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To explore the hypothesis that load-induced fluid flow in bone is a mechano-transduction
mechanism in bone adaptation, unit cell micro-mechanical techniques are used to relate
the microstructure of Haversian cortical bone to its effective poroelastic properties. Com-
putational poroelastic models are then applied to compute in vitro Haversian fluid flows
in a prismatic specimen of cortical bone during harmonic bending excitations over the
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frequency range of f0to 1 Hz. At each frequency considered, the steady state har-
monic response of the poroelastic bone specimen is computed using complex frequency-
domain finite element analysis. At the higher frequencies considered, the breakdown of
Poisueille flow in Haversian canals is modeled by introduction of a complex fluid viscos-
ity. Peak bone fluid pressures are found to increase linearly with loading frequency in
proportion to peak bone stress up to frequencies of approximately 10 kHz. Haversian fluid
shear stresses are found to increase linearly with excitation frequency and loading mag-
nitude up until the breakdown of Poisueille flow. Témalues associated with the energy
dissipated by load-induced fluid flow are also compared with values measured experimen-
tally in a concurrent broadband spectral analysis of bone. The computational models
indicate that fluid shear stresses and fluid pressures in the Haversian system could, under
physiologically realistic loading, easily reach the level of a few Pascals, which have been
shown in other works to elicit cell responses in vitro. © 2003 American Institute of
Physics. [DOI: 10.1115/1.1535191

Keywords: Bone Adaptation, Fluid Flow, Mechano-Transduction, Poroelasticity, Ho-
mogenization, Unit Cell Analysis, Complex Finite Element Analysis

not. Yasuda(1954 [16] and Fukada and Yasuda957 [17] in-
hoduced the notion that piezoelectrical-phenomena exist in dry
one, and Bassett and Becker later hypothesized that piezoelec-
city could play a role in bone remodelird 8]. Piekarski and
nro postulated a chemical mechanism based on the notion that
ad-induced fluid flow in bone enhances the rate of nutrient sup-
v.and waste removal to and from osteocytes, thereby providing
|more favorable environment for production of additional bone
s919]. The observation of strong electric potential gradients in
e vicinity of Haversian canals of cortical bone undergoing dif-

Introduction and Motivation

Bone adaptation is a well-recognized phenomenon in whi
human and/or animal bones slowly add or lose mass and al
their form in response to alterations in the normal mechanic,
history. Despite the fact that bone adaptation is a well-recogniz
phenomenon, the specific mechanical stimuli that trigger, sustal
and terminate bone adaptation are not presently well characteri®
or understood. Cyclic loading of bone over and above norm
homeostatic stimulus clearly alters the microscale environment

which osteocytegcells postulated to sense mechanical signal ] . .
reside[1,2]. While the macroscopic stress magnitudes and cycl|§€nt types of loading added support for electrical mechanisms
Q,ZJ]. Subsequently, investigators proposed that the nature of

loading frequencies that do produce positive bone adaptation h
ng Treduent produice posity prat these electrical fields could be explained and attributed to fluid

been identified 3,4] the microscale stimuli to which osteocytes X : .
respond are not yet understood. flow in the pores of the hydroxyapatite matfi2,23 or flow in

Over the past century or more, investigators have posed mdf§ 1arger canaliculi24]. Alternatively, it has been proposed that
mechanisms for the adaptive response of bone to mechanieafaing stresses from the oscillating flow of viscous bone fluids
stimuli. Perhaps the most well-known was that of Wolff, wh&Xert stimulatory stresses on the osteocytes or their processes
postulated bones adapted to principal tensile and compres ige:26. Still further works have been aimed at determining
stresses according to mathematical I3 Many researchers Whether or not the fluid pressures in bone fluids during physi-
through the first three-quarters of the'™@entury presumed a ©logical dynamic loadings can possibly serve as the stimulus to
direct mechanical stimuluglthough often this was more implicit Which osteocytes respori@7,2g. o _
than explicit and did not necessarily exclude underlying mecha- 10 test these hypotheses, we need realistic estimates of fluid
nisms of various sori§6—15). More recently, a number of inves- flow to ascertain whether experimentally these levels of flow in-
tigators have proposed different chemical, electrical, and mechafi@ed appropriately stimulate bone cells. Since we cannot experi-
cal stimuli to osteocytes deriving from cyclic loading of boneMentally measure fluid flow at the necessary levels, realistic mod-
Some of these stimuli are associated with load-induced fluid fiods at the microstructural level are needed. One approach is to

in the different pore structures of cortical bone while others af§eate coherent and hierarchical multiple-scale poroelastic models
for each of the known flow systems. The objective of the present
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roelasticity models that must be selected by the andBSt To
some extent, difficult questions and uncertainties pertaining to ¢
lection of model parameters cannot be avoided. In this work, i
attempt is made to capture the gross microstructural characte
tics of Haversian bone and to couple this with unit cell micro
structural analysis techniques. Together, these lead to a poroela
model featuring transversely isotropic symmetry. Based on tl
assumed microstructure of Haversian bps@l, the effective bone
poroelastic properties are determined. In the current work tl
lamellar structure of cortical bone matrix is neglected, and tt
bone matrix is modeled simply as a linear isotropic ela&itd
homogeneoyssolid. Similarly, the bone fluid is assumed to be ¢
Newtonian fluid with a constant viscosity and bulk modulus. De
spite these simplifying assumptions, the modeling framework d
veloped and proposed here is general enough that more reali
behaviors can subsequently be incorporated.

In the remainder of this article, the basic microstructure ar
kinematics of bone matrix and vascular fluid in Haversian bor
are considered. Microscale stresses and strains on the oste:
scale are related to macroscopic stresses and strains on a la
bone specimen length scafen the order of a centimete linear
poroelastic model is proposed to relate averaged microsc: d)
stresses to strains, and changes in fluid content. A unit-cell anz ¢)
sis procedure is used to estimate the coefficients of this poroelastic
model for specific physical characteristics of the bone. FEMig. 1 Three-dimensional idealizations of Haversian bone. a )
implementation of the poroelastic bone model is then presentd@nsverse section with square-packed non-overlapping os-
and complex, frequency-domain, poroelastic modeling of corticigons; b ) transverse section with hexagonally packed, overlap-
bone specimens undergoing forced vibrations is then considerqufOSteon'ls' ¢ ) unit cell for non-overlapping osteons; d ) unit
The dissipated mechanical energy in these vibrations is compuf:éad or overlapping osteons.
for comparison to experimental measurements made on human
cortical bone specimens. The peak computed fluid pressures and
shear stresses in the Haversian system are also presented and dis-

cussed. Finally, the limitations and assumptions of the model areI the following. the mi | dinat loved i
discussed, along with their possible impact on the computed re- " the following, the microscale coordinatésare employed in
sults solving unit cell analysis problem to find the effective property-

structure relations of Haversian bone, while the macroscale coor-
. . . dinatesY are used in structural analysis of macroscopic bone
Unit Cell Analysis of Haversian Bone specimens with dimensior®(¢) much larger than those of the
Haversian/osteonal unit cell. In structural analysis of bone speci-
ens, the effective poroelastic properties of Haversian bone are

