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Abstract

Cubic 3D lattices were designed, made by 3D printing, and studied experimentally. One
lattice was simple cubic with ribs of diameter 1/5 the cell size. The second lattice was chiral, with
spiral ribs. The chiral lattice, but not the achiral lattice, exhibited squeeze-twist coupling with
size effects. Squeeze-twist coupling cannot occur in a classically elastic solid but is anticipated
by theory in a Cosserat solid. Both lattices exhibited size effects in bending and torsion.

1 Introduction

Truss lattices containing deformable ribs are stiffer than foams of the same density [1]. Because the
ribs can carry moments as well as forces, truss lattices can be represented by Cosserat elasticity
[2, 3]. Cosserat solids support distributed force (stress) and distributed moments (couple stress).

The constitutive equations for linear isotropic Cosserat [4, 5] (micropolar [6]) elasticity are

σij = 2Gεij + λεkkδij + κeijk(rk − φk) (1)

mij = αφk,kδij + βφi,j + γφj,i. (2)

The stress σij (force per unit area) is in general asymmetric. The resulting moment is balanced
by a couple stress mij (a torque per unit area). Here, κ is an elastic constant, φk is the rotation
of points, called micro-rotation, eijk is the permutation symbol, and rk = 1

2eklmum,l is “macro”
rotation based on the antisymmetric part of the gradient of displacement ui. Elastic constants α,
β, γ govern the characteristic length scales at which nonclassical effects are to be observed. Also
δij is the Kronecker delta and εij is the strain tensor. The quantities λ, G are classical elastic
constants. There are six independent Cosserat elastic constants.

These constants may be expressed, as is also done in classical elasticity, as technical elastic
constants to enhance physical insight. The constants are Young’s modulus E, shear modulus G,
Poisson’s ratio ν, characteristic length, torsion `t, characteristic length, bending `b, coupling number
N , polar ratio Ψ. They are expressed:
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E =
2G(3λ+ 2G)

2λ+ 2G
(3)

ν =
λ

2λ+ 2G
(4)

`t =

√
β + γ

2G
(5)

`b =

√
γ

4G
(6)

N =

√
κ

2G+ κ
(7)

Ψ =
β + γ

α+ β + γ
(8)

The characteristic lengths govern the experimental size scale over which one may expect substantial
deviations from classical elasticity. For example, size effects occur in the rigidity of rods and bars
in torsion [7, 8] and bending [9, 10]. Also, the stress concentration around holes is reduced in
comparison with classical predictions [11].

Chiral materials, also called noncentrosymmetric, have an asymmetry in which left and right
handedness in the material can be distinguished. Chirality is necessary for optical activity (rotation
of the plane of polarization of light as it passes through the material [12]) to occur. Chirality is
also necessary for piezoelectric and pyroelectric effects to occur [13]. By contrast, classically elastic
materials do not distinguish left from right. The freedom provided in Cosserat elasticity allows for
chiral effects in elasticity.

The constitutive equations for a chiral Cosserat solid which is isotropic with respect to direction
but not with respect to inversions are [14]:

σkl = λεrrδkl + 2Gεkl + κeklm(rm − φm) + C1φr,rδkl + C2φk,l + C3φl,k (9)

mkl = αφr,rδkl + βφk,l + γφl,k + C1εrrδkl + (C2 + C3)εkl + (C3 − C2)eklm(rm − φm). (10)

Elastic constants C1, C2 and C3 are associated with the effect of chirality (i.e., noncentrosym-
metry). An exact solution for tension / compression of a round chiral Cosserat rod [14] may be
used as a guide in seeking new effects including stretch-twist coupling, size effects in tension or
compression stiffness, and size effects in Poisson’s ratio.

