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ABSTRACT 

We present a lattice structure defined by patterns of slits that follow a rotational symmetry (chiral) 
configuration. The chiral pattern of the slits creates a series of hinges that produce deformation mechanisms 
for the lattice due to bending of the ribs, leading to a marginal negative Poisson’s ratio. The engineering 
constants are modelled using theoretical and numerical Finite Element simulations. The results are 
benchmarked with experimental data obtained from uniaxial and off-axis tensile tests, with an overall 
excellent agreement. The chiral hinge lattice is almost one order of magnitude more compliant than other 
configurations with patterned slits and - in contrast to other chiral micropolar media - exhibits an in-plane 
shear modulus that closely obeys the relation between Young’s modulus and Poisson’s ratio in 
homogeneous isotropic linear elastic materials.  
Keywords: lattice; metamaterial; chiral; elasticity; tension; shear 
 
1. Introduction 
 

Lattice metamaterials are currently being developed to create unusual deformation 
mechanisms and multifunctional capabilities [1][2] in a vast range of applications, from 
energy absorption through microbuckling instabilities [3][4] to wave propagation and 
vibration transmissibility reduction effects [5][6]. A subset of lattice metamaterials is 
constituted by solids with negative Poisson’s ratio, also known as auxetic [7][8][9]. The 
unusual auxetic behavior is essentially achieved using specific cell topologies as re-entrant 
units, rotating rigid/semi rigid units, as well as chiral systems. Wojciechowski [10] has first 
suggested an auxetic chiral configuration based on rotating disks and nearest neighbor inverse 
nth power interactions. Prall and Lakes [11] have formally developed a chiral structural 
honeycomb providing a theoretical and experimental in-plane Poisson’s ratio of -1. This 
configuration consists in ligaments connecting two cylinders located on the opposite sides and 
ends, with each cylinder having 6 tangent ligaments at regular 60o intervals. Chiral cellular 
solids have shown some peculiar features over conventional hexagonal honeycombs, because 
of the out-of-plane partial decoupling between compressive and transverse shear behavior 
between the cylinders and the ligaments [12][13]. Alternative chiral topologies consisting of 
rectangular or other geometrical forms, as well as 3-, 4- and 6-connected ligaments in chiral 
and anti-chiral lattices have been reported and investigated in recent years, both from a 
mechanical quasi-static and dynamics perspective [14]-[27]. Auxetic topologies of perforation 
and cuts have also risen to prominence with a plethora of perforation patterns, ranging from 
circular holes to ellipses or cuts, which may convert two-dimensional conventional materials 
into negative Poisson’s ratio metamaterials. Bertoldi et al. [28] and Grima et al. [29] have 
developed pilot studies on auxetic metamaterials with circular and diamond shape 
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perforations, respectively. Cho et al. [30] have generated continuous pattern transformations 
in a thin sheet of material by introducing fractal cuts with different motifs through rigid unit 
rotation. Gatt et al. [31] have proposed a novel auxetic hierarchical system based on the 
rotating rigid units mechanism that exhibits a wide range of properties including different 
sized pores that can open to various extents. Inspired by ancient geometric motifs arranged in 
square and triangular grids, Rafsanjani [32] has introduced a class of switchable architected 
materials exhibiting simultaneous auxeticity and structural bistability by using a network of 
rotating units connected with compliant hinges. The use of slits/cuts following deterministic 
Kagome-types and various centre-symmetric topologies [33]-[36], as well as random patterns 
[37] has also been adopted to create 2D mechanical metamaterials. 

In this paper, we present a lattice configuration with patterns of cuts that generate 
internal rotations through the creation of hinges and a structural chiral configuration. Chiral 
topologies are commonly developed by connecting ribs tangentially to cylinders or quadratic 
units [11][16]. This involves the use of relatively complex manufacturing techniques, ranging 
from 3D printing [12] to composites bonding techniques [38]. Moreover, the relative 
porosities of these chiral lattices are quite large, and most of the structural chiral honeycombs 
have maximum relative densities around 12% [39]. On the opposite, By contrast, the new 2D 
chiral lattice hinge configuration presented in this work is created by a self-similar generation 
of a series of cuts, which resembles the first iteration of a Peano’s curve [40]. The pattern 
proposed in this work also follows the layout of the cross-chiral topology [41]. In this lattice 
the hinge effects are due to flexure of the ribs. The width of the perforations used in this 
lattice is negligible compared to the shortest length of the unit cell, and that allows creating a 
structure with chirality and extremely low porosity. The presence of a pattern of cuts leads to 
the use of laser or other more traditional cutting techniques, and also to a broad range of two-
dimensional material substrates for producing the new lattice topology. In this paper, the 
equivalent in-plane engineering constants of the lattice are modelled using a combination of 
theoretical and finite element numerical techniques. The models are validated by experimental 
results obtained from uniaxial tensile and shear tests performed according to ASTM 
standards.  
 
