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Abstract

Chiral three-dimensional isotropic cubic lattices with rigid cubical nodules and multiple
deformable ribs are developed and analyzed via finite element analysis. The lattices exhibit
geometry dependent Poisson’s ratio that can be tuned to negative values. Poisson’s ratio de-
creases from positive to negative values as the number of cells increases. Isotropy is obtained
by adjustment of aspect ratio. The lattices exhibit significant size e↵ects. Such a phenomenon
cannot occur in a classical elastic continuum but it can occur in a Cosserat solid.

Preprint adapted from Ha, C. S., Plesha, M. E., Lakes, R. S., ”Chiral three-dimensional isotropic
lattices with negative Poisson’s ratio”, Physica Status Solidi B, 253, (7), 1243-1251 (2016).

1 Introduction

Chiral materials and structures do not have a center of symmetry. There is a distinction between
right and left so they are not invariant to inversion of coordinates. Quartz is a crystal that is
chiral at the inter-atomic level [1]. There is left and right quartz. Chirality may also be designed
in composites on various length scales. A planar chiral lattice with Poisson’s ratio -1 [2] was
developed. The cell size was several centimeters. Poisson’s ratio was -1, essentially independent
of strain, via experiment and analysis. In contrast, negative Poisson’s ratio of (3D) foams [3]
and of (2D) honeycombs [4] with inverted hexagonal cells of bow-tie shape depends on strain.
2D structures with rotating hexamers and trimers [5] can exhibit negative Poisson’s ratio of large
magnitude. Negative Poisson’s ratio materials have been called “anti-rubber” [6] or “auxetic” [7]
[8].

Chiral 2D lattices have been analyzed for use as structural honeycomb [9] [10] that may be used
in sandwich panels for airplane wings that morph or change shape. Buckling [11] [12] deformation
of lattices of this type has been studied in a structural context. Lattices have been made with
sensors and actuators [13]. These are referred to as smart structures. The lattices exhibit tunable
band gaps [14] in wave propagation; potentially useful in reducing vibration.

Three dimensional lattices provide design freedom in contrast with foams [15], the structure of
which is a consequence of the foaming method. 3D lattices with triangulated cells are sti↵er than
foams made of the same rib material. The reason is the ribs in the triangulated structure deform
axially rather than in bending [16] as they do in foams. A negative Poisson’s ratio 3D model was
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developed [17] in order to elucidate the deformation mechanisms of ↵-cristobalite [18], a negative
Poisson’s ratio form of silicon dioxide. A 3D structure containing corner-linked cubical nodules was
developed [19] to model structure property relations of an auxetic microporous polymer [20]. 3D
lattices with a negative Poisson’s ratio [21] have been designed and fabricated.

Continuum mechanics is used when the size of an object is su�ciently larger than the size
of its microstructure. In most analyses of cellular solids (e.g. [15]), the continuum is classical.
Classical elasticity has no length scale. If the cell size is not small compared with length scales
associated with the object or with strain gradients imposed on it, then it is sensible to use a more
general continuum model. Cosserat (micropolar) elasticity [22] is a continuum elasticity theory
which contains a length scale. Chiral 2D lattices [2] have been analyzed [23] [24] in the context of
Cosserat elasticity.

In the present research, 3D chiral lattices [25] with cubic structure are designed to be elastically
isotropic. The rationale of having isotropy is that it provides a simpler interpretation. Also, any
novel or unusual e↵ects in an elastically isotropic solid cannot be ascribed to directional anisotropy.
Size e↵ects are studied and interpreted via Cosserat elasticity.