Length Scales and Averaging Domains. Haversian bone
(Fig. 1) is formed by arrays of osteons, each having a lamell

bone matrix structure, and a Haversian canal running along tﬁg:_'ployed_. bone i dered to be fully saturated. havi |
approximate central axis. As a first approximation, Haversian''2versianbone is considered 1o be fully saturated, having only

bone can be modeled as a linear, isotropic, elastic medium thro%ﬁond pone-matnx phaS.e and a fluid ph.ase with no arr v0|ds..The
which a periodic array of fluid-filled Haversian canals pésig. Spective volume fractions of both fluid anq solid phases in a
2)?. A macroscopic bone specimen under consideration will oEYp'CaI unit cell )5 are represented as follows:

cupy a domain()g in three-dimensional space and can, for sim-

plicity, be idealized as exhibiting a periodic microstructure in that

the specimen is formed by continuous repetition of the unit cell

Qs=Hi3:1]0,)\i[, where\; are the dimensions of the cell. Physi-

cally for Haversian bone, the unit cell would be the material struY2 4 X, A
ture associated with an osteon as shown in Fig. 1. Two distir

length scales will be considered in the present analysis: the bc ey
specimen length scale£1-10 cm) and the Haversian/osteona SEamen
micro-scalex ~ 100 pm. SeETEY

A material point in an undeformed unit céll is specified by e
its local microscale material coordinat&s while the same point s
in the deformed unit cell is located by its spatial microscale coa o
dinatesx. Similarly, on the bone specimen length scale, the L SR
grangian and spatial macroscale coordinates of a reference pi see

in Qg are denoted, respectively, b andy. On both micro and
bone specimen scales, displacement vectors relate reference pc

. X b
in the undeformed state to those in the deformed state: 8) )
x=X4+u(X) microscale; (&) Fig. 2 a) Idealized transverse section through Haversian bone
with lamellar structure neglected and bone matrix treated as
y=Y+u(Y) macroscale. @ linear, isotropic, homogeneous elastic medium; b ) finite ele-

ment mesh of unit cell model with 4% Haversian porosity. To

2The study of Cooper et al1966 [30] on canine femur specimens indicates thatestlmate poroelastic model coefficients, five strain-controlled

Haversian canals are in reality approximately 50% filled with endothelial cells af§Sts were performed on this model: (1) undrained £13#0; (2)
osteoblasts. The effects of these soft tissues in the Haversian canals are neglectéd@ifained €33#0; (3) undrained y;,#0; (4) undrained y,3#0;
this analysis, although they are discussed subsequently. and (5) drained &,;#0.
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e Vsoid . Vi @ =E(V VYY) (80)
MV gorigt Viia M9V goiiat Viig 2 Y
where ¢giq and @gig SUM to unity. In (8a) n represents the unit outward normal vector from the

. . . edges of Haversian canals, directed into the bone matrix.
Microscale and Macroscale Bone Kinematics. On the do- Macroscopic stresses(Y) in Haversian bone are simply spa-
main of the unit celk)4, the micro-scale dlﬂj)lacement field in the;y, averages of the microscale stras€X), which can fluctuate
bone matrix is denoted by¥(X),VXe Q3™ and similarly the qyjite significantly withinQ), due to material heterogeneity. When
micro-scale f(ljl_gplaceme_nt field in the Haversian fluid byeferring to macroscopic stresses, there are at least three possibili-
u'(X),VX e Q. The micro-scale averages of the solid and fluigies for describing their apportionment between the fluid and solid
velocity fields over their respective portions Qf are computed: phases: the total average stress in the medium at a palenoted
o(Y); the average stress in the solid bone maéfikY); and the

V= f vi(X)dQSq; V= f VIX) A5, average stress in the fluid’(Y). Mathematically, the average
Vsoid J 3, Viid J 03 stresses in the matrix and fluid phases are, respectively:
3) L
The total volume-averaged velocity on the micro-scale provide?=v . *(X)dQgpiig; EJ:V . f o(X)dQqyig;
what is called theotal velocityof the medium: solid J Qg1 fiuid J Qg5 ©
V(Y) = bsoidV™+ bruiaV" 4 , _ ,
VIY) = bsoid™+ buid @ 1he average fluid pressuréip related to the averaged fluid stress
This expression can be rewritten in a more useful form as followssnsor as:
V(Y)=V+w (5) 1
Hf f
=—ctr(o 10
in which P=m3t o
W= yig(V = Vo). (6) The total average stresses at a pafnin Haversian bone are the

_ ) _ ) volume-weighted sum of the stresses in the fluid and solid phases
Written this way, the average velocity of the medium has two o _ _
components: the average velocity of the bone matfiand the 0= 000"+ Piuig0 (11)
so-calleddischarge velocityv which represents the average rela- | . .
tive velocity between the fluid and the bulk medium per unit gro%é%;}mh shows that any two of the three average stresses uniquely

cross-sectional area, and is an indicator of instantaneous fluid fI6&%€ MN€ the third.
in the bone. A PoroElastic Constitutive Model. On the length scale of a

It can be shown that the net rate of volumetric fluid flow pefew centimeters, Haversian bone can for most physiological load-
gross unit volume into a local region about a macroscopic pointings be modeled as a linearly elastic poroelastic continuum whose
represents a rate of change in volumetric fluid-content which éserage stresses, strains and change in fluid content are related by
denoted by and is available from the both the microscale fluxa Biot-type constitutive mod¢B1,32. The state of average stress

and the macro-scale divergencevaf in the bone specimen about a macroscopic p¥irtan be quan-
1 tified by the components of the symmetric averaged stress tensor
.~ f_ _ defined in(11), and the state of average deformation in the me-
= n- (v —v3)dr 78
¢ frﬂuld (V=V9)dl g (72) dium by the six components of the averaged strain tensor defined
in (8):
=—W-W (7b) -
_ 0=[011 0 033 023 031 01p] (12a)
IW; S
=- (9_YI (70) €=[e11 €22 €33 Y23 Va1 V12 (120)
I