2. Theoretical model  
 
2.1 Geometry 
 

The fundamental unit cell of the chiral hinge lattice is shown in Figure 1. The square 
configuration can be described by using the parameters a, b, t and h. The parameter a 
represents the total length of the unit cell, b is thickness of the ribs, t is the width of the slit 
and h is the out-plane thickness of the unit cell (not indicated in the figure). The total length of 
the unit cell is a=n�(b+t), where n is an even integer (10 in cell represented in Figure 1). For 
simplification, the value of the gap t is neglected in the theoretical model developed in this 
work. For the purpose of the numerical model described later, the gap t is equal to b/10 and 
consistent with the cutting parameters adopted in the fabrication of the experimental samples. 
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(a)            (b) 
Fig.1 (a) Chiral hinge lattice panels made out of laminate wood. (b) Geometry of chiral hinge unit cell  
 
2.2 In-plane tensile modulus 
 

The lattice structure is considered as behaving as an equivalent isotropic and linear 
elastic in-plane material. The square representative unit cell (RUC) of the lattice structure is 
constituted by 36 beam Euler-Bernoulli components. For the case of the in-plane uniaxial 
tensile loading, the boundary conditions are representative of a clamp located at the corner, 
and a uniform load intensity q applied to the interface with an adjacent cell (Fig.2 (a)). To 
simulate the deformation of the chiral hinge lattice, the whole unit cell is represented as a 
closed, sequential and statically indeterminate beam structure, in which the uniform loading q 
is substituted by a concentrated force P (Fig.2 (b)). To solve for the internal forces within the 
resulting closed and hyperstatic beam structure, the corner between the beam components 1 
and 36 is cut open; the boundary condition is then set as a fixed end of beam number 36 
(Fig.2 (c)). The calculation of internal force equations for the whole RUC starts at beam 
number 1. The recurrent formulas for the internal normal (FNi) and shear (Fsi) forces and 
bending moments Mi are: 1 1( )N yF x F= − , 1 1( )s xF x F= − , 1 1 1( ) xM x M F x= − × .  The other beam 
components can be then calculated from the previous beams in the sequence of elements. As 
an example, for the case of the configuration corresponding to a=10b (Fig. 2), the the axial 
force and shear forces of the ith beam are expressed as: 1( )Ni i siF x F −= , 1( )si i NiF x F −= , 

1 1 1( ) ( )i i i i Ni iM x M l F x− − −= ± ×  (with i=2..18.18a..36). For this particular configuration, one can 
also state that 19 19 18( )N N aF x F= , 19 19 18( )s s aF x F P= − , and 

19 19 18 18 18 19 19( ) ( )a a s aM x M l F x P x= − × + × . As a consequence, three complementary 

conditions( 1 0xδ = , 1 0yδ = , 1 0θδ = ) are imposed to solve the unknown internal forces Fx, Fy, M 
of the beam element in the hyperstatic structure.  

 
(a)                                (b)                            (c) 
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Fig.2 Schematic illustration of theoretical modelling of the unit cell: (a) element division; (b) 
structure simplification; (c) statically determinate structure with complementary conditions 

 
We then apply Castigliano’s theorem by simultaneously considering three types of strain 

energies associated to bending, tensile and shear loading: 
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In (1) E is the Young’s modulus of core material, G is the shear modulus of the material (
( )2(1 )G E ν= + ), [ ]10(1 ) (12 11 )k v v= + + is the Timoshenko shear coefficient for a 

rectangular cross section with core Poisson’s ratio ν [41], 3 12=zI hb  is the second moment 
of area and A=bh is the area of the cross section of each beam element.  

