
1

Elastic freedom in cellular solids and composite materials
Lakes, R. S., "Elastic freedom in cellular solids and composite materials", in Mathematics of
Multiscale Materials, p. 129-153, ed. K. Golden, G. Grimmert, R. James, G. Milton, P. Sen, IMA
vol. 99, Springer, NY, Berlin, (1998).

Roderic Lakes, Ph. D.
Wisconsin Distinguished Professor
Department  of Engineering Physics

Engineering Mechanics Program; Biomedical Engineering Department
Materials Science Program and Rheology Research Center

University of Wisconsin-Madison
Engineering Research Building

1500 Engineering Drive, Madison, WI 53706-1687

web-     http://silver.neep.wisc.edu/~lakes



2

Abstract
The question of how much freedom is to be incorporated in a continuum theory must

ultimately be decided by experiment. There are several theories which describe behavior of
materials. An early uniconstant theory was proposed based on atomic interaction theory; it was
abandoned since it predicted a Poisson's ratio of 1/4 for all materials. The elasticity theory currently
accepted as classical allows Poisson's ratios in isotropic materials in the range -1 to 1/2. Common
materials exhibit a Poisson's ratio from 1/4 to nearly 1/2. We have prepared materials with a
Poisson's ratio as small as -0.8. Deformation mechanisms in these materials include relative rotation
of micro-elements, and non-affine micro-deformation. The relation between properties and structure
is exploited to prepare viscoelastic composites with high stiffness combined with high damping.
Generalized continuum theories exist with more freedom than classical theory. For example, in
Cosserat elasticity there are characteristic lengths as additional engineering elastic constants. Recent
experimental work discloses a variety of cellular and fibrous materials to exhibit such freedom, and
the characteristic lengths have been measured. In hierarchical solids structural elements themselves
have structure. Several examples of natural structural hierarchy are considered, with consequences
related to optimality of material properties.

1 Introduction
For many purposes it is expedient to make use of continuum representations of materials,

all of which actually have structure. The various length scales in the structure have various
consequences as shown in Fig. 1.1. In composites of simple structure it is possible to predict or to
bound the behavior of the composite from the behavior of the constituents [see, e.g. 1.1, 1.2]. There
is a great variety of possible material micro-structure. We consider the question of the extent to
which this structure has consequences in the behavior of a material viewed as a continuum. One
theme to be explored is that of extremal properties. In section 2, negative Poisson's ratios are
considered; in section 3, viscoelastic composites with high stiffness and damping; and in section 5,
the optimization of compressive strength in low-density cellular solids. The structural concept
underlying negative Poisson's ratio is that of non-affine deformation, for example the unfolding of
cells in a cellular solid. Non-affine deformation on the composite scale, combined with atomic scale
damping mechanisms also may be used to achieve composites with high damping and high
stiffness. The structural concept underlying cellular solids with optimal compressive strength is that
of structural hierarchy. There are further aspects of material behavior in addition to optimization of
particular characteristics. Given certain types of micro-structure, qualitatively new phenomena may
occur in the mechanics of materials. Several of these have been anticipated in the development of
generalized continuum representations such as Cosserat elasticity, which has characteristic length
scales. In a Cosserat solid the points in the continuum have the freedom to rotate as well as to
translate. Cosserat elasticity is discussed in section 4, from an experimental perspective. A variety of
experimental results are given. One consequence of Cosserat elasticity is an enhancement of the
toughness of a material, even if it has no ductile constituents. Theoretical results of Cosserat elastic
constants derived from structural considerations are reviewed. Fibrous, cellular and laminated
materials are predicted to exhibit observable characteristic lengths, but particulate materials are
predicted to exhibit characteristic lengths of zero, corresponding to classical elasticity.
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2 Control of Poisson's ratio
Poisson's ratio of a solid is defined as the lateral contraction strain divided by the

longitudinal extension strain in a simple tension experiment. Poisson's ratio, usually denoted by ν,
is positive in almost all known materials. For isotropic materials (those in which the properties are
independent of direction), it may be shown via energy arguments in the theory of elasticity [2.1] that
 -1 ≤ ν ≤ 1/2. (2.1)
The relationship between shear modulus G, bulk modulus K, and Poisson's ratio ν for isotropic
materials is

