R. S. Lakes, Composites and Metamaterials, World Scientific, July (2020). ISBN 978 981 121 636 7 
Book  publisher link
Chapter 1 introduces structure property relations and kinds of materials.  
Chapter 2 introduces basic composite structures and their elastic properties, also upper and lower bounds on properties.  
Chapter 3 presents governing equations for anisotropic elasticity, and the role of material symmetry in relation to properties. 
Chapter 4 introduces coupled fields in which materials can respond to multiple field variables such as those associated with elastic, electric and thermal response.  
Chapter 5 presents specific materials with particulate, fibrous, and platelet inclusions and their properties.  
Chapter 6 introduces cellular solids: honeycomb, foam, and lattices including structural hierarchy as well as materials with cellular structure that attain negative or extreme physical properties.
Chapter 7 presents materials of biological origin and the role of structural hierarchy in biological materials.  
Chapter 8 discusses the role of the size scale of structural heterogeneity in analysis and design.  
Chapter 9 presents viscoelastic response of heterogeneous solids: creep, relaxation, energy dissipation, wave attenuation and rate dependence. 
-----
   chapter        1  Introduction      1  
              1.1  Heterogeneous materials     1  
              1.1.1  Overview     1  
              1.1.2  Classification and terminology     2  
              1.1.3  Assumptions about the material     3  
              1.1.4  Materials vs. structures     4  
              1.2  Outline     4  
              1.3  Role of density     5  
              1.3.1  Modulus and density     6  
              1.3.2  Strength and density     7  
              1.3.3  Soft materials     7  
   chapter        2  Structures, properties, bounds     9  
              2.1  Introduction     9  
              2.2  Bounds on properties     10  
              2.2.1  Bounds on elastic constants of a homogeneous solid     10  
             Bounds on elastic moduli     10  
             Bounds on Poisson's ratio     11  
              2.2.2  Bounds on heat capacity of a homogeneous solid     12  
              2.2.3  Bounds on composite elastic properties     13  
             Voigt bound     13  
             Reuss bound     13  
             Hashin-Shtrikman bounds     13  
              2.2.4  Bounds on composite dielectric constant     15  
              2.3  Attaining the bounds on properties     15  
              2.3.1  Voigt composite     16  
              2.3.2  Reuss composite     17  
              2.3.3  Laminates: dielectric constant     17  
              2.3.4  Laminates: structural hierarchy     18  
              2.3.5  Attaining the Hashin-Shtrikman bounds: spheres     20  
              2.3.6  Attaining the Hashin-Shtrikman bounds: laminates     21  
              2.4  Inclusion shape: dilute concentration     22  
              2.4.1  Spherical inclusions     22  
              2.4.2  Fiber inclusions     22  
              2.4.3  Platelet inclusions     22  
              2.5  Exceeding bounds     23  
              2.5.1  Negative structural stiffness and extreme damping     23  
              2.5.2  Extreme nonlinear energy dissipation     25  
              2.5.3  Phase transformations     25  
              2.5.4  Negative and extreme moduli: stored energy     27  
             Biological tissue negative properties     28  
              2.5.5  Negative and extreme moduli: energy flux     28  
              2.5.6  Negative heat capacity     28  
              2.5.7  Negative capacitance     29  
              2.6  Summary     29   
   chapter        3  Symmetry and anisotropy     34  
              3.1  Introduction and Rationale     34  
              3.2  Tensors     34  
              3.3  Elastic properties     35  
              3.3.1  Hooke's law     35  
              3.3.2  Reduced notation: matrix form     36  
              3.3.3  Symmetry classes     36  
              3.3.4  Quasicrystals     37  
              3.3.5  Modulus matrices and symmetry     38  
              3.3.6  Isotropy     40  
             Elastic constants     40  
             Modulus matrix for isotropic solid     40  
             Modulus  C_   1111    via elementary method     42  
              3.3.7  Physical interpretation: elastic modulus     42  