According to the Castigliano’s theorem, the displacement of a beam under the influence 
of a force P may be expressed as: 

U
P

δ
∂

=
∂

                                                             (2) 

Therefore, the total strain energy of the chiral hinge cell under a uniaxial tensile loading 
P is obtained as:   
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Where Bi and Ci are constants. From Eq. (2), displacement xδ  under the uniaxial tensile 
loading P is obtained as  
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The effective Young’s modulus xE
∗ is defined as the ratio between the nominal stress 

versus and the strain: 
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Where in which Lx, Ly, h and A are the initial lengths along the x and y directions, the out-
plane thickness and the cross-sectional area of the unit cell structure, respectively. 

Therefore, the homogenized non-dimensional effective elastic modulus of the chiral 
hinge lattice along the loading direction is given by: 
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2.3 In-plane Poisson’s ratio 
The overall Poisson’s ratio vx is defined as the ratio between the transverse strain and the 

longitudinal one along the direction of the tensile loading and is then written as [43]: 
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In Eq. (7), xδ is the tensile displacement along the x direction; 1yδ  and 2yδ  are the average 
displacements for the nodes at the bottom and top ends along the y direction. Both 1yδ  and 

2yδ are scalers scalars. From Eq. (2), the vertical displacements generated by the bending 
moment and the axial and shearing forces at each single beam of the RUC can be calculated 
as follows: 
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The total vertical displacements on the upper and lower edges of the unit cell are 
obtained as 2y yiδ δ=∑ , 1..18,18i a=  and 1y yjδ δ=∑ , 19..36j = . Substituting the values of 

1yδ  and 2yδ  into Eq. (7), the overall effective Poisson’s ratio *
xv  is obtained as: 
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Where Bi and Di are constants. 
 
2.4 In-plane shear modulus 

 
Three major types of fixtures are used to simulate an in-plane shear test: (a) uniaxial 

loading (loaded in diagonal tension), (b) biaxial (under tension and compression loads) and 
(c) tangential (cantilever and Wagner beams, rail shear fixture), shown in Fig. 3. However, 
only biaxial loading introduces as close as possible a pure shear deformation field [43]. We 
therefore use in this paper biaxial shear loading for both the theoretical modelling and the FE 
simulations. 

 
Fig. 3. Typical shear-test fixtures (Fig. 5 of Ref. [39]) 

In analogy to the uniaxial tensile modelling, the biaxial shear RUC for a=6b consists of 
36 beams with uniform loading qx, qy, and boundary conditions as shown in Fig.4 (a). To 
simulate the deformation of the square unit cell each beam neutral axis is connected to create 
a closed, sequential and statically indeterminate single beam structure. Taking again as an 
example the chiral hinge lattice configuration of a=6b, the boundary conditions are further 
simplified as fixed-ends to beams 1 and 36. These BCs lead to the solution of the internal 
axial forces NF , the shear force sF  and bending momentM . The uniform loading qx, qy are 
substituted by concentrated forces Px and Py (Fig.4 (b)). In a similar fashion to the uniaxial 
tensile case, complementary equations( 1 0xδ = , 1 0yδ = , 1 0θδ =  and 28 0xδ = , 28 0yδ = ) are 
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imposed to obtain the unknown internal forces xF , yF , M of the beam #1, as well as the 
unknown reaction forces 28xF , 28yF in beam #28.  

         
(a)                                                                        (b) 
Fig.4 Schematic illustration of theoretical model for the chiral unit cell (a=6b) under biaxial shear 
modelling: (a) elements division; (b) statically determinate structure with complementary conditions 

The total strain energy of the chiral unit cell under the biaxial loading Px and Py is given 
by: 
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Where iα � iβ � iγ � iζ  are constant and 42 0γ = . From Eqs. (10) and (2) the displacements 

xδ and yδ along the x and y directions are then determined. The expression for the effective 
shear modulus is represented as [39]: 
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From Eq. (11), the homogenized non-dimensional effective shear modulus of the chiral 
lattice hinge microstructure is expressed as:   
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Where iζ , iη  and iλ are constants.  
 