G = 
3K (1 - 2ν)
 2 (1 + ν)  . (2.2)

Many common materials have a Poisson's ratio close to 1/3. Rubbery materials have values
approaching 1/2; they readily undergo shear deformations but resist volumetric (bulk) deformation,
so G << K above.  Some textbooks can still be found which categorically state that Poisson's ratios
less than zero are unknown; nevertheless there are in fact a number of examples of negative
Poisson's ratio solids. Such solids become fatter in cross section when stretched. A solid with ν ≈
-1 would be the opposite of rubber: difficult to shear but easy to deform volumetrically: G >> K.
Foams and honeycombs have two length scales, the size of the cell and the size of the rib. Those
two scales confer the freedom to control material properties via cell shape. The continuum aspects
corresponding to the structures considered in this section are examined in section 4.

Two dimensional honeycombs with inverted cells (Fig. 2.1b; compare with conventional
honeycomb with convex hexagonal cells in Fig. 2.1a) were reported with negative Poisson's ratios
in the honeycomb plane [2.2-2.5], and these honeycombs have been recently analyzed [2.6,2.7].
Honeycombs are sufficiently simple that the Poisson effect can be easily visualized; moreover,
demonstration models can be easily made from paper. Macroscopic structures in two or three
dimensions consisting of rods, springs, and sliders, were devised to give a negative Poisson's ratio
[2.5]; these structures have an inverted characteristic similar to the honeycombs. Structures of the
above type require some form of individual assembly.

Foam materials (three-dimensional cellular solids) with a negative Poisson's ratio as small
as -0.7 were developed [2.8] in which an inverted or re-entrant cell structure was achieved by
isotropic permanent volumetric compression of a conventional foam, resulting in microbuckling of
the cell ribs. A schematic diagram of a typical tetrakaidecahedral cell of a normal foam is shown in
Fig. 2.1c, and a re-entrant cell in Fig. 2.1d. Polymer foams which exhibit a softening point [2.8,2.9],
ductile metallic foams [2.8,2.9], and thermosetting polymer foams [2.9] can be prepared with a
negative Poisson's ratio. The method for open cell polymer foams is to compress a foam block
triaxially in a mold, heat above the softening point, and cool. The method for ductile metal foam is
to apply small increments of plastic deformation in each of three orthogonal directions. The method
for thermosetting foam is to apply triaxial compression at an appropriate time during the foaming
process. Representative polymer foam structure is shown for normal foam in Fig. 2.2a and in re-
entrant foam in Fig. 2.2b. Poisson's ratio depends on strain [2.10,2.11]; the range for negative
Poisson's ratio is larger in the polymer than in the metal foams as a result of the plastic hinge
formation which occurs in the ribs of the metal foams.  In these structures and materials, the
negative Poisson's ratio arises from the unfolding of the re-entrant cells, and isotropy can be
achieved along with the negative Poisson's ratio. They are true materials in that no individual
assembly is required.

Negative Poisson's ratios can occur in certain directions in several anisotropic materials. For
example, certain anisotropic microcellular foams exhibit an unintentional negative Poisson's ratio in
some directions [2.12,2.13]. These are anisotropic materials, therefore the bounds on Poisson's
ratio are wider (-∞ < ν < ∞) than in the isotropic case; indeed Poisson's ratios smaller than -1 have
been reported. The causal mechanism appears to be associated with tilting of particulates linked by
microfilaments. Negative Poisson's ratios have been theoretically analyzed in anisotropic fibrous
composites. It is theoretically possible in some laminates to achieve a negative Poisson's ratio as
small as -0.21 in the direction perpendicular to the layers by control of the stacking sequence
[2.14]. Negative Poisson's ratio in other laminates can be achieved in some directions in the plane
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of the laminate, again by control of the stacking sequence [2.15,2.16]. In these composites there is a
high degree of anisotropy and the negative Poisson's ratio only occurs in some directions; in some
cases only over a narrow range of orientation angle between the applied load and the fibers. Other
anisotropic systems which may exhibit negative Poisson's ratio are some single crystals such as
iron pyrites [2.17], though random aggregates of crystals almost always have a positive Poisson's
ratio [2.18]

Laminate structures have been presented which give rise to intentional negative Poisson's
ratios combined with mechanical isotropy in two dimensions (Fig. 2.3) or in three dimensions
[2.19]. These laminates have structure on several levels of scale; they are hierarchical and have
many length scales (see Fig. 1.1 and section 5). One can achieve, by appropriate choice of
constituent properties, Poisson's ratios approaching the lower limit of -1.