2 Analysis

Lattice structures were designed using the same finite element analysis (FEA) approach as we have
done previously [25], using the FEA program ANSYS (release 14.5). Here the ribs are made thicker
than in [25] and the aspect ratio is tuned to obtain elastic isotropy. Lattices were designed based
on the unit cell (1x1x1) shown in figure 1a. This cell was constructed using eight essentially rigid
cubes at the corners of the cell (with cube side length a) and numerous deformable ribs (i.e., beams)
connecting di↵erent corners of cubes to one another as shown. Note that chirality is introduced
here. The center-to-center cube spacing is L, and aspect ratio of the unit cell is defined as L/a,
which is always greater than unity. The ribs are made of steel with Young’s modulus E = 200
GPa and Poisson’s ratio ⌫ = 0.3, and have circular cross section with diameter of the ribs equal
to 200 µm. The ratio of the cube side length to the rib diameter, a/d is then equal to 5. In
prior analysis [25], this ratio was equal to 100. While such a ratio reveals behavior of stretch-
dominated lattices, thicker ribs are pertinent to bend dominated structures and to the possibility
of manufacture via 3D printing. A three dimensional isotropic chiral lattice was fabricated by
fused deposition modeling (FDM) technology is shown in figure 2. A Dimension Elite 3D printer
with Stratasys ABSplus P430 thermoplastic was used here; the finest resolution is 0.178 mm. A
prototype was first designed and was represented by SolidWorks 2015 in .stl (StereoLithography)
format. Additional support materials (P400 SR) were removed by dissolving them in detergent and
water.

A finite element model for the unit cell was constructed as described in [25]. Each rib was
modeled using one beam finite element and each cube was modeled using 24 shell finite elements.
The beam finite element includes shear deformation (i.e., they are based on Timoshenko beam
theory). Nonetheless, despite the relatively low aspect ratio of the beams, `

rib

/d, in our model
(e.g., for a lattice with L/a equal to 2, `

rib

/d is 7.07), shear deformations are not expected to be a
significant source of deformation; they are dominated by bending and torsion. The elastic modulus
for the shell elements was taken to be eight orders of magnitude greater than E of the ribs, so
that e↵ectively the cubes are rigid. As such, each cube is a hollow object where its six surfaces are
discretized using four shell elements each. The merit of this treatment is that all nodes throughout
the finite element model have the same degrees of freedom, namely three translations and three
rotations, which makes it straightforward to connect the ribs to the cubes. Furthermore, by using
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four shell elements for each surface of a cube, there is a node present in the center of each cube’s
face, which is convenient for purposes of applying loads and supports. Using this unit cell, lattices
of multiple unit cells were constructed as shown in figure 1b, and various aspect ratios including
1.5, 1.8, 2, 2.2, 5, 10 and 20 were modeled.

(a) (b)

Figure 1: (a) Unit cell of chiral lattice structure (1x1x1). (b) A structure with five cells per side
(5x5x5). The aspect ratio is defined to be L/a, where L/a > 1. Note that the cubes and ribs shown
here are not to scale; ribs are shown as lines for providing a better view of chirality.

Figure 2: A photograph of a 3d-printed 5x5x5 lattice with an aspect ratio of 1.642. The lattice is
about 92 mm on a side.

To determine an e↵ective Young’s modulus of the lattices in response to axial compression
loading, equal point loads in the negative z direction were applied to the center node of each cube
on the upper surface of the lattice (the surface with positive z as the normal direction) as shown in
figure 3a for the 2x2x2 lattice. Support conditions on the opposite surface of the lattice (the surface
with negative z as the normal direction) consisted of zero z direction translation for all center nodes
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on cubes. To prohibit rigid body motion of the lattice, this surface also has the x displacement
at one node and the y displacement at one node constrained, plus one more constraint to prevent
rotation about the z direction. Thus, the bottom surface of the lattice is supported by rollers and
the Poisson e↵ect is allowed to fully develop. Note that there are other ways of applying uniform
compression loading to the top surface of our finite element models. We have chosen to apply forces
to nodes on the top surface, whereas another option is to prescribe z direction displacements. The
disadvantage with the latter case is that it will not allow warping displacements in the z direction
to develop, which we observe do occur due to the chirality of our model. Hence, among these
two basic choices for applying loading (i.e., prescribed forces versus prescribed displacements) we
believe using prescribed forces is more accurate for our purposes.

