.002
Strength Density
Material
σult[MPa] ρ(g/cm3) σult
/
ρ
polyethylene
(high density)
20-40 0.95 21-42
polymethyl methacrylate (PMMA)
70 1.18
59.3
human
compact bone
longitudinal
148 2.0
74 .
transverse
49
steel
(structural)
400 7.8 51.3
aluminum
(1100-H14)
110 2.71 40.6
granite
20 2.77 7.2
concrete
(compression)
28 2.32 12.1
modulus Density
Material
E[GPa] ρ(g/cm3) E/ρ E/ρ2
polyethylene
(high density)
0.5 0.95 0.53 0.55
polymethyl
methacrylate [PMMA]
3.0 1.18
2.5 2.15
human
compact bone
longitudinal
17 1.8
9.4 5.2
Dentin 13-18
Enamel 50-84
steel(structural) 200 7.86 25.4 3.23
aluminum 70 2.71 25.8 9.53
concrete 25 2.32 10.8 4.6
wood(pine) 11 0.61 18.0 29.6
References
2.2.1 Park, J. B., Biomaterials, Plenum, 1979.
2.2.2 Reilly, D.T. and Burstein, A. H., The elastic and ultimate properties of compact bone
tissue, J. Biomechanics , 8, 393-405, 1975.
2.2.9 Lang, S.B., Ultrasonic method for measuring elastic coefficients of bone and results on fresh and dried bovine bones, IEEE Trans. Biomed. Eng. , BME-17, 101-105, 1970.
2.2.10 Yoon, H.S. and Katz, J. L., Ultrasonic wave propagation in human cortical bone. II Measurements of elastic properties and microhardness, J.Biomechanics, 9, 459-464, 1976.
2.2.11 VanBuskirk, W. C. and Ashman, R. B., The elastic moduli of bone, in Mechanical Properties of Bone , Joint ASME-ASCE Applied Mechanics, Fluids Engineering and Bioengineering Conference, Boulder, CO, 1981.