The locally averaged fluid pressure in the medium in the neigh-
Eorhood of a macroscale poit is quantified by h and the
change in fluid content in that same neighborhood.bijhe seven

; ; . : .macroscopic stress variables can be related to the seven macro-
versely, under loadings applied relatively slowly or with Suﬁlscopic strain and flow variables through the linear mathematical

ciently “long duration,” there is ample time for the fluid to over- lationshio below. a variation of which w fainally or 4
come viscous and inertial forces that resist flow. However, on&%a onship below, a variation o ch was originally propose

excess fluid pressures have been relieved, flow ceases once a Xir‘?,"Ot (1947 [31}:

Under “very rapid” loadings applied to Haversian bone, ther
is insufficient time for the fluid in the canals to overcome th
viscous and inertial forces that resist flow, and thius 0. Con-

such thatw=0. The response of bone during rapid loading in o C G| [z
which no flow occurs is termedndrained whereas the response _f}:[ T . ? (13)
of bone in which the fluid carries no excess pressures from ap- P G' z]l{

plied loadings, is termeéully drained These two cases provide

S ) . aﬁ] which, the terms oC, a symmetric &6 matrix, comprise the
limits between which bone features a response that is partigf|{qrained poroelastic stiffness tensor of fluid-filled bone, Gnd
drained with fluid flow and pressure relaxation occurring.

6X 1 matrix, captures the coupling between change in fluid con-
Microscale and Macroscale Stresses and Strains.The mac- tent and change in total stress, and Z, a scalar, isstbeage
roscopic strain rate in the bone matrix can be related to the nfitodulusthat denotes the coupling between change in fluid pres-

croscale strain rate field and the macro-scale velocity field as f§ireé and change in fluid content with strain held fixed. These
lows: moduli are generally dependent upon the stiffness properties of

the bone matrix and those of the bone fluid, and also their respec-

. .s 1 <1 s tive microstructural arrangements. An inverse expression of the
£y 000110+ - (N®V+ve@n)dlig-soid|  same poroelasticity model is
Dsoli Tfuid— solid
(83) 1_ S B ﬂ "
= @solict >+ Puoiast "™ (8b) (BT Al
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In the preceding expressio8,is the fully-drained compliance of where, using condensed notatiar{? is the resultingf macros-
the bone-matrix, taking into account the orientation and magrjale stress component in the medium due to application of the

tude of the Haversian porositf relates changes in average fluidmacroscopic!] strain component. Similarly, the six coefficients of
pressure to average matrix strains; and A is the storage complia@£@an be determined as follows:

of the medium. Generally for Haversian bone, the partitioned po-
roelastic stiffness and compliance operators would be expected to
feature transverse isotropy, due to the quasi-random arrangement

of Haversian canals and osteons within the cross-section of a Ionﬁ ) - . L
bone specimen. where ) is the averaged fluid pressure due to application of the

j" strain component.
The storage modulus Z is most easily computed using a fully-

Determination of Poroelastic Coefficients by Unit Cell drained analysis of the unit cell that can be replicated by modeling
Analysis. While techniques for experimental measurement dhe Haversian canals as devoid of fluid. In this case, under any
poroelasticity parameters for isotropic media were outlined dapplied loading it will be true that'g:0. Applying any single
cades agd33] physical measurement of these moduli remainstrain-controlled loading to the unit cell with a non-vanishing
challenging even today. As a viable alternative, microscale unidlumetric component yields the value of Z as:
cell analysis of the stresses and strains in the bone matrix and the _
Haversian fluid under both undrained and fully-drained conditions __ & : : :
can be used to estimate the constants. This approach has the ad- I no summation on j, ande{1,2,. ... (18)
vantage that the properties of the bone matrix and the pore fluid
well as their microstructural arrangements can be related to iﬁé’ﬁ
anisotropic effective poroelastic properties. Unit cell analysis )
typically performed on composite materials having periodic
micro-structure§34—-3@. The essential idea is to take the unit {=1r(€) — @spiir (€. (19)
cell, or the basic microstructural unit which repeats, and to per-

form computational experiments on it, while imposing periodic s sh in Fia. 2. th ted lastic stiff i
boundary conditions which force the unit cell to behave as if fals shown in Fig. 2, the computed poroelastic stfiness coetii-
were still embedded in the periodic medium from which it wa: lents feature square, orthotropic symmetry. T.h(.)UQh not a part of
extracted is work, the computed orthotropic poroelasticity tensor can be

The poroelastic model coefficients @f3) can be determined by tcotnverlted to a tran?vte;]rselyéflfsotroplc orf1f¢ .by tpe(fortrﬂlngt an orien-
performing experiments on the unit cell in both completehd- atonal average or the suliness coefnicients in the transverse

rained and completelydrained modes. In the former, the bonexl'x2 plane.
matrix and the pore fluid move together0), and in the latter,  Effective Fluid-Conductivity Properties. The relation be-
only displacements in the solid bone matrix need to be COﬂSIderﬁﬁben average fluid velocitig$) and average fluid pressure gra-

(p'=0). Due to the assumed periodicity of the bone’s microstruetients(10) in Haversian bone is governed by Darcy’s Law:
ture, deformation of the bone matrix on the osteonal scale satisfies

PO
GJ-:s:j jE{l,Z,...,Q (17)

ere{ here is simply the averaged volume strain associated with
e fluid cavity, computed for the special case of fully drained
ading from(8b) as:

Based on the assumed periodic arrangement of Haversian ca-

a linear-periodic decomposition: w;=—kjh, (20)
where the terms kcomprise the effective permeability tensor of
uS(X,Y):HY)AXJFUF;ef(x) (15) Haversian bone, and=hp'— p'(Y-b) is the piezometric pressure

in the medium, where' is the mass density of the bone fluid and
where ¥ is the macroscopic strain tensor defined (B) and b provides the direction and magnitude of gravitational accelera-

u%.S(X) is a purely periodic displacement field that repeats in aﬂon acting on the medium. I(20) the spatial derivatives of fi.e.,
adiacent unit cells ;] are computed on the macroscopic scale as opposed to the

In the undrained analysis, no fluid flow occurs, and the unit Cerﬁncrhoscale. bili f ian b b lated h .
of Haversian bone, as modeled, behaves as a two-phased flui rhe permeability of Haversian bone can be related to the mi-
, , I

solid elastic composite. The objective of undrained unit cell anal o ;tir#?;iria?lélgilgggmti?\e g}s;utwgrtéog gfh;?r;glrr\?c(:;:?nggillllj;?-
sis is to apply directional loadings to the unit cell, and to study the o g tha S - Yy 0SCl
g macroscopic pressure gradient driving oscillatory flow in a