Elastic isotropy was achieved by tuning the aspect ratio such that the elastic relation E/2G(1+
⌫) = 1 between Young’s modulus E, shear modulus G, and Poisson’s ratio ⌫ is obtained. To
that end, pure shear loadings were applied to the lattices in order to determine an e↵ective shear
modulus. To model pure shear, equal point loads were applied to the center node of each cube on
the appropriate surfaces of the lattice (the surfaces parallel to the xy and xz planes), as shown
in figure 3b. The surface whose normal is the negative z direction was constrained to eliminate
rigid body motion of the lattice; namely, as shown in figure 3b, the x, y and z displacements at
one node, and y and z displacements at another node, and z displacement at yet another node are
constrained. For the present chiral lattices, E and ⌫ were obtained from a compression simulation
and G from a pure shear simulation. The quantity E/2G(1+ ⌫) was used as a measure of isotropy;
this was computed for all lattice structures, except 1x1x1 lattices, and for all aspect ratios. The
results for the 1x1x1 lattices were not used in this process because models with only one cell
are better viewed as structures. Aspect ratios resulting in elastic isotropy were determined by
fitting computed measures of isotropy (seven data points for each lattice structure) to a 5th degree
polynomial using a least-squares best fit. Indeed, a lower degree polynomial best fit would probably
be su�cient, but the merit to a 5th degree polynomial is that it is able to fit the number of data
points we have (seven) better.

Finite element simulations were performed for all lattice structures (1x1x1 through 6x6x6), and
for seven aspect ratios for each of these. The displacements and rotations of all nodes in the lattices
were computed in each finite element simulation. E↵ective strains throughout each unit cell in the
lattices were computed similar to our previous research [25] by using the polynomial interpolation

u

x

= a1 + a2x+ a3y + a4z + a5xy + a6yz + a7xz + a8xyz (1)

The coe�cients a1 through a8 were determined by fitting this polynomial to the eight x direction
displacements for each cube in one unit cell of the lattice. Likewise, this process was repeated for
determining polynomials for the y and z direction displacements, namely u

y

and u

z

. Equation
1 allows the average continuum strains throughout each unit cell to be determined by using the
standard definition of small strains

✏

ij

=
1

2

✓
@u

i

@x

j

+
@u

j

@x

i

◆
(2)

where x1, x2 and x3 correspond to x, y and z, respectively. Note that this entire process of com-
puting the e↵ective strains is identical to using the shape function [N ] and the strain-displacement
matrix [B] for an 8-node brick finite element

{✏} = [B]{d} (3)
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(a) Compression (b) Pure shear (c) Torsion

Figure 3: Loading cases for (a) compression, (b) pure shear, and (c) torsion, illustrated for 2x2x2
lattices. Support conditions (i.e., displacement constraints) are also shown. For (a) and (b), the
arrows represent equal point loads. For (c), a local X and Y coordinate system is defined on the
upper surface (i.e., the surface with positive z as the normal direction) with origin at the center of
this surface, where these directions are parallel to the x and y global coordinate directions of the
model. The arrows shown in (c) represent prescribed displacements in the x and y directions as
given by equation 11.

where [B] = [@][N ]. Thus, the e↵ective strains throughout each unit cell were determined by
evaluating equation 3 with the [B] matrix provided in [27] along with the displacements of each
cube in the unit cell obtained from finite element the simulations.