3. The Finite Element model 

 
To validate the in-plane linear elastic properties of the chiral hinge lattice structure, 

Finite element simulations have been performed using the commercial software ANSYS Rel. 
14.0. The models have been developed using PLANE183 elements with 8 or 6 nodes and two 
translational degrees of freedom. The elements are well suited for modelling irregular meshes 
[44]. The FE RUC has a length of 20 mm with the width of the slits of 0.2 mm. The 
dimensions of the slits are the same of the nominal ones created through laser cutting the 
experimental samples. Boundary conditions are shown in Fig.5 for in-plane simulation.  
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(a)                                                       (b)                                                  

Fig.5 Boundary conditions for (a) the tensile and (b) the biaxial shear loading.  
 
Convergence test was also applied with four different types of models, in which different 

overall element sizes and different mesh methods at corners have been developed, shown in  
Fig. 6. Because of its symmetry, the moduli of elasticity and the Poisson’s ratio are 
determined using one quarter of the RUC structure. 

 
 (a) 1/4 Model A  (b) 1/4 Model B   (c) 1/4 Model C   (d) 1/4 Model D 
Fig.6 FE models used for the convergence test  

 
A detailed description for the models and the corresponding results are shown in Table 1. 

Model D (the one with the highest number of DOFs) is taken as the benchmark for all the 
other configurations (‘Relative value’ in Table 1). Considering both the accuracy and the 
computational efficiency, the model B is chosen for the following simulations. The cell 
related to Model B is also used to determine the sufficient number of cells to generate a lattice 
array and obtain accurate results. Fig. 7 shows that the values for both xE

∗ and xν
∗  tend to 

converge for increasing numbers of unit cells, and a model consisting of 8×8 Model-B cells is 
considerate adequate for the full-scale FE simulations at this stage. 

 
Table 1 Comparison for the models and results 
 

Model 
Overall  
element size 
(mm) 

Refinement at 
corners 

Total DOFs 
for one cell 

E*
x v*

x 

Absolute 
value (MPa) 

Relative 
value 

Absolute 
value 

Relative 
value 

A 0.3 No 27,704 3.2179 1.0086 -0.02129 0.9387 

B 0.3 Yes 43,806 3.1975 1.0023 -0.02327 1.0260 

C 0.1 No 224,304 3.1975 1.0023 -0.02145 0.9458 

D 0.1 Yes 242,648 3.1903 1.0000 -0.02268 1.0000 
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Fig.7 Effect of the cells number on the convergence.  

 
 
4. Manufacturing and experimental tests 
 

The lattice specimens have been produced by using a laser cutting facility to pattern 
PMMA substrates (World Lasers LR1612 laser cutter with a 40W CO2 laser). The elastic 
mechanical properties of the PMMA material have been determined following the ASTM 
D638-08 standard. The tests have been performed using a Shimadzu Machine (10 KN load 
cell, 1 mm/min) with dog-bone specimens (Type I, T=6mm). The PMMA specimens have a 
Young’s modulus of 2.23 GPa and a Poisson’s ratio ν=0.37�0.02. These properties have been 
used both for the analytical and FE simulations. A CAD model of the chiral hinge lattice has 
then been exported to the laser cutting machine to generate a 2D rotational symmetric chiral 
congiguration. The dimensions of each RUC have a width b = 2 mm and thickness h = 6 mm. 
The dimensions of the uniaxial tensile test samples are 190mm�100mm�6 mm (Fig. 8(a)). An 
off-axis 45��tensile test has been performed to determine the homogenized in-plane shear 
modulus following the ASTM D3518/D3518M-13 standard. The dimensions of the shear test 
samples are 243mm�108mm�6mm (Fig. 10(b)). At least five unit cells along the width and 
length of the samples have been included in the design of the two classes of specimens.  
 

   
(a)                                       (b) 
Fig.8 Specimen for (a) tensile and (b) off-axis 45o shear tests. 
 