Negative Poisson's ratios are counterintuitive. It is of interest to consider causes. Causes
must arise in the microstructure, since the continuum theories of elasticity do not specify particular
values of Poisson's ratio. A solid containing atoms interacting by central forces, in which the atoms
move in an affine manner (locally equivalent to a strain combined with a rotation) under
deformation, exhibits a Poisson's ratio of 1/4 [2.20,2.21]. This result is originally due to S. D.
Poisson. Most ordinary materials have Poisson's ratio typically close to 1/3, so at least one of these
assumptions must not apply to them.  In negative Poisson's ratio foams as in conventional ones,
bending of cell ribs occurs. Such bending is insufficient as a causal mechanism for the negative
Poisson's ratio [2.22] contrary to an earlier suggestion [2.23].  Negative Poisson's ratios cannot be
achieved via the bending or twisting rigidity of the cell ribs alone [2.24]. Non-affine (locally
inhomogeneous) deformation by itself can give rise to the negative Poisson's ratio effects [2.24].
Other possible causes are pre-strain in the lattice structure [2.24] or a chiral structure [2.24,2.25];
see discussion in §4. Several illustrative models involving truss elements with sliders, and
hypothetical granular structures, have been presented [2.26, 2.27].

In the re-entrant foams and honeycombs, inhomogeneous, non-affine deformation is
manifested as an unfolding of the cells as the entire structure is extended. Such deformation has
been experimentally observed in foams [2.28]. The structure of some of the crystalline materials,
notably α-cristobalite and arsenic, suggests that non-affine deformation occurs on the atomic scale
as well.

The composites of Milton [2.19] offer the intriguing possibility of stiff materials with a
negative Poisson's ratio. The stiffness of one the two constituents must be at least 25 times greater
than that of the other constituent to obtain a Poisson's ratio less than zero. A Poisson's ratio
approaching -1 requires constituents which differ even more in stiffnesses: one phase becomes very
soft, tending to 'empty space' in its properties. Another intriguing possibility is that of creating
stiffer negative Poisson's ratio materials by design on the molecular scale [2.29]. Further review of
the area of negative Poisson's ratio materials is provided in [2.30].

As for possible applications of negative Poisson's ratio foams, they may find use in
absorbing sound and vibration by virtue of resonance of the ribs [2.31], unusual fasteners [2.32],
toughened foams, abrasion-resistant sponge, and damage-resistant core for sandwich panels.
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3 Viscoelastic composites
In viscoelastic materials the material properties depend on time or frequency, and

mechanical energy is dissipated in deformation. The constitutive equation for linear viscoelasticity is
the Boltzmann superposition integral. Here t is time and τ is a time variable of integration.

σ(t) =  
⌡
⌠

0

t

 E(t-τ)
dε
dτdτ (3.1)

In the frequency domain, the modulus may be regarded as a complex number dependent on
frequency: E* = E' + iE". The ratio of the imaginary part E" to the real part E' is of interest
physically and is referred to as the loss tangent.
tan δ = E"/E' (3.2)

Viscoelastic materials are of use in the damping of vibration and in the absorption of sound
waves. It is desirable in some applications to use materials which are stiff enough to carry out a
structural role, and which also exhibit significant mechanical damping. Most stiff materials,
however, are low in damping and most high-damping materials are compliant. Properties of some
representative materials are shown in Fig. 3.1.

Non-affine deformation, in which the strain field is highly inhomogeneous on the scale of
micro-structural elements was considered above in the context of materials with a negative Poisson's
ratio. Non affine deformation in composite materials permits one to simultaneously achieve high
stiffness and high loss [3.1]. Such deformation occurs in negative Poisson's ratio materials and also
in Reuss-type laminates. Reuss laminates exhibit minimal stiffness for a given volume fraction of
the stiff phase, however a stiff Reuss composite can be made if the volume fraction of the compliant
phase is made very small.