              3.3.8  Physical interpretation: elastic compliance     44  
              3.3.9  Physical interpretation: experiment     45  
              3.3.10  How to show the effect of symmetry     46  
              3.3.11  Neumann's principle     46  
              3.4  Stress concentration: anisotropy     47  
              3.5  Chirality     47  
              3.6  Dielectric and optical properties     49  
              3.7  Materials, symmetry and structure     49  
              3.7.1  Examples of materials     49  
              3.7.2  Poisson's ratio in materials with structure     50  
              3.7.3  Quasicrystal elasticity     51  
              3.8  Summary     51  
   chapter        4  Coupled fields     54  
              4.1  Introduction: piezoelectricity, thermoelasticity      54  
              4.2  Piezoelectric properties     55  
              4.2.1  Piezoelectric properties and symmetry     55  
             Piezoelectricity: cubic symmetry     56  
             Piezoelectricity: isotropic solids     57  
              4.2.2  Piezoelectric materials     57  
             Voltage sensitivity     59  
              4.2.3  Strongly piezoelectric materials     61  
              4.2.4  Lead free piezoelectric materials     62  
              4.2.5  Experimental piezoelectric measurement     62  
              4.2.6  Electrostriction     62  
              4.2.7  Pyroelectric materials     62  
              4.2.8  Applications of piezoelectric and pyroelectric solids     63  
              4.3  Thermal expansion     63  
              4.3.1  Thermoelasticity, symmetry, causes     63  
              4.3.2  Thermal expansion anisotropy     64  
              4.3.3  Small or negative thermal expansion     65  
              4.3.4  Composite thermal expansion bounds     66  
              4.3.5  Applications and thermal expansion     66  
              4.3.6  Piezocaloric and related effects     66  
             Stress analysis via thermography     67  
              4.4  Fluid-solid composites     67  
              4.4.1  Constitutive equations     67  
              4.4.2  Experimental determination of constants     68  
             Undrained compliance     69  
             Waves     69  
              4.4.3  Applications: geology and geological engineering     69  
              4.4.4  Foams     70  
              4.4.5  Streaming potentials     70  
              4.4.6  Vascular materials     70  
             Healing and cooling     70  
             Laser cooling     71  
              4.5  Hall effect     72  
              4.6  Reciprocity     72  
              4.6.1  Non-reciprocal and extreme materials     73  
              4.7  Slow and fast processes     73  
              4.7.1  Overview     73  
              4.7.2  Isothermal and adiabatic moduli     74  
              4.7.3  Short and open circuit moduli     75  
             Electrical conductivity     75  
              4.7.4  Fluid-solid composites     75  
              4.8  Artificial muscles     77  
              4.9  Artificial tentacles     78  
              4.10  Energy harvesting     78  
              4.11  Other coupled fields     79  
              4.12  Summary     79  
 
   chapter        5  Particles, fibers, platelets     87  
              5.1  Introduction: structure     87  
              5.2  Particulate polymer matrix solids     88  
              5.2.1  Dental composites     88  
              5.2.2  Asphalt     90  
              5.2.3  Toughened polymers     90  
              5.2.4  Filled polymers; tire rubber; nano-fillers     91  
              5.2.5  Self healing polymers     93  
              5.3  Fibrous polymer matrix solids     93  
              5.3.1  Why fibers?     93  
              5.3.2  Unidirectional fibrous composites     94  
             Stress concentration factor     94  
              5.3.3  Laminates     94  
             Laminate analysis     95  
             Quasi-isotropic laminates     97  
             Cross-ply laminates; stacking sequence     97  
              5.3.4  Nano-tubes as fibers     99  
              5.3.5  Effects of moisture     100  
              5.3.6  Damage     100  
              5.3.7  Making fibrous composites     101  
              5.4  Platelet reinforcement     101  
              5.5  Metal matrix composites     102  