In the absence of chirality, Cosserat effects are known to occur in materials with microstructure.
The characteristic length for a 2D square lattice of cell size a is predicted [2] to be ` = a/2

√
6 within

couple stress elasticity which corresponds to Cosserat elasticity with N = 1. More recently, Cosserat
elastic constants were determined analytically for several lattices [15]. For a 2D square lattice of cell
size a, ` = a/2

√
6 and N = 1/

√
2. Cosserat elastic constants were determined for several 2D lattices

containing arrays of circular holes, from experimental tests and finite-element analyses [16]. The
values determined for these parameters, particularly the coupling number N , indicate dependence
on structure appreciably different from the predictions of lattice theoretical models. The inferred
characteristic length was comparable to the size of the holes in the plate. Experimentally, Cosserat
effects are known in dense closed cell polymer foams [17, 18] in which isotropy was tested, in low
density polymer foams [19], and in negative Poisson’s ratio foams. In a truss lattice designed for
strong effects [20], size effects in torsion were rigidity were a factor of about 36.

Chiral 2D elastic lattices were conceptualized, made and tested; they also exhibit a Poisson’s
ratio of -1 [21]. These lattices were shown to behave as Cosserat solids, with a characteristic length
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` comparable to the cell size and a large coupling number N [15]. In 2D, stretch twist coupling is
not anticipated. Stretch-twist coupling was observed in slender bone specimens [22]; also in fiber
bundles in tendon [23]. Squeeze–twist coupling was studied in an elastically isotropic chiral truss
lattice [24] containing cubical nodules connected by rib elements.

In the present study, two cubic lattices, one chiral and one achiral, were designed, fabricated
via 3D printing, and evaluated experimentally for bending, torsion, and chiral size effects.

2 Methods

Conceptual models of both chiral and achiral lattice materials were constructed in Solidworks and
converted to sterolithography (STL) format for printing. The models were printed via Selective
Laser Sintering (SLS) out of PA 2200 nylon resin on an EOS P760 machine.

The chiral lattice had spiral ribs with elliptical cross sections measuring 1.5x0.8 mm. The ellipse
centers traced a spiral 2 mm in diameter with a pitch of 1.25 mm. The ribs were 5 mm in length,
and connected via solid cubes as seen in Figure 1. The achiral lattice had straight circular ribs that
were 1.25 mm in diameter and 6.25 mm long for a L/D ratio of 5 as seen in Figure 2. Dimensions
were selected to minimize structure size while maintaining printing repeatability.

Figure 1: Ideal drawing and 3D printed 4x4x4 cell spiral rib chiral lattice. Scale bar of 8.5mm is
the cell size.

Figure 2: Ideal drawing and 3D printed lower half of the 4x4x12 cell straight rib achiral lattice.
Scale bar of 6.25 mm is the cell size

To find the Cosserat characteristic lengths of both the chiral and achiral lattices a broadband
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viscoelastic spectrometer (BVS) [20, 25] was used on specimens of varying size at the same aspect
ratio. Cubic achiral lattice specimens of 1x1x3, 2x2x6, 3x3x9, 4x4x12, and 5x5x15 cells were tested
both in torsion and bending, as were cubic chiral specimens of 1x1x1, 2x2x2, 3x3x3, 4x4x4, and
5x5x5 cells.

The BVS has a pair of Helmholtz coils, one each in bending and torsion, that induce a torque
on a magnet attached to the specimens via a ceramic stalk as seen in Figure 3. A mirror on the
magnet reflected a laser onto a New Focus 2901 quadrant cell photoreceiver. The receiver was
calibrated via a micrometer stage, and the displacement at the receiver was converted into twist
angle of the specimen using the calibration value and path length. The magnet was calibrated in
the system by attaching it to an aluminum 6061 alloy rod with known properties. The magnet was
calibrated once, and all other calibrations were performed both for bending and torsion on every
test.

Figure 3: Experimental setup of the Broadband Viscoelastic Spectrometer used to measure size
effects in torsion and bending

Tests were performed, following prior methodology [20], by applying a 1 Hz sine wave into the
Helmholtz coil, and the resulting receiver voltages were recorded. All tests were conducted at 1
Hz to remove any viscoelastic effects. In the absence of strain gradients Cosserat materials are
indistinguishable from classical elastic materials. A screw driven load frame was therefore used to
perform pure compression tests to determine the classical Young’s modulus E of the material.