;s(julggl?dag;]p;osrggnment of stresses and strains between the ﬂl(j;]lven canal, conservation of fluid mass, and the assumption of an

The generic strain-controlled homogenization problem involvégcompre?&bflle fluid Lead to i['he following governing differential
imposing a displacement field( X) =¢- X associated with a pre- equation for flow in the canal:
scribed macroscopic strain tensgy on the unit cell. Due to the ” s ) iwp ) r?h,,
heterogeneity of materials and their properties, such a uniform rvg +rvg — ——rovg=
strain field will not lead to a stress-field that satisfies local equi- #
librium conditions ¢ j=0) on the microscale. The purely peri-where \(r,t) is the fluid velocity distribution in the canal, r is the
odic contribution to the displacement fiahger(x) must therefore radial coordinate measured from the center of the canal, x is the
be computed so as to satisfy stress-field equilibrium within tteordinate variable along the canal’s axiSis the fluid density
unit cell. Once the equilibrium microscale stress fieltX) and is the angular frequency of excitation, ands the viscosity of the
strain fielde(X) are known, the corresponding macroscopic totdluid. Biot [32] has shown that the solution to this equation is

stress tensoi and the corresponding fluid pressurépin

(21)

i 1/2,
response to the applied; are computed followind9) and (10). ) o !)
Since under undrained loadings of the unit deflecessarily van- V() = ih, B —1 |exgiot) 22)
ishes, most of the poroelastic stiffness tensor components can be b Efz iR
computed straightforwardly from the undrained analysis. Specifi- lo T
cally, using the condensed notations(b®) and (13)
where R is the radius of the cylindrical canal ang@
50 =[ul(p'w)]"?is the approximate thickness of the viscous bound-
Cij:__' ie{1,2,....6 je{1.2,....8. (16) ary layer. Taking the average of the fluid velocity over the canal's
Py

cross-section provides the so-callsekpage velocitgs follows
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ih, 1 (iY2k
Vf(t):;fﬁ[sz%% expiot) (23) f NApNE S, dQ J NAp'NB 5, dQ)
0 MAB_ L
wherex=R/B=R[ 1/(p'w)] Y2 Now, letting =W, / ¢qiq, the " f NApNBs, O f NAp'NBS,,d0
effective permeability of the bone in the direction of the canals is Piuid
simply (2%)
_ $ruid| 2 11(1%%) i (24) 0 0
o |k 1o(i k) DAB— (2%)
0 f NAR,»NBdQ

In the preceding equations, and |, are the modified Kelvin
functions described, for example, in Abramowitz and Ste{@.
In general,(24) indicates that the effective permeability under f B CiBiend2 —f B GN5,dQ
oscillatory flow is a complex quantity. However, for relatively low KAB — (2%)
frequencies withk<1, the effective permeability in the canal di- m I N NAZNE d6)
rection tends toward a real valug k ¢q,qR?/8u. This recovers A =Im A=m
the well-known Scheidegger result valid when flow in the canals
is Poisueille[38]. In the analysis that follows, the Haversian ca- An— AL
nals are assumed to be aligned with the akis of the material Aext_ NTnyoydl+ | N7pldd
coordinate system such thagk k,, . The effective permeabilities fie= _— A (25d)
in transverse directions (kk,,) are determined primarily by —N*np'dl’+ | N%p'bdQ
Volksmann canals and typically have about one tenth the magni-
tude of that in the longitudinal direction. In the preceding expressions’ enotes the shape function asso-

ciated with the A" node in the mestB* is the strain-displacement

operator associated with thé"xode; 5, is the Kronecker delta

function; and M‘ denotes the spatial derivative of Nvith respect

to the " macroscopic coordinate variable. Further details on the
Poroelastic Finite Element Model(Time Domain). At the derivation of these equations, and the meaning of the individual

bone specimen scalé/\)> 1, Haversian bone can be modeled aterms can be found in Stewd@&9].

an anisotropic poroelastic medium, with properties as describe

above. Accordingly, the dynamic equilibrium of the bulk porou%

medium(both the bone matrix and Haversian fluahd that of the

fluid relative to the rest of the medium are expressed, respectiv

Poroelastic Modeling of Haversian Bone

dFrequency Domain Poroelastic Analysis. Under steady state
armonic loadings applied to bone specimens, the total and rela-
gige displacement fields in the bone can be represented as the real
parts of a complex harmonic oscillating field as follows:

as:
B L aly, ) =R{[U(Y)+iu(Y)]expiwt)} (30m)
w(Y,t)=R{{W(Y)+iw'(Y)]expiot)} (30b)
f
_Ef’j +pfb]__ Rjiwi_pf T W= 0 (26) Above R{ } denotes the real part of a complex variable. An alter

native polar decomposition representation of the real part of com-
plex fields is as follows:

where the range of indices i and j is 1,2,3, and for generality, body . =

forces per unit mask have been included. I25) and (26), ex- U (Y, 1) = U Y)|cog wt+ ) (31a)
pressions of the form*(),; are shorthand for(*)/dY; and are B ¢

thus spatial derivatives on the bone specimen length scale. Also, wil(Y, 1) =[w(Y)|cog wt+ ) (31b)

in (26) the operator denoted;Rs the resistivity tensor of the here the amplitudes of matrix displacement and relative fluid

medium that is simply the matrix inverse of the permeability terdisplacement at a poin are|Ug(Y)| and|w,(Y)|, and the phase

sor used in(20). ) ) angles of the displacements with respect to the applied harmonic
To facilitate structural analysis for Haversian bone, the MaCrsading ared, and 0{( .

scopic continuum equations expressed above can be re-cast In With the assumption of a complex displacement field, each of

matrix form suitable for finite element implementation. There arg . «iv nodal unknowns in Eq28) can be represented as complex

a number of possible numerical implementations of the precedi(}griable. Under harmonic loading of a bone specimen, the dy-

coupled fluid-solid equations of motion. Here a displacemeptnic steady state matrix equation becomes, in analogy to Eq.
implementation is utilized in which the basic unknowns at ea 8)

nodal point in the continuum will be three components of soli
displacements, and three components of fluid displacement, rela- [— 0®M+iwD+K]-d=f (32)

tive to the solid. Hence there are six unknowns, or degrees of . ) ) )
freedom at each node. Thus under harmonic loading applied to the specimen at a fre-

quencyw, the steady state response of the medium is obtained by
da=[0 Tp Us Wy Wy W] (27) solving Eq.(32). . .
In the complex poroelastic bone model, a complex displace-
Accordingly, the matrix equations of motion for all degrees oment field gives rise to complex stress and strain fields in the

freedom associated with the"node in the mesh can be writtenbone. The peak value of stored energy in the poroelastic bone
as follows: model during steady state oscillations is simply the strain energy

in the medium associated with total stresses and strains that are
acting in phase with each other:

Pluid

MAB. dg+ DAB. dg+ KAB. dg =3 (28)
1 _
Specific expressions for the different matrix operators are as fol- Us:f ZFkEk[1+cos( O — 6¢)1dQ (33)
lows Qg
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where oy andzy denote, respectively, the absolute values of thEable 1 Computed effective poroelastic moduli for Haversian

Kt stress and strain components at a p¥inwhile 67 and ¢ are bone with_material assqmptionsAand B. All poroelastic moduli
their respective phase angles. Conversely, the total energy digéllt-Spec'f'Ed have vanishing values.

pated in the poroelastic bor)e model per cycj?a'd_the. irreversible. Material Assumption A
work done b_y drag forces in the bone matrix against the flowing Eponematri= L1 GPa; Vpgnematrie= 0-39; @yoigs= 0.01
}/e};scule'lr fluid. For the complete model, this is computed as Undrained Poroelastic Moduli in GPa (Orthotropic)
ollows: Cp1=C,y=17.33; Go=C,;=10.30; Gu=Css=4.016;
Cae=19.02; Ga= Cy,=10.65; Ge=23.922;
_ 2 . Cya=C3,=10.65;
Ug=(70) jﬂ WiRw;d€L (34) Pore-Pressure %:ouplilng Coefficients in GPa
s G,=G,=—6.252; G=—5.164;
In viscoelasticity theory the quantity tafis a useful indicator of _,_,_ .. Storage Modulus in GPa
the energy dissipated per radian, normalized by the peak ene?gy o ] )
stored per cycld40]. Using the quantities defined i(83) and . 1'\2/""(‘;%25}' Assumptlgrgg o 0.04
i i i it bonematrix_ » Vbhonematrix— V-390, Pyoids™ Y-
(34), tan & is easily computed from its definition Undrained Poroelastic Moduli in GPa (Orthotropic )
Uy Cy1,=C,,=20.06; G,=Cy=12.13; Gu=Css=4.016;
tand= . (35) Cs3=20.92; Gs=C5,=12.30; Gs=3.922;
2mwUs Cps=C5=12.30;
) ) ) Pore-Pressure Coupling Coefficients in GPa
Peak Fluid Pressures and Shear StressesSince it has been G,=G,=—6.618; G=—5.390;
postulated that bone cells might be responding to fluid pressure_or Storage Modulus in GPa

fluid shear stresses when positive bone adaptation occurs in cbn-20-63;

junction with a specific loading program, it is useful to compute
both peak fluid pressures and peak fluid shear-stresses from bone
poroelasticity models. Under harmonic loading, the fluid pressure

at any pointY € Qg will be a complex quantity given simply by yajyes are consistent with the range of accepted values typically
Eq. (24) when all strains and are complex. The absolute magni-rgported in the literaturf29]. Thein vivo fluid phase in Haversian
tude of the complex pressure ¥tis the peak macroscopic fluid hone is blood, whereas that in related experimental studies by
pressure at that point, and the phase angle of the complex pressiséner et al[41] and Buechner et aJ42] we model(Section 5
determines the degree to which it is in phase with the applie@jine which has a bulk modulus of 2.1 GPa, a vanishing shear
harmonic loading. modulus, and a shear viscosity equal to that of water at 20 °C or

Since the poroelasticity model does not directly provide ﬂUigpproximately 10° Pas. The effective poroelastic coefficients

shear stresses, they must be computed from drag-forces betwggl hermeanility coefficients for assumed material properties A

the vascular fluid and the Haversian canal walls. In particular, the,§ B are presented below.
drag forces per unit volume of the porous medium exerted by t €Using the unit cell finite element analysis modElg. 2b, the
I—!aversian fluid on the walls of the Haversian canals are giveerffective poroelastic modulin units of GPa of the model in(13)
simply by: have been compute@able 1. Here, the longitudinal direction of
Farag= R-W (36) the Haversian canals is taken as aligned with thec¥ordinate
) . axis. The modeled effective poroelastic compliafi® of bone is
The drag forces per unit volume are created by cumulative shediained by inverting the effective stifiness as representétian

stresses acting in the Haversian canals, for a fixed volume §hecific compliance values associated with the stifiness coeffi-
cortical bone. Taking into account both the size and volume fragrants in Table 1 are as shown in Table 2.

tion of the channels that blood flows in, the average wall shearpor material assumption B, the effective moduli of Table 1
stress in the Haversian canals at a given time and macroscopigicate that when the saturated Haversian bone model is strained

locationY is given by the relation: uniaxially in the longitudinal direction in an undrained manner the
IR-W|R resulting pore fluid pressurgn GPa in the Haversian canals is
T(Y)zz—" (37) —5.3%3;. Conversely, under undrained conditions, transverse
Prluid

where R is the radius of the Haversian candgsjs the medium’s
resistivity tensor and the inverse of the permeability teks@nd ) ) .

¢uiq the associated volume fraction of the Haversian canals. Uth'jll.)"I3 2 CoT.p“teg eﬁ§<l:3t|v:||poroe||§st|c Comf“ancf’f.s LOL ma-
der steady-state harmonic loading where complex analysis is p af}]ai‘sﬁisg“;”aﬁ’u'ggs and b. All compliances not specitied have
formed, this shear stress will typically be complex, indicating bot i

its magnitude and phase angle with respect to the excitation. Material Assumption A

Above, the absolute magnitude of this shear stress is taken.