For the three loading cases shown in figure 3, the e↵ective strains of each unit cell were averaged
throughout the lattice, which gives rise to bulk e↵ective strains of the lattice ✏

lattice

in a view of
continuum. With this, one can determine mechanical properties of the lattice as follow. The
e↵ective Young’s modulus of the lattice is given by

E

z

=

P(n+1)2

i=1 P

i

A

eff

✏

lattice,z

(4)

where P
i

represents an applied point load, n is the number of cells per side and A

eff

is an e↵ective
area of the lattice which is defined as (nL)2. Poisson’s ratios for two orthogonal directions are
determined as

⌫

zx

= �
✏

lattice,x

✏

lattice,z

⌫

zy

= �
✏

lattice,y

✏

lattice,z

(5)

Finally, the e↵ective shear modulus is found as
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G

yz

=
⌧

�

lattice,yz

(6)

where

⌧ =

P(n+1)2

i=1 P

i

A

eff

(7)

When the size scale of specimens does not greatly exceed the microstructure size, classical
elasticity may not apply. A generalized continuum theory such as Cosserat elasticity is more
appropriate; the theory contains characteristic length scales. Cosserat theory of elasticity [28] [29],
also known as micropolar elasticity [22], integrates a local rotation of points with respect to each
other in addition to the usual translations assumed in classical elasticity.

The stress �

jk

(force per unit area) can be asymmetric. The resulting moment is balanced
by a couple stress m

jk

(a torque per unit area). The antisymmetric part of the stress is related

to rotations. �

antisym

jk

= e

jkm

(r
m

� �

m

) in which  is an elastic constant, �
m

is the rotation

of points, called micro-rotation, e
jkm

is the permutation symbol, and r

k

= 1
2eklmu

m,l

is “macro”
rotation based on the antisymmetric part of the gradient of displacement u

i

. The constitutive
equations [22] for linear isotropic Cosserat elasticity are

�

ij

= 2G✏

ij

+ �✏

kk

�

ij

+ e

ijk

(r
k

� �

k

) (8)

m

ij

= ↵�

k,k

�

ij

+ ��

i,j

+ ��

j,i

(9)

where �
ij

is the Kronecker delta and ✏

ij

is the microstrain tensor. In three dimensions, the quantities
�, G, ↵, �, �,  are six independent Cosserat elastic constants. An isotropic Cosserat solid thus has
six elastic constants, whereas a classical elastic solid has two. If ↵, �, �, and  become zero, the

equations of classical elasticity are recovered. The characteristic length in torsion is `
t

=
q

�+�

2G .

Cosserat e↵ects may be revealed via size e↵ects in torsion and in bending. Analytical solutions
are available in the literature [30] [31] for round rods of isotropic non-chiral material. There is no
known analytical solution for square bars of chiral material. Thus, the solution for an isotropic
round bar with chiral material [30], which is exact, is used here

G = G

asy

(1 + 6(`
t

/r)2)


1� 4 �/3

1� �

�
(10)

where � = I1(pr)/prI0(pr), p2 = 2/(↵+�+�), and I0 and I1 are modified Bessel functions of the

first kind. Technical constants include the coupling number which is N =
q



2G+

and the polar

ratio is  = �+�

↵+�+�

. The ratio of Bessel terms inside the square brackets in equation 10 reduces to
1 for N = 1.

To study size e↵ects on our lattices, torsion loading was applied by prescribing displacements in
the x and y directions (denoted as d

xi

and d

yi

, respectively) to each node i at the centers of all cubes
on the upper surface of the FEA model (i.e., the surface with positive z as the normal direction, as
shown in figure 3c). To determine these displacements, an XY local coordinate system is defined in
figure 3c where the X and Y axes are parallel with the x and y axes of a global coordinate system,
and the origin of the XY system is at the center of the upper face. The displacements d

xi

and d

yi

provide a uniform small rotation ⌘ of the upper surface about the +z axis, which is equivalent to
applying torque to the lattices in the same direction. The prescribed displacements are determined
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as follows. For a particular node i on the upper surface, its position vector, which provides its
location relative to the origin of the XY coordinate system, is ~r

i

= X

i

î + Y

i

ĵ, where X

i

and Y

i

are the coordinates of the node, and î and ĵ are the usual unit vectors in the x and y directions,
respectively. The surface is subjected to a rotation ~! = ⌘ k̂ where ⌘ is the prescribed small rotation
of the surface and k̂ is a unit vector in the z direction. Carrying out the cross product ~

d

i

= ~! ⇥ ~r

i

provides the prescribed displacements for node i as

d

xi

= �⌘Y

i

and d

yi

= ⌘X

i

(11)