The in-plane tensile tests of the chiral hinge lattice samples were performed using a 
Shimadzu test machine with a 1 kN load cell and a constant displacement rate of 2 mm/min. 
An Imetrum video gauge system was used to track the strain fields along the loading and the 
transverse directions. Speckle patterns were placed on the samples with a black marker pen as 
tracking targets to improve the accuracy of the data acquisition from the video gauge system. 
We use in this work the incremental Poisson’s ratio definition [45]:  
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As the unit cell is a square configuration of rotational symmetry, the tensile test along the 
x direction is the same as that along the y direction. The in-plane shear modulus is calculated 
from the following expression [43][46]: 
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bh ε ε
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Where in which b and h are the width and the thickness of the chiral hinge lattice specimen. 
The loading force is xP , xε and yε are the strains along loading and transverse directions.  

The determination of the in-plane Poisson’s ratio follows the procedure outlined in [45], 
from which it is possible to calculate the variations of the cell dimensions. Firstly, the original 
raw experimental data of the transverse and longitudinal strains transverseε and longitudinalε related to 
one unit cell are obtained using a video gauge (Fig. 9(a)). Due to the resolution of the images 
extracted from the video gauge system noise is present in the data, a quadratic polynomial 
curve was fitted to eliminate the noise and allow the Poisson’s ratio to be sampled (Fig.11 
(b)). The R2 values of the fitting related to the four specimens are close to 1. Data from 
Specimen 1 have been discarded because of outliers. Then, Poisson’s ratios of the four 
specimens were calculated according to Eq (13). The final effective Poisson’s ratio behavior 
of one central unit cell with corresponding standard deviation for the four specimens was then 
obtained and shown in Fig. 10. Poisson's ratio is a ratio of transverse strain (Fig. 9) to 
longitudinal strain. The transverse strain values contain noise. Therefore noise related 
experimental uncertainty in the calculated Poisson's ratio (Fig. 10) is larger at small strain 
than at large strain. 

 
(a)                                                                                         (b)        
Fig. 9. Experimental data processing for effective Poisson’s ratio (a) Transverse vs. longitudinal 
strains (b) fitting curves 
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Fig.10. Effective Poisson's ratio vs the longitudinal strain with corresponding standard deviation 

 
5. Results and Discussions Discussion 
 

Table 2 shows the comparisons between the theoretical modelling, the FE 
homogenization and the experimental results from the uniaxial and off-axis tensile loading. 
The experimental incremental Poisson’s ratio has been derived for a tensile strain of 1.7%. 
The analytical tensile modulus xE

∗  differs from the experimental result by 2.6%, while the FE 
ones are 6.5% softer than the modulus derived from the tensile tests. The experimental 
Poisson’s ratio is 1.52% lower than the theoretical value, and even less when considering the 
FE result. For short specimens, there might be some concern about Saint Venant end effects, 
but since the magnitude of the Poisson's ratio is rather small such effects are likely minimal. 
The experimental values for the in-plane shear modulus xG

∗  show higher discrepancies with 
the theoretical model (8.4%) and the FE results (5%). The theoretical in-plane shear modulus 
also shows a 3.5 % difference with the results from the FE simulations. Uncertainties 
affecting the results among the three sets of data can be ascribed to a variety of reasons. Aside 
from the uncertainties associated to with the boundary conditions effectively applied to the 
experimental model, the main discrepancy related to the shear is the difference between the 
biaxial loading and the off-axis experimental tensile test performed. Even when the fixtures 
produce a pure shear deformation as closely as possible to the ideal case, there are still 
differences between a pure shear deformation and an approximated one [39]. Viscoelastic 
effects may be pertinent as well; a given displacement rate corresponds to different strain rate 
in specimens that are not the same length and geometry. Nonetheless, it is possible to observe 
a general very good agreement between the different models and the experimental results, and 
this gives confidence to the theoretical framework developed. 

 
 
 
 
 
 
 
 

Table 2. Comparisons of the homogenized in-plane engineering constants from the analytical, 
numerical and experimental.  
 