Fully Drained Poroelastic Compliances in GPa* (Orthotropic )

. . S11= S$,,=.1062; 9= S,;= —.03611; 4= S55=.2810;
Results of Poroelastic Computations Sy3=.09261; $3=Ss= —.03520; S6=.3042;
Sia= S3= —.03520;
Material Properties. In healthy human cortical bone, the Pore-Pressure Coupling Coefficients in GPa
Haversian porosity typically falls in the range of 1-5%, and thB1=B,=.001489; B=.002213; 9
typical Haversian canals have diameters ranging from 1@40 oo Storage Compliance in GP&
[30]. In this study, two different assumptions are made regardiﬁgf' ' Material Assumption B

the bone matrix stiffness and Haversian porosity. In assumption A, gyly prained Poroelastic Compliances in GPa* (Orthotropic )

the collagen-hydroxapatite bone matrix is assumed to havesg=Ss,,=.09262; $,=S;1= —.03349; S4= Ss5=.2490;
Young's modulus of 11 GPa and a Poisson’s ratio of 0.39, whifs=.08683; 95= Spo= —.03297; $6=-2550;
the Haversian porosity is assumed to be 1%, and the mean diam- Pore-p Sléz S3|1_= _C'OS%??" in GPal

eter of Haversian canals is assumed to beudf In assumption o _p _ (g 2= " ressUre oé‘i'%%lo%i_'c'ents n

B, the bone matrix is assumed to have a Young’s modulus of P37 " Storage Compliance in GPa™

GPa, a Poisson’s ratio of 0.38, a Haversian porosity of 4%, andha .003584;
mean diameter of the Haversian canals of 4. All of these
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Fig. 3 a) Finite element model of prismatic cortical bone specimen; b ) Hav-
ersian canals oriented in alignment with longitudinal axis of specimen; ¢ )
Haversian canals oriented transverse to longitudinal axis of bone specimen.

uniaxial strain gives a pore fluid pressure 66.62(, Or &5,). Time Domain Fluid Pressure Relaxation Behaviors. When
Pure shear strains in any of the coordinate planes do not give rése external mechanical load is applied very rapidly to saturated
to any pore fluid pressure. Haversian bone, both the solid bone matrix and the Haversian

When a transverse uniaxial compressive Stig§sor o, Or i  fiyid initially share the load and thus contribute to the overall
applied to the modelmaterial assumption Bthe change in fluid giiffness of the medium. If the boundaries of the bone specimen
content necessafper unit applied stregso relieve fluid pressure permit drainage, the fluid will flow toward the draining bound-
is B,=B,=.006974 GPa'. Alternatively, for compressive aries, resulting in the dissipation of fluid pressure in the Haversian
stresses applied in the longitudinal directiogy, the reduction in _|ymens. As this occurs, the Haversian lumens contract, resulting in
fluid content required to relieve the fluid pressure ig Bjy g|ignt stiffness reduction of the bone. Also, as the fluid flows to
=.001034 GPa'o;. Thus, the model predicts that transversgne boundaries, the work done by viscous drag forces between the
stresses applied to Haversian bone have the potential to genefgjg and solid phases results in dissipation of mechanical energy.
significantly stronger flows in the Haversian system than dfne related phenomena of stiffness relaxation and energy dissipa-
stresses applied longitudinally. _ _ tion associated with fluid flow contribute to the apparent vis-

For material assumption B, the inverted compliances' S coelastic behavior of Haversian bone. Of course, fluid flow in
= S;zl of the model yield a fully drained Young’s modulus of boneHaversian canals is only one of a number of dissipative viscoelas-
in the transverse direction of 10.8 GPa. In the direction aligneit mechanisms in bone. Others include the inherent viscoelastic-
with the Haversian canals;$=11.57 GPa. Since the nominality of the cement-line material between osteons, molecular mo-
value of the bone matrix Young’s modulus associated with mattiens in collagen, and fluid flow both in the canalicular-lacunar
rial assumption B is 12 GPa, it is seen that Haversian canals witlistem and within the nano-pores of the hydroxapatite bone ma-
a 4% volume fraction produce larger reduction in transvergex.

Young’s modulus than in the longitudinal Young’s modulus. This In the experimental study reported by Garner ef4d], cylin-
result is consistent with results that would be produced by otherical bone specimen@mm by 17mm harvested from the corti-
micro-mechanical analysis techniques for composite and/or hetl region of a human cadaver’s femur were completely restrained
erogeneous materials. on their lower surface. The physical bone specimens were satu-

Under the assumption of Poisueille flow, the absolute hydrauliated with water, and then subjected to dynamic bending and tor-
conductivity in the direction of the Haversian canals would be, ision tests over a wide range of frequencies. Continuous bending
accordance with Scheidegger’'s result, approximately 1.2Boment versus curvature measurements and continuous torque
10" m? for material assumption A and approximately 3.Q/ersus twist angle measurements were recorded and used to com-
-10~12 m? for material assumption B. In transverse directions, theute total rates of energy dissipation in the bone specimen. The
estimated permeability would be about one tenth that in the loresponse of the cortical bone was measured both when the Hav-
gitudinal direction, due to Volksmann canals and also randoméysian canaléand thus the direction of greatest permeabjilitere
oriented canaliculi. These estimates are actually in quite goafigned with the long axis of the cylinder, and also when the
agreement with the measured conductivities of human cortigahversian canals were transverse to the longitudinal axis of the
bone reported by Rouhana et &3] which ranged from 1.5 cylinder. Similar experiments were also performed and reported
1078 m? to 5.7210 B m? in the longitudinal direction, and by Buechner et al[42] on rectangular prismatic bovine bone
from 1.3 10" m? to 5.5 10 ** m? in the transverse directions. specimens where size effects were investigated.
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Fig. 4 Computed fluid pressure relaxation responses in the model of cortical bone specimens
for both sets of poroelastic properties, and for both longitudinal and transverse orientation of
the Haversian canals. A uniaxial stress of 1 MPa was applied to the bone model. When the
Haversian canals are oriented longitudinally in the prismatic bone specimen, initial fluid pres-
sures are smaller but pressure relaxation takes longer.

A numerical modelFig. 39 of the rectangular prismatic speci-material assumption A experiences pressures with relative magni-
mens was created by discretizing a parallelepigéchm by tudes of 4.5% and 22% in relation to the applied axial stress on
6.4mm by 41mminto a mesh of hexahedral trilinear poroelastithe bone specimen. Under material assumption B, the peak pres-
finite elements(40 layers of elements with 100 elements pesures under longitudinal and transverse loadings are again, respec-
layen. In this bone-specimen model, both a longitudinal antively, about 4.5% and 20% of the applied stress magnitude. When
transverse orientation of the Haversian canals were consideredhasload is first applied to the bone specimen, there is a essentially
shown in Figs. 3b and 3c. This numerical model was employedstate of uniform uniaxial stress in the bone model, and the as-
first to compute the consolidation response of the cortical bonedociated fluid pressures can be found directly from the linear po-
a step function loading of 1 MPa in order to note the characteristicelastic models of Eq$13) and(14) and the material properties
times required for the fluid pressure to decay. The same modelnd from unit cell analysi¢Tables 1 and 2 These results make
was subsequently used to compute steady-state dynamic bendiirdear that uniaxial stress loadings in directions orthogonal to the
responses of poroelastic bone over a wide range of frequenciesHeawersian canals have the potential to generate larger Haversian
the dynamic bone-specimen computations, a rotation was applfedd pressures and stronger load-induced flows.
to the free end of the prismatic bone specimen at prescribed freor the material assumptions invoked in the computational
quencies, and for each frequency, the steady state response oflbeels, and for the assumed specimen size, the computed Haver-
bone-specimen was computed. sian fluid pressure relaxation times range from approximately