              5.5.1  Particulate metal matrix composite stiffness and strength     102  
              5.5.2  Nano-size particle inclusions in metal     103  
              5.5.3  Fiber inclusions in metal     103  
              5.6  Composites with renewable constituents     103  
              5.7  Thermoelastic composites     104  
              5.7.1  Thermal expansion, Voigt     104  
              5.7.2  Unidirectional composites: thermal expansion     104  
              5.7.3  Thermal benders     105  
              5.8  Piezoelectric composites     106  
              5.8.1  Piezoelectric composite structure and rationale     106  
              5.8.2  Piezoelectric Voigt composite     108  
              5.8.3  Piezoelectric benders     109  
              5.8.4  Piezoelectric composite uses and fabrication     109  
              5.9  In situ composites     110  
              5.10  Summary     111  
   chapter        6  Cellular solids and lattices     116  
              6.1  Introduction     116  
              6.2  Tessellations     116  
              6.3  Honeycomb     118  
              6.3.1  Honeycomb modulus     119  
             In plane modulus: scaling     119  
             In plane modulus: exact     120  
             Out of plane modulus      121  
              6.3.2  Honeycomb Poisson's ratio     121  
             In-plane Poisson's ratio     121  
             Out of plane Poisson's ratio     122  
              6.3.3  Honeycomb strength     122  
             In plane: elastic buckling     122  
             Out of plane: elastic buckling     123  
             Out of plane: plastic buckling     123  
             Out of plane: yield     123  
              6.3.4  Square cell honeycombs     124  
              6.3.5  Hierarchical solids: honeycombs     125  
              6.3.6  Making honeycomb     125  
              6.4  Foams     126  
              6.4.1  Foam elastic modulus     126  
              6.4.2  Poisson's ratio of foams     128  
              6.4.3  Nonlinearity and strength of foams     128  
              6.4.4  Toughness of foams     129  
              6.4.5  Dense foams and syntactic foams     130  
              6.4.6  Making foams     131  
              6.5  Lattices     131  
              6.5.1  Truss lattices: ribs     132  
              6.5.2  Continuous rib lattices     134  
              6.5.3  Lattice property bounds     135  
              6.5.4  Plate lattices     137  
              6.5.5  Surface lattices     138  
              6.5.6  Hierarchical lattices     140  
              6.5.7  Making lattices     142  
              6.6  Poisson's ratio tuning     143  
              6.6.1  Poisson's ratio in anisotropic materials     143  
              6.6.2  Poisson's tuning ratio in foams: negative or extreme     144  
              6.6.3  Poisson's ratio tuning in hinged structures: negative or extreme     146  
              6.6.4  Poisson's ratio tuning in lattices: negative or extreme     148  
             Applications, Poisson's ratio     151  
              6.7  Tuning coupled fields     151  
              6.7.1  Tuning thermal expansion: negative or extreme     151  
              6.7.2  Piezoelectric lattices     153  
              6.7.3  Tuning the Hall effect     153  
              6.8  Control of waves     154  
              6.8.1  Role of resonance     154  
              6.8.2  Tuning refraction of waves. Negative index.     155  
             Quasicrystal lattices     156  
              6.8.3  Electromagnetic lattices; cloaking     156  
              6.8.4  Acoustic lattices; cloaking     157  
              6.9  Applications of cellular solids     158  
              6.9.1  Applications of foam and honeycomb     158  
              6.9.2  Applications of lattices     158  
              6.10  Summary     159  
 
    chapter        7  Biological material structural hierarchy     168  
              7.1  Introduction     168  
              7.2  Bone and teeth     168  
              7.2.1  Compact bone: stiffness and strength     168  
              7.2.2  Compact bone: piezoelectricity     173  
              7.2.3  Compact bone: adaptation     173  
              7.2.4  Compact bone: stress concentration     174  
              7.2.5  Spongy bone     174  
              7.2.6  Teeth     176  
              7.3  Ligament and tendon     176  