To obtain the Cosserat characteristic length in bending, Equation 11 was used [10, 26], where
Ω is the ratio of Cosserat rigidity to classical rigidity, `b is the material’s characteristic length in
bending, ν is the material’s poisson’s ratio, β and γ are the Cosserat material constants, a is the

sample half width, and N is the material’s coupling number. Equation 11 is accurate to O[(
`b
2a

)4].

Ω = 1 + 24
1 + 2νβ/γ + ν2

1 + ν
(
`b
2a

)2 − 480(β/γ + ν)2 44− 38ν + 3N2(1− ν)(13− 9ν)

N2(1 + ν)(22− 19ν)
(
`b
2a

)4 (11)
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To obtain the Cosserat characteristic length in torsion, Equation 12 was used [8], where Ω is the
ratio of Cosserat rigidity to classical rigidity and ¯̀

t = `t/a, ¯̀
b = `b/a, ᾱ = α/(a2G), and κ̄ = κ/G

are dimensionless forms of the material’s Cosserat elastic constants and characteristic lengths in
torsion and bending. The material halfwidth is a, and shear modulus is G = µ+ κ/2. Equation 12
assumes that the coupling number N = 1, which was found while fitting the bending data.

Ω =
38

449

1796 + 126(449 + 2740¯̀2
t + 3960¯̀4

t )
¯̀2
t + 693(152 + 2280¯̀2

t + 6615¯̀4
t )

¯̀2
b

8(19 + 465¯̀2
t + 990¯̀4

t ) + 1485(6 + 49¯̀2
t )

¯̀2
b

(12)

The chiral lattice was investigated for its squeeze twist couple stresses. Five cubic chiral spec-
imens of the same aspect ratio were tested: 1x1x1, 2x2x2, 3x3x3, 4x4x4, and 5x5x5 cells. Testing
was done in a dual strain measurement system, seen in Figure 4, utilizing a Linear Variable Differ-
ential Transformer (LVDT) for vertical displacement measurements and a laser beam reflected off
the specimen onto the same photo-receiver as before for twisting measurements.

Figure 4: The experimental setup of the dual strain setup used to measure squeeze twist coupling

A vertical stage under the specimen was used to obtain calibration values for the LVDT, and
a horizontal stage on the receiver gave calibrations values for the receiver. Dead weights were
applied to the the specimen in a symmetric manner to create a uniform stress state. Using the
calibration values, specimen dimensions, and path length, the strain coupling was calculated from
values measured during repeated application and removal of the weights.

To fit the coupling effects of the material, Equation 13 [14], originally derived for a cylinder of
material, was used. Here b0/ε is the coupling value (twist angle per unit length/vertical strain) and

the half width of the specimen is R. The characteristic lengths are `0 = `t =
√

β+γ
2G `4 = `t

√
1−ν
Ψ .

The K coefficients are dimensionless ratios of elastic constants. K2
0 = (C1+C2+C3)2

(α+β+γ)(λ+2G) , K2 = α
(α+β+γ) ,

K3 = C1
(C1+C2+C3) , K4 = ν = λ

λ+2G
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b0
ε

=
−K0l4[1− 2K3K4/(1 +K4) + [(K3 + 1)K4/(1 +K4)−K3)]]/(1−K4)

(
R

2
)2 + l20 + l24[K0K3(K3 − 1)/(1−K2

4 ) + ((1−K2)−K2
0 (1−K2

3 )/(1 +K4))/2(1−K4)]

(13)
Because available analyses and the present protocol do not suffice to extract all the constants,

the equation is simplified as follows before fitting to the measured data.

b0
ε

=
l4A
′

(
R

2
)2 + l20 + l24B

′
=

A

(
R

2
)2 +B

(14)

The theory predicts the ratio of twist to squeeze to be independent of specimen size for small
sizes and to roll off in magnitude as 1/R2 for large specimen size.

3 Results

Bending size effects in the simple cubic achiral lattice are as shown in Figure 5. The inferred bending
characteristic length was `b = 4.22 mm, smaller than the cell size of 6.25 mm. The coupling number
N = 1. The gradient sensitivity ratio was β/γ=0.0001. The goodness of fit was R2 =0.9807. The
asymptote of E = 26.63 MPa was measured in pure compression to remove Cosserat effects. The
difference in loading rate between the BVS and screw driven frame was neglected due to the small
tan(δ) = 0.007 measured in the BVS. A Poisson’s ratio of ν = 0.0124 was obtained analytically by
multiplying the base material’s Poisson’s ratio by the area fraction of the cross section.