For both material assumptions A and B the consolidation beo~8 seconds to 10° seconds. These relaxation times are gener-
havior of the rectangular, prismatic specimen described above waly consistent with the relaxation times of order $Gseconds
computed. The computed volume-averaged pore fluid pressuggsimated by Zhang et di27].
have been plotted versus time with both the longitudinal and ) ) ]
transverse orientations of Haversian canals in the prismatic speciResults of Harmonic Loading Computations. The peak
men (Fig. 4). Inertial effects were neglected in these pressufélid pressuresFig. 5 and peak fluid shear stres€€sg. 6) in the
relaxation computations, and the uniformly applied surface traBone model were computed with each freque(fg. 5. At each
tion remained constant for the duration of the test. When initialffequency — considered, the peak bone bending pressure
applied, the surface traction is supported by both the solid af*{— 1/3 (c11+ 0+ 0391 was used to normalize the peak
fluid phases within the bone. The behavior of the bone immedione fluid pressure, and the peak fluid shear stress at that fre-
ately after the load is applied represents the undrained, short-tegtrency. The computed resuliig. 5 indicate that the ratio of
response of the material. When loaded respectively in the longieak fluid pressures to peak bone pressures start out very small
tudinal and transverse directions, the undrained pore fluid und€@(10 '—10 %] at 1 Hz and increase linearly with frequency
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Fig. 5 Computed peak Haversian fluid pressures versus frequency for material assumptions A
and B, and both transverse and longitudinal orientation of the osteonal bone in the prismatic
specimen model. At each frequency, the computed fluid pressures have been normalized by
the peak bone pressure in the corresponding model at that same frequency.

through approximately 10 kHz. Beyond 100 kHz the ratio of peghressures, under bending with Haversian canals oriented trans-
fluid pressures to peak bone pressures are consistent with weisely to the long axis of the prismatic specimen, are consistently
would be seen in the fully undrained behavior of cortical bondarger than fluid pressures under longitudinal orientation of the

While the pressure relaxation results of Fig. 4 indicate that fulldaversian canals. Conversely, at lower frequencies, loading of the
undrained behavior occurs only above 1 MHz, it is postulated hebene in the direction of the Haversian canals generates larger
that breakdown of Poiseuille flow leads to “undrained” behavioHaversian fluid pressures, presumably because of the larger fluid
at “lower” frequencies. Above 100 kHz the computed bone fluidirainage distances and relaxation times in the long direction of the
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Fig. 6 Computed peak Haversian shear stresses versus frequency for material assumptions A
and B, and both transverse and longitudinal orientation of the osteonal bone in the prismatic
specimen model. At each frequency, the computed fluid shear stresses have been normalized
by the peak bone pressure in the corresponding model at that same frequency.
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Fig. 7 Computed peak bone pressures versus frequency for material assumptions A and B,
and both longitudinal and transverse orientation of osteonal bone within the prismatic speci-
men model. For each model, the computed dynamic peak bone pressures have been normal-
ized by the static peak bone pressure for that same model.

bone specimens. Peak Haversian fluid shear strésgs6) in- can be generated at physiological frequencies. For example, to
crease linearly in proportion to both the excitation frequency amgknerate excess Haversian bone fluid pressures of 1 Pa at 1 Hz, a
the load magnitude up to a frequency of 100 Hz for materigbading of approximately 10 MPa would be required, while at 100
assumption B, and up to a frequency of 10 kHz for material agtz, a loading of only approximately 0.10 MPa would be required.
sumption A. In the quasi-static range of responses, the modeled peak fluid
In the experimental study of Garner et [al1], saturated human shear stresses in the Haversian canals increase linearly with the
cortical bone specimens described therein were subjected to apagnitude of loading applied to the bone, and also linearly with
ries of harmonic pending and torsiqnal loadings to measure the frequency of the excitation. Recent vitro experiments by
rates of energy dissipation. In particular, tarvalues were re- jacops et al[26] have shown that chick osteocytes respond to
ported based on the measurements. Both water-saturated SpeQljjiatory fluid shear stresses of 2 Pa, resulting in alterations of
mens, and moist, non-saturated specimens were tested, with gz ce|ylar calcium concentratioripossibly related to remodel-
s o e < bno i responsas hese responses e a east consstent wih tre
- L . ; o 'Wotion that osteocytes could be sensing cells which then somehow
Statistically significant differences in taicharacteristics between . - ; ;
the moist and saturated bone specimens, if they were appar H{nmumcate the mechanical environment to _resp(_)ndlng cells
could provide indirect confirmation of load-induced fluid flow in e.g. ostepblas)sShear gtressgs of similar magnitude in the H"’}V.'
ersian fluid can be achieved in the proposed bone poroelasticity

bone, which is hard to confirm directly. . - .
The computed tars versus frequency responses of the bon@odels a number of possible ways by varying both the magnitude

specimens with material assumptions A and B for both longitudid loading of the applied excitation. Using the results and con-
nal and transverse orientations of the Haversian canals compa?t&fts of proportionality indicated by Fig. 6, shear stresses of 2 Pa
to experimentally measured values reported by Garner g4#. could be achieved by applying bending excitation with a peak
(Fig. 8). As expected, the computed tarvalues are substantially bending stress of 10 MPa at a frequency of 1 Hz, a peak bending
larger at frequencies above 1 kHz than below, with favalues stress of 1 MPa at a frequency of 10 Hz, or even a bending stress
under transverse orientation of the Haversian canals larger thdrl MPa at a frequency of 100 Hz.

those under longitudinal orientation. The computed response ofThese model-based observations are premised on the notion
the prismatic bone specimens is essentially quasi-static up to that the Haversian canals are devoid of soft tissue and have semi-
first resonant frequency at approximately 1 kHz, and beyond thiggid boundaries. The micrographic study by Cooper indicates that
the bone model experienced numerous different resonance mottese assumptions are not strictly true since soft tissues fill at least
as shown by the spikes in normalized bending strefSigs 7).  a substantial portion of the lacunae and Haversian c48@]sTo