              7.4  Wood and other plant tissue     178  
              7.4.1  Wood structure, stiffness and strength     178  
              7.4.2  Wood piezoelectricity     181  
              7.5  Summary     181  
  
   chapter        8  Size of heterogeneity     186  
              8.1  Introduction     186  
              8.2  Stress concentrations     186  
              8.2.1  Experiment     186  
              8.2.2  Analysis: ad hoc criteria     187  
              8.2.3  Analysis: generalized elasticity     187  
              8.3  Size effects     188  
              8.3.1  Size effects: structural example     188  
              8.3.2  Size effects: continuum view     190  
              8.3.3  Size effects: experiment     190  
             Milli-scale     190  
             Nano-scale     192  
             Interatomic scale     193  
              8.4  Generalized continuum elasticity     193  
              8.4.1  Cosserat theory     193  
              8.4.2  Stress and strain fields: effect of microstructure     196  
              8.4.3  Physical causes     197  
              8.4.4  Homogenization analyses     197  
              8.4.5  Hinged structures     197  
              8.4.6  Chirality in elasticity     197  
              8.4.7  Other generalized continua     198  
              8.5  Flexo-electricity: gradient piezoelectricity     199  
              8.6  Surface and free edge effects     200  
              8.7  Summary     200  
 
    chapter        9  Viscoelastic composites     206  
              9.1  Viscoelastic properties: introduction     206  
              9.2  Viscoelastic functions     206  
              9.2.1  Creep     206  
              9.2.2  Relaxation     207  
              9.2.3  Response to sinusoidal input     208  
              9.2.4  Viscoelasticity of typical materials     209  
              9.3  Viscoelasticity of composites     209  
              9.3.1  Viscoelasticity of Voigt laminates     210  
              9.3.2  Stiffness-damping maps of extremal composites     211  
              9.3.3  Stiffness-damping map: inclusion shape     212  
              9.3.4  Bounds on viscoelastic properties     213  
             Bounds on moduli     213  
             Bounds for a composite     214  
              9.3.5  Waves in composites     214  
              9.3.6  Negative damping; acoustic amplification     215  
              9.3.7  Extreme viscoelastic composites: inclusion shape     216  
              9.3.8  Extreme viscoelastic composites: stored energy     216  
              9.3.9  Viscoelasticity of fibrous composites     216  
              9.3.10  Effect of temperature     217  
              9.3.11  Poisson's ratio of viscoelastic materials     217  
              9.3.12  Viscoelasticity of cellular solids     218  
              9.3.13  Viscoelasticity of bone     218  
              9.3.14  Viscoelasticity of tendon and ligament     218  
              9.3.15  Viscoelastic damping of metal matrix composites     219  
              9.4  Summary     219  
           A  Appendix     224  
              A.1  Solved Problems     224  
              A.1.1  Transverse, fibrous     224  
              A.1.2  Physical meaning of  C_   1111    in applications     224  
              A.1.3  Adiabatic and isothermal compliance     225  
              A.1.4  Foam stiffness vs. density     226  
              A.1.5  Steel foam and solid polymer     226  
              A.1.6  Cardboard honeycomb strength     226  
              A.1.7  Poisson's ratio of honeycomb     227  
              A.1.8  Particle inclusion concentration     227  
              A.1.9  Multiple particle sizes     227  
              A.1.10  Spongy bone modulus     228  
              A.1.11  Sneaker sole design     228  
              A.1.12  Cubic lattice     229  
              A.1.13  Lattice with tubular ribs     229  
              A.1.14  Motion from piezoelectric disk     230  
              A.1.15  Voltage from piezoelectric disk     230  
              A.1.16  Piezoelectric bender     231  
              A.1.17  Laminate of steel and rubber     231  
              A.2  Problems and questions     232  
 
           B  Symbols    235  
              B.1  Principal symbols and definitions     235  
 
 
We have used this book for our course in multiphase and heterogeneous materials in the Department of Materials Science.