Rigid body motion of the lattices are suppressed by imposing su�cient boundary constraints on
the opposite surface (whose normal is the negative z direction); x and y displacements on one edge
were constrained, and the z displacement was constrained at two corner nodes (see figure 3c). Note
that all nodes on the upper surface of the FEA model may displace in the z direction, thus the
lattices are allowed to freely warp. In order to compute an e↵ective shear modulus G

torsion

caused
by the prescribed displacements, the reaction forces ~

F

i

for each of the nodes on the upper surface
with prescribed displacements was retrieved and a net torque was obtained as

~

T =

(n+1)2X

i=1

~r

i

⇥ ~

F

i

(12)

This torque is in positive z direction and we denote its magnitude by T . The e↵ective shear modulus
for all lattice structures with di↵erent aspect ratios were then computed as

G

torsion

=
T (nL)

⌘J

(13)

where J is polar moment of inertia which was approximated as J = 1
2⇡(

nL

2 )4. The asymptotic shear
modulus G

asy

and the characteristic length `

t

were determined by fitting the computed e↵ective
shear moduli G

torsion

of lattice structures (except the 1x1x1 lattice) to equation 10 in nonlinear
least-squares sense using MatLab; this fitting also provides p and the coupling number N . Here,
the polar ratio  was assumed to be 1.5; size e↵ects are insensitive to  except for size approaching
zero. The radius r was taken as half the width of lattices.

Once G

asy

and `

t

were found by fitting computed data to equation 10, the relative sti↵ness ⌦
was computed by dividing equation 10 by the asymptotic shear modulus G

asy

, which gives the size
e↵ect as given in equation 14.

⌦ = (1 + 6(`
t

/r)2)[
(1� 4 �/3)

1� � ] (14)

The elastic constants obtained by this process are technical constants not tensorial ones. The
reason is that in the absence of an analytical solution for torsion of a chiral square section bar, the
solution for a round bar was used. Such a simplification cannot generate size e↵ects via classical
elasticity because classical solids do not exhibit size e↵ects, and there is no elastic e↵ect from
chirality. The size e↵ects must arise from generalized continuum, e.g. Cosserat, e↵ects in the
lattice.

3 Results and discussion

The e↵ective Young’s modulus and Poisson’s ratio from the compression simulations and the ef-
fective shear modulus from the pure shear simulations for all lattice structures (1x1x1 through
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6x6x6), and for seven aspect ratios are shown in figures 4, 5 and 6. The objective is to find an
aspect ratio that gives rise to elastic isotropy. Note that it was necessary to assume a modulus
for rib material in order to determine mechanical properties of the lattices; the modulus of steel
was chosen for convenience. Moduli of the lattice depend on the rib material and on geometry.
The ratio of the e↵ective Young’s modulus of the lattice to the rib modulus, the relative Young’s
modulus, is independent of the assumed rib modulus, as shown in figure 4. Most of the mass in the
lattice is in the solid cubical nodules, so the usual modulus versus density plot is not appropriate
here. The design is not intended to be light weight; studies of acoustic behavior, which depends on
nodule mass, are planned. Poisson’s ratio in two orthogonal directions (i.e., ⌫

zx

and ⌫

zy

) is found
to be identical. As shown in figure 5, when the aspect ratio is about 2, Poisson’s ratio becomes
more negative as the number of unit cells per side increases. Moreover, the e↵ective shear modulus
varies approximately by a factor of 105.