  Effective elastic modulus E*
x 

(MPa) 
Poisson’s ratio 
v*

x 
Effective Shear modulus G*

x 
(MPa) 

Analytical 3.55 -0.041 1.64 

FEM 3.26 -0.039 1.70 

Experimental 3.49±0.15 -0.038±0.01 1.79±0.11 

 
By inspecting equations (6), (9) and (12) it is possible to evince a dependency and 

sensitivity of the engineering constants versus the Poisson’s ratio of the core material, as well 
as the width b and thickness h of the chiral hinge lattice. A sensitivity analysis versus the 
latter two geometry parameters indicate – as expected – that the width and thickness do not 
provide any contribution to the stiffness and Poisson’s ratio of the lattice. The dependency 
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versus the core material Poisson’s ratio ν is more remarked marked. The non-dimensional 
Young’s and shear moduli xE E∗  and xG E∗  tend to decrease linearly from a maximum value 
at ν = 0, but exhibit a drop of only 1.85% when passing to ν = 0.5. The effective Poisson’s 
ratio of the chiral lattice *

xv  has however an opposite behavior with the variation of ν. For ν = 

0 one obtains a more negative Poisson’s ratio vx
* = −0.042 , while for ν = 0.5 the effective 

Poisson’s ratio of the chiral lattice increases to -0.041. All these values however show that the 
dependency of the engineering constants versus the core Poisson’s ratio is weak. The lattice 
exhibits a more significant dependence versus the aspect ratio a/b of the internal slits to ribs 
(Fig. 11). 

 
(a)                                     (b)                                      (c) 
Fig. 11 Three types of RUC with different aspect ratios of slit to ribs: (a) a/b=6, (b) a/b=10, (c) a/b=14 

A comparison of the analytical and FEA simulations related to the non-dimensional 
effective moduli are presented in Fig. 14(a)-(c). Within the analytical results we differentiate 
the contribution of the axial (A), shear (S) and bending (B) deformations in the ribs 
composing the chiral hinge lattice. The FEA results are related to the 8�8 cells model. From 
Fig. 14 it is possible to evince that the analytical model provides consistent results with the 
high-fidelity FE simulations for aspect ratios a/b higher than 6. In terms of non-dimensional 
stiffness, the shear deformation within the ribs tends to be responsible for higher Young’s and 
shear moduli values. This is particularly evident for the lowest aspect ratio considered in this 
work (the a/b=6 structure), in which the neglect of the bending deformation gives rise to an 
increase of the Young’s modulus by a factor of ~ 3.1 compared to the FE case, and by ~ 2.7 
times for the shear modulus. High aspect ratios lead to a decrease of the stiffness, with the 
natural logarithm of xE E∗  and xG E∗  linearly proportional to (a/b)-1. Regarding the 
Poisson’s ratio, it is interesting to notice that the shear deformation contributes to maintain a ~ 
0 *

xv  effect; on the contrary, the bending tends to increase the negative Poisson’s ratio effect 
at lower a/b ratios (Fig. 14(c)). It is worth noticing that by considering bending and axial 
deformations only, one can already obtain an excellent agreement with the FE results for a/b 
higher or equal than 10. Also in this case, discrepancies with the high-fidelity FE appear for 
the case a/b = 6, for which bending and stretching tend to provide a very low shear stiffness 
and negative Poisson’s ratio behaviour that counteracts the stiffening effect given by the shear 
deformation mechanism. 
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(a)                                                                      (b) 

 
(c) 
Fig. 12 Comparisons between the analytical and FEA results for different slit/ribs length ratios: (a) 
non-dimensional effective Young’s modulus, (b) non-dimensional effective shear modulus, (c) 
Poisson’s ratio. B, A, S mean Bending, Axial and Shear deformations, respectively. 

 
The chiral lattice hinge structure is marginally auxetic. The magnitude of the Poisson’s 

ratio is extremely small (and close to zero) for the a/b range considered, but its negative value 
puts the lattice structure described in this work within the wider class of negative Poisson’s 
ratio materials. This is not surprising, because the lattice configuration has similarities with 
chiral structural topologies that exhibit an in-plane negative Poisson’s ratio behaviour 
[10][11][19][26]. Zero in-plane Poisson’s ratio has been observed in cross-chiral 
configurations made from slender beams [41], for which the uniaxial-rotational coupling is 
the main deformation mechanism. It is worth noticing here that the marginal near zero 
Poisson’s ratio is effectively encountered in the configurations corresponding to the presence 
of the slenderest ribs. On the contrary, for lower a/b values the main deformation mechanism 
of the ribs is the shear deformation of the cross section. The decrease of the stiffness provided 
by the patterns of cuts on the planar bulk material is also remarkable (~ 0.16% of the core for 
a/b = 10). The chiral hinge lattice is therefore more compliant than the slit perforated systems 
with deterministic and random patterns, which exhibit non-dimensional stiffness between ~ 
4% and 14% [34][35]. Another aspect worth mentioning is the behavior of the in-plane shear 
modulus. Under isotropic Hooke’s law the shear modulus can be expressed as