Figure 5: Size effects in bending of the simple cubic achiral lattice. E = 26.63 MPa, ν = 0.0124,
`b = 4.22 mm, N = 1, β/γ = 0.0001. The black curve is the best fit to the measured experimental
points. Blue and red curves are for `b = 3.22 mm and `b = 5.22 mm. Dotted red line is for `b = 0,
a classical response. Error bars are one standard deviation.

Torsion size effects in the simple cubic achiral lattice are as shown in Figure 6. The inferred
torsion characteristic length was `t = 3.13 mm, considerably smaller than the cell size of 6.25 mm.
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The coupling number N = 1, and characteristic length in bending `b = 4.22 mm, as was determined
in bending. The shear modulus G = 0.66 MPa was determined while fitting. The goodness of fit
was R2 = 0.9630.

Figure 6: Size effects in torsion of the simple cubic achiral lattice. The black curve is the best fit
to the measured experimental points. G = 0.66 MPa, `t = 3.13 mm, `b = 4.22 mm, N = 1. Blue
and red curves are for `t = 2.13 mm and `t = 4.13 mm. Dotted red line is for `t = 0, a classical
response. Error bars are one standard deviation.

A 1x1x3 achiral specimen was tested but was not included in the plotted curve fits as the
resulting fit made it clear that the smallest was an outlier of the larger specimens in that the larger
specimens were all below the line of best fit. Including the smallest specimen would increase the
bending and torsion characteristic lengths by 6% and 15% respectively. The chiral 1x1x1 specimen
was included in the plotted fits, as it did not appear to be an outlier. Removing it from analysis
would increase the bending and torsion characteristic lengths by 21% and 20% respectively. The
analytical assumptions on small `t/a and `b/a begin to break down on the smallest specimens, and
these specimens only have ribs on the surfaces making a continuum analysis less relevant.

Bending size effects in the chiral cubic lattice are as shown in Figure 7. The inferred bending
characteristic length was `b = 3.83 mm, smaller than the cell size of 8.5 mm. The coupling number
N = 1. The gradient sensitivity ratio was β/γ=0.0001. The goodness of fit was R2 = 0.9808. The
asymptote of E = 0.259 MPa was measured in pure compression to remove Cosserat effects. The
difference in loading rate between the BVS and screw driven frame was neglected due to the small
tan(δ) = 0.009 measured in the BVS. A Poisson’s ratio of ν = 0.0668 was obtained analytically by
multiplying the base material’s Poisson’s ratio by the area fraction of the cross section.
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Figure 7: Size effects in bending of the chiral lattice. E = 0.259 MPa, ν = 0.0668, `b = 3.83 mm,
N = 1, β/γ = 0.0001. The black curve is the best fit to the measured experimental points. Blue
and red curves are for `b = 2.83 mm and `b = 4.83 mm. Dotted red line is for `b = 0, a classical
response. Error bars are one standard deviation.

Torsion size effects in the chiral cubic lattice are as shown in Figure 8. The inferred torsion
characteristic length was `t = 6.82 mm, smaller than the cell size of 8.5 mm. The coupling number
N = 1, and characteristic length in bending `b = 3.83 mm, as was determined in bending. The
shear modulus G = 0.0336 MPa was determined while fitting. The goodness of fit was R2 = 0.9853.

Figure 8: Size effects in torsion of the chiral lattice. The black curve is the best fit to the measured
experimental points. G = 0.0336 MPa, `t = 6.82 mm, `b = 3.83 mm, N = 1. Blue and red curves
are for `t = 5.82 mm and `t = 7.82 mm. Dotted red line is for `t = 0, a classical response. Error
bars are one standard deviation.