Note that we have performed a large number of simulations with lattices having di↵erent rib
slenderness ratios, a/d. As expected, numerical values of the mechanical properties of the lattices
depend on this ratio; sti↵er lattices can be designed when thicker ribs are used. For example,
when the rib slenderness ratio varies from 100 to 5, the magnitude of the e↵ective Young’s modulus
of the lattices increases by approximately a factor of 400, and the Poisson e↵ect was reduced by
approximately 20 %. However, trends in the mechanical properties of the lattices (e.g., the e↵ective
Young’s modulus, Poisson’s ratio and an e↵ective shear modulus) remain the same. Regardless of
the rib slenderness ratio, as the number of cells per side increases, a monotonically decreasing trend
in the e↵ective Young’s modulus is seen, which tends to converge to a constant value, which is also
observed for the e↵ective shear modulus.
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Figure 4: The e↵ective Young’s modulus and the relative Young’s modulus in a principal direction
versus aspect ratio.
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With computed E

z

, ⌫ and G

yz

above, the measure of isotropy, E
z

/2G
yz

(1+⌫), was determined
for all lattice structures except 1x1x1 lattices and for all aspect ratios, as shown in figure 7a. It was
found that isotropy occurs when the aspect ratio is between 1.6326 and 1.6466. As seen in figure
7b, the curves for all models are tightly clustered, and the goodness of fit was R2 = 1. Aspect ratio
L/a for isotropy was about 1.64, and this is independent of the rib slenderness ratio a/d over a
range of values from 100 to 5.

For three dimensional isotropic chiral lattices, the e↵ective Young’s modulus in a principal
direction versus the number of cells per side is shown in figure 8a. The relative Young’s modulus is
also plotted in this figure. Note that the aspect ratio of these isotropic lattices was taken as 1.64;
this value is an average of computed aspect ratios of all of the lattices that result in isotropy. The
Young’s modulus monotonically decreases and tends to converge to a constant value as the number
of cells increases. A size e↵ect in compression is anticipated in view of the Cosserat continuum in
which chiral Cosserat solids have a length scale and coupling between compression and torsion [26],
giving rise to stretch-twist coupling, as shown in figure 8d. Poisson’s ratio in this continuum view
has radial dependence and size e↵ects. A size e↵ect in Poisson’s ratio is revealed by FEA. Poisson’s
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Figure 7: (a) The measure of isotropy vs. the aspect ratio for chiral lattice; a value of 1 indicates
elastic isotropy. (b) An expanded scale showing fitting of data points with the least-squares 5th
degree polynomial.

ratio is depicted in figure 8b. When n = 6, Poisson’s ratio becomes almost zero (e.g., ⌫ = 0.0024).
Thus, negative Poisson’s ratio is expected for a su�cient number of cells. By fitting the computed
Poisson’s ratio to a power function using nonlinear least-squares, Poisson’s ratio becomes negative
when n exceeds 7, and its asymptotic value is approximately �0.1393, as shown in figure 9; the
goodness of fit R2 was 0.99. Note that a slow approach to asymptotic values is anticipated in the
Cosserat continuum view. Cosserat elasticity allows the same range of Poisson’s ratio [22] as does
the classical elasticity. The Cosserat analysis applies to the full range of sizes and Poisson’s ratio.
Experiments are anticipated for materials with more cells. The e↵ective shear modulus shown in
figure 8c has a similar trend compared to the e↵ective Young’s modulus.
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Figure 9: Interpolation and extrapolation of Poisson’s ratio to a power function.