The computed values of tafi (Fig. 8) are clearly much smaller what extent these tissues would impair fluid flow is unknown. It is

than those measured experimentally by Garner et al. worth noting that based omm vitro permeability experiments on
' . fresh cortical bone reported by Rouhana et[dB], fresh bone
Discussion of Methods and Results specimens had absolute permeabilities of order 10

The model results of the preceding section indicate that bongl0™ > m”. However, over many days of water flowing through
fluids in the Haversian system flow quite freely at physiologicall{he bone specimens, the permeabilities gradually increased until
meaningful frequenciegl-100 H2 making it difficult to build up they reached final values approximately one to two orders of mag-
large load-induced fluid pressures in the Haversian system at sudtude larger (10— 10 12 m?). Itis indeed conceivable that the
frequencies. Nevertheless, very moderate load-induced pressumégl lower permeabilities are indicative of tha vivo perme-

34 / Vol. 125, FEBRUARY 2003 Transactions of the ASME



0.1

A - transverse
- [—— A - longitudinal
S | —— - B - transverse
—-—-— B - longitudinal
==——=-=- exp. - longitudinal
g | ==---- exp. - transverse
S
w
=]
«
= 4 .
< (AN
S ’
n +?
A -
’r~ ~. " ——— ’ ’.
~a -
g R
s |t ————an .
= —] —
(] 5 1 5 2
10 10 10

Frequency (Hz)

Fig. 8 Computed tan & versus frequency for material assumptions A and B, and both longitu-
dinal and transverse orientation of osteonal bone within the prismatic specimen model. The
computed values are compared with experimentally measured tan 6 by Garner et al. (2000).

abilities associated with Haversian bone, and that the later perntlee magnitude of computed peak fluid pressures and shear stresses
abilities are indicative of those that occur only when all of the soét a given excitation frequency will always be in proportion to the
tissues have been washed out of the Haversian canals. On rifegnitude of loading applied to a given specimen model. In Figs.
other hand, when bone specimens are cut by saw for experimestaind 6, we have for each frequency normalized both the peak
a good deal of the bone architecture in the vicinity of the cut cafuid pressure and the peak fluid shear stress in the specimen
be disturbed, and residue from the cutting can possibly clog Haviodel by the peak mean normal stress in the model at that fre-
ersian canals, leading to unrealistically low fluid conductivityjuency. Since many of the loading frequencies considered were
measurements until the residue from cutting the bone has bggal above the fundamental frequency of the bone-specimen
flushed out. ] _“model, the computed responses were highly dynamic in that iner-
If we had, in this effort, modeled the Haversian canals as beifg| forces within the specimen were very significant if not domi-
partially filled with soﬁ tissues, the frequencies at which peaks ifjant. 1n the highly dynamic range the structufas opposed to
tan 6 and also peaks in fluid pressure occur could be as much @sieria) stifiness characteristics of the bone specimen model are
two orders of magnitude smaller than computed herein. It is fug rongly frequency dependent and as a result the fluid pressures

ther acknowledged that if the model were to account for partighy f,ig shear stresses induced in the bone model will depend
filling of the Haversian canals with soft tissue, the computed&tanupon the mass and stiffness characteristics of the specimen being

values could also be modified significantly. considered
Osteons tend to spiral about the long axis of bopet-4, As it is very difficult to measure fluid flow, and fluid stresses on

although they are far more aligned with the Idd®] than trans- . ) ; ;
verse axis even in those bones where this feature is prominent %lngj diTécr?hS::;eqL?;n?i?il atr):r;litsep:sﬁlly\?gzﬁgcrilccjairggrli?r?er?é rlllsrr:lr(]:
well documented(e.g., the femur Furthermore, the notion of J]ated experimental work by Garner et f1] and Buechner

spiraling of osteons is controversial, and some authors have foui G .
P J ! ttﬁ al.[42], the rate of energy dissipation in the bone at different

no such effect§49,50. In any case, such spiraling would no ! ¢ L i db d
likely have a major effect because the alignment differencf?quenc'eS of excitation, as manifested by tawas measured.

would be no more than 5-15 degrees. Any resulting changes to uN€ current computations the first calculated peaks irdtig.
model results would lie between those for the longitudinal arfdl ©ccurring below (f10° Hz) correspond to peaks in mean
transverse orientations of the Haversian canals, but closer to e stresgFig. 7) associated with resonance of the bone speci-
former. Were the effects of spiraling osteons important to ascertdlieh- Only two apparent true peaks in tamssociated with fluid
such effects could certainly be modeled at the whole-bone scaf®w are seen in the model results of Fig. 8. The first occurs for
In general, the branches of osteons are aligned closely to fh@terial assumption A under transverse loading=at® kHz, and
long axis of the bone, and as with the spiraling of osteons, woui@e second occurs for material assumption B under transverse
not likely have much effect as a result of orientation alone. Thdgading at =200 kHz.
would, however, have the tendency to promote what we haveSince the current work deals only with fluid flow in the Haver-
termed transverse “drainage” or flow in the borfin fact, this is  sian system, and the associated energy dissipated therein, it is not
the reason for our use of a transverse permeability roughly onecessarily surprising or disturbing that the gwalues computed
tenth that in the longitudinal directiohGiven that branching ap- herein are much smaller than those measured in experimental
pears to involve a relatively smalperhaps less than 5-10%f work. As additional mechanisms are included in the bone po-
the length of the ostedm4], we suspect the gross effect on stresgelasticity models, such as fluid flow in the canaliculi, and in the
gradients and flow would be of that same order. hydroxapatite matrix pores, it is anticipated that the models will
Since the numerical model presented is mathematically lineampre closely resemble the experimental observations.
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It is interesting to note that macroscopically, load-induced fluigiz) with bone stresses in the range of (30L0° Pa). If it could
flow in the Haversian system of cortical bone has only a negle verified that osteocytes do indeed respond to oscillatory fluid
gible effect in terms of the effective viscoelasticity associated witkhear stresses of this magnituidevivo then the hypothesis that
pore pressure relaxation effects. However, bone poroelasticityid shear stresses on bone cells are an important mechano-
models can yield potentially useful information on phenomerigansduction mechanism in the phenomenon of bone adaptation
occurring within the bone during loading. Here, attention has be#puld be strengthened.
focused on the fluid pressures and shear stresses generated in the
Haversian system during loading of cortical bone. In a followin
work a hierarchical bone poroelasticity model will be presente%Ckr‘OWk?‘dgements
and applied to compute representative fluid pressures, shearhe authors wish to gratefully acknowledge financial support
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