Squeeze twist coupling between axial strain and torsional twist per length was as shown in Figure
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9. The resulting constants in Equation 14 are A = 0.599 mm and B = 8.943 mm2. The goodness of
fit was R2 = 0.9985. The resulting fit give a maximum extrapolated coupling of b0/ε = 0.067/mm
at 0 radius and b0/ε = 0.033/mm for a single cell. The coupling may be compared with values
predicted for a chiral lattice of different design [24] which contained cubical nodules linked by
oblique ribs in a chiral configuration. Analysis disclosed twist - squeeze ratio γ/ε near 1 over a
range of specimen sizes. The twist - squeeze ratio γ/ε of strains was measured to be about 1 for
a lattice six cells wide [27]. It was not practicable to make such a cubical nodule lattice with a
larger number of cells, but the relation b0/ε = (γ/ε)(1/R) enables a comparison to be made. The
present lattice has a smaller maximum sensitivity, by a factor of about five, than the cubical nodule
based lattice (for the presented single cell specimen γ/ε = 0.2). Both lattices exhibited a decrease
in sensitivity b0/ε with an increase in specimen size.

Figure 9: Squeeze twist coupling b0/ε as a function of specimen width. The blue curve is the best
fit of Equation 14 to the measured experimental points giving A = 0.599 mm and B = 8.943 mm2.
Error bars are one standard deviation.

The achiral lattice with straight ribs was tested in the squeeze twist setup, and found to have a
coupling of b0/ε = −0.001 and standard deviation of 530%. The standard deviations on the chiral
lattices were between 3% and 12%. Therefore the squeeze twist coupling of the achiral lattice is
zero within the resolution of the experiment, so the structurally achiral lattice is elastically achiral
as well.

All of the analysis assumed that the specimens were elastically isotropic in nature, while in
reality they likely would be elastically cubic corresponding to their structure. This has an effect
on the calculated material characteristic lengths, however no analytical solutions for elastically cu-
bic Cosserat materials exist. Consequences of the cubic anisotropy include relaxation of the usual
isotropic relation among Young’s modulus, shear modulus and Poisson’s ratio; also the interrelation
among isotropic Cosserat constants as found in isotropic foams [18] does not apply to cubic ma-
terials. Additionally, the squeeze twist analytical solution assumed a circular cross section, while
the tested specimens were square in cross section. The bending and torsion analysis assumed the
specimen was achiral. Again, no proper alternative theory currently exists.

To summarize, Cosserat effects were observed in cubic lattices. For the achiral lattice with
straight ribs, size effects in torsion and bending revealed characteristic lengths about half the cell
size. No coupling between compression and torsion (squeeze twist coupling) was observed. By
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contrast, lattices designed with complex rib shapes to enhance Cosserat effects [20] exhibited larger
characteristic lengths comparable to the cell size and larger size effects, up to a factor of 36. Cells
or ribs with complex shapes do not guarantee large Cosserat effects. A negative Poisson ratio
lattice was found to have characteristic lengths about one third the cell size [28]. Open cell foams
of low density have characteristic lengths larger than the cell size [19]. The measured characteristic
lengths of the straight rib lattice were nonetheless larger than those predicted by a two dimensional
homogenization theory [15]. The distinction between 2D and 3D is likely to be crucial in this
comparison.

The straight rib achiral lattice, though not designed to exhibit nonclassical effects, nevertheless
exhibited Cosserat type size effects. One may reasonably expect that other truss lattices that have
been recently developed will also exhibit nonclassical effects.

The chiral lattice exhibited size effects in torsion and in bending. The Cosserat characteristic
length in torsion was less than half the cell size. Squeeze twist coupling was observed in compression
of the chiral lattice. This effect decreased with specimen size as anticipated by theory [14]. The
squeeze twist sensitivity for small specimens was about one fifth that of a chiral lattice with cubical
nodules and oblique connecting ribs [27].

4 Conclusion

The chiral lattice exhibited squeeze-twist coupling and the achiral lattice did not. Size effects were
observed in the squeeze-twist coupling as anticipated by analysis. Size effects were also observed
in bending and torsion of all samples as anticipated. However, the relations between the measured
Cosserat constants were relaxed by material anisotropy.
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