Results of torsion size e↵ect studies are depicted in figure 10. For three-dimensional isotropic
chiral lattices with a/d equal to 5, G

asy

= 0.861 GPa, `

t

= 1.55 mm, N = 1,  = 1.5. The
goodness of fit was R

2 = 0.99. The model with only one cell is excluded for size e↵ect studies,
because it is better viewed as a structure. Classical elastic solids, unlike Cosserat solids, have
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Figure 8: Three dimensional isotropic chiral lattices versus number of cells per side; (a) E↵ective
Young’s modulus. (b) Poisson’s ratio. (c) E↵ective shear modulus (d) Stretch-twist coupling.

a relative sti↵ness equal to 1 independent of size. Lattices presented in this paper clearly show
significant size e↵ects. The Cosserat characteristic length `

t

is comparable to the nodule spacing L

= 1.64 mm. Moreover, since N was found to be 1, couple stress theory which is a special case of
Cosserat elasticity, is appropriate. Cosserat solids with N = 1 (its upper bound) can be interpreted
by couple stress theory [32] [34]; this corresponds to  ! 1; the characteristic length in Cosserat
theory is equivalent to

p
3 times the length in couple stress theory. In the present paper, we use

symbols after Eringen [22].
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Figure 10: Size e↵ects for three-dimensional isotropic chiral lattices for which L/a = 1.64 and
nodule spacing L = 1.64 mm. Points are obtained via FEA. Curve is theoretical with G

asy

= 0.861
GPa, `

t

= 1.55 mm, N = 1,  = 1.5; the goodness of fit, R2 = 0.99. Classical elastic solids have
⌦ = 1 (independent of width).

Size e↵ects can also come from surface e↵ects associated with incomplete cells, surface damage
or cell connectivity that ends at the surface; such surface e↵ects produce a softening size e↵ect
[35]. These surface e↵ects compete with the sti↵ening e↵ect of Cosserat elasticity [38]. This is
of concern for foams that are cut by a machining process. The softening associated with surface
e↵ects can reduce apparent Cosserat parameters but cannot mimic a Cosserat e↵ect because the
e↵ect is opposite.

Periodic boundary conditions can simplify analyses in which strain is uniform as in the calcu-
lation of Poisson’s ratio in hexamer systems [36] [37]; also in analyses of wave motion. Because
Cosserat elasticity entails sensitivity to gradients of rotation, and the size e↵ects of interest require
a free surface, periodic boundary conditions were not used in the analysis.

The constitutive equations for a Cosserat solid which is isotropic with respect to direction but
not with respect to inversions are as follows [26]:

�

kl

= �✏

rr

�

kl

+ 2G✏

kl

+ e

klm

(r
m

� �

m

) + C1�r,r

�

kl

+ C2�
k,l

+ C3�
l,k

(15)
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l,k

+ C1✏rr�
kl

+ (C2 + C3)✏
kl

+ (C3 � C2)e
klm

(r
m

� �

m

) (16)

Elastic constants C1, C2 and C3 are associated with the e↵ect of chirality (i.e., noncentrosym-
metry). If these constants vanish, the equations of isotropic micropolar elasticity are recovered.
An exact solution for tension / compression of a round chiral Cosserat rod is available [26]; this
serves as a guide for the analyst in seeking new e↵ects. There is no available continuum solution for
torsion of a square chiral bar, so a finite element approach such as the one used here is appropriate.
While it is possible to obtain all six elastic constants of an isotropic Cosserat solid via experiment
[39], available analysis does not su�ce to determine all nine constants of a chiral solid. Therefore
the characteristic length obtained is an e↵ective one.

Chiral lattices may be of interest in the context of the stretch-twist coupling they provide, or
for the potential as a framework for isotropic piezoelectric solids [40] which entail Cosserat e↵ects.
In such solids, polarization is coupled via an isotropic third rank tensor to the antisymmetric part
of the stress.
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4 Conclusion

Three dimensional isotropic chiral lattices were developed via finite element analysis. The e↵ec-
tive Young’s modulus, Poisson’s ratio in two orthogonal directions and the e↵ective shear modulus
exhibit size e↵ects. Both the e↵ective Young’s modulus and the e↵ective shear modulus show
convergence to a constant value with an increase of the cells in each side. Poisson’s ratio can be
negative with su�cient cells. Significant size e↵ects, approaching a factor of five in torsion rigidity,
occurred in the lattices. This reveals Cosserat elasticity.
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