1 2(1 )x xG E ν∗ ∗# $= +% &. Although the material is structurally cubic, it is elastically isotropic; the 
chiral elastic aspect has not been evaluated. By using the analytical values obtained for the 
equivalent Young’s modulus and Poisson’s ratio xE

∗  and *
xv  one obtains a shear modulus G1 = 

1.85 MPa, which is 11% stiffer than the modulus predicted through biaxial shear. These 
differences between the homogenized shear modulus and the one calculated by assuming an 
isotropic linear elastic behavior of the lattice is however significantly lower than the one 
observed in structural chiral systems. Hexagonal and tetra-tessellated chiral lattices have 
equal uniaxial Young’s moduli along the lattice coordinates and an in-plane Poisson’s ratio 
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close to -1 [11][26]. By using concepts of Poisson's ratio and Young's modulus, a continuum 
view of the material is implicitly assumed. If the structural elements are sufficiently small 
compared with the specimen, as is the case with common materials such as steel and 
aluminium, classical elasticity is the appropriate continuum approach in the linear regime. If 
the structural elements are sufficiently large, moments transmitted through them are of 
sufficient magnitude that they cannot be neglected. Cosserat or micropolar elasticity [47][48] 
is then an appropriate continuum elasticity theory that, in contrast to classical elasticity, 
contains a length scale. Cosserat solids such as foams [48] exhibit size effects in torsion and 
bending in which deformation gradients give rise to net moments. Simple tension or 
compression of normal cellular solids gives rise to moments in the ribs [49] that must be 
analysed, but these moments sum to zero in tension of such solids.  Chiral 2D lattices [11] 
have been analysed [19][22][23][24] in the context of Cosserat elasticity. Chiral 3D solids 
exhibit stretch-twist coupling [52][53], but no such effects are observed in the present 2D 
solids. 

From a structural integrity perspective, questions may arise from the use of a pattern with 
cuts and slits in a 2D material substrate. The edges of the cuts do create localized regions of 
stress concentration, and those would affect the overall structural performance and 
deformation behaviour of the chiral hinge lattice. Although the current work is concerned 
with the in-plane homogenized linear elastic constants of this lattice, it is worth discussing 
some consideration about the impact provided by the presence of the slits. Within the PMMA 
samples fabricated in this work, brittle failure was indeed observed, with cracks originated at 
the corners of the slits and roots of the ribs. Although the lattice is very compliant, the use of a 
brittle substrate would limit the elastic range of deformations, and in that case the use of an 
elastomeric substrate would be advisable, as adopted in other perforated metamaterials 
[28][30]. The use of a metal substrate with an elasto-plastic mechanical behaviour would lead 
to the formation of plastic regions in the corners of the cuts prior to failure. The localized 
plastic regions would create equivalent plastic hinges, and therefore increase the coupling 
between uniaxial deformation and in-plane rotation during the loading. Further mechanical 
tailoring could involve the rounding of the corners to ameliorate the stress concentration. In 
any case, the efficient engineering use of this lattice topology would involve a careful 
selection of the substrate material, as well as the manufacturing technology to control the 
dimensions and features of the slits patterns. 

 
6. Conclusions 

In this work, a novel chiral hinge lattice with a marginal in-plane negative Poisson’s ratio 
is designed, modeled and experimentally evaluated. The square lattice has been produced by 
rotationally symmetric patterns of slits. The theoretical and numerical models show good 
agreement with the experimental data. For large slits to ribs aspect ratios of the unit cell, the 
bending and axial deformations provide the main contribution to the elasticity of the lattice. 
The Poisson’s ratio of the core material has a negligible effect on the homogenized stiffness 
and equivalent Poisson’s ratio of the lattice. The chiral hinge lattice shows a very high 
compliance compared to other structures defined by patterns of slits, and a high in-plane shear 
stiffness with a quasi-isotropic behaviour compared to other structural chiral configurations. 
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