We use stiffness-loss maps to examine the consequences of changes in constituent
properties with the aim of developing approaches for producing composite materials with high
stiffness and high loss. The maps are constructed from the equations for the stiffness of an elastic
composite, with the aid of the dynamic correspondence principle of linear viscoelasticity [3.2,3.3].
Each elastic modulus is replaced with a complex dynamic modulus in the analysis. In particular, for
elastic phases, the Voigt (or uniform strain) relation is
Ec = E1V1 + E2V2, (3.3)
in which Ec, E1 and E2 refer to the Young's modulus of the composite, phase 1 and phase 2, and V1
and V2 refer to the volume fraction of phase 1 and phase 2 with V1 +V2 = 1. We apply the
correspondence principle to convert the elastic relations to a viscoelastic relation (for loading which
is sinusoidal in time) by replacing  the Young's moduli E by the complex modulus E*(iω) or  E* =
E' + i E", in which ω is the angular frequency of the harmonic loading.  This procedure gives
Ec* = E1*V1 + E2*V2, (3.4)
with  the loss tangent tan δ = E"/E'. Similar analysis may be conducted for the Reuss structure and
for other composite structures [3.4].

The curves for the Voigt and Reuss composites enclose a region in the map. Although the
Voigt and Reuss relations bound the elastic stiffness for given volume fraction, they do not
necessarily bound the viscoelastic behavior in a stiffness loss map.  Bounds for the complex bulk
modulus have been presented [3.5]. We remark that the Voigt and Reuss curves appear almost
identical to the Hashin-Shtrickman stiffness bounds on a stiffness-loss map [3.1] even though they
can be very different when plotted as functions of volume fraction; moreover they do not differ
much from the true bounds.  Fig. 3.2 shows the effect of increasing the stiffness of the stiff phase,
from 200 GPa, corresponding to steel, to 400 GPa, corresponding to tungsten. For both, tan δ is
assumed to be 0.001, a value representative of results reported in the literature. The more compliant
phase is assumed to have E = 31 GPa, and tan δ = 0.12. Observe that use of a stiffer stiff phase
facilitates achievement of a composite which is both stiff and lossy.

Experimental studies, using an instrument [3.6] capable of measurements over ten decades
(10-6 Hz to 104 Hz), on a laminate of tungsten and indium-tin alloy disclose a stiffness E = 161
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GPa with tan δ = 0.096 achieved at 0.1 Hz, and E = 129 GPa with tan δ = 0.2 at 0.01 Hz [3.4]. This
behavior is well above the diagonal line in Fig. 3.1 and represents a very unusual combination of
stiffness and damping.

 The potential benefit of such materials is a reduction in damage to vehicles due to vibration
and metal fatigue, a reduction in operator fatigue, reduction in noise due to machinery, reduction in
disturbances to mobile electronic equipment, and improved performance due to reductions in
weight.

4 Cosserat elasticity
Constitutive equations
The classical theory of elasticity is presently used in engineering analyses of deformable

objects at small strain. Other continuum theories are available, all mathematically consistent, for
linear isotropic materials. Some have more freedom, and some have less freedom than classical
elasticity. Therefore a discrimination among them is to be made by experiment.

The early uniconstant elasticity theory of Navier is based upon the assumption that forces
act along the lines joining pairs of atoms and are proportional to changes in distance between them
[4.1].  The constitutive equation is as follows.
 σkl =  G εrr δkl + 2G εkl (4.1)
σ is stress, ε is strain, and G is an elastic constant, the shear modulus. This uniconstant theory was
accepted by Navier, Cauchy, Poisson, and Lamé during the early days of the theory of elasticity.
The theory contains less  freedom than the classical theory of elasticity now in common use. There
is no length scale in uniconstant elasticity.

Classical  isotropic elasticity [4.2,4.3], has the following constitutive equation, in which
there are the two independent elastic constants λ and G, the Lamé constants.

σkl =  λεrr δkl + 2G εkl (4.2)
The Poisson's ratio ν = λ/2(λ + G) is restricted by energy considerations to have values in the
range from -1 to 1/2. There is no length scale in classical elasticity.

The Cosserat  theory of elasticity [4.4] incorporates a local rotation of points  as well as the
translation assumed in classical elasticity; and a couple stress (a torque per unit area) as well as the
force stress (force per unit area). The force stress is referred to simply as 'stress' in classical
elasticity in which there is no other kind of stress. The idea of a couple stress can be traced to Voigt
[4.5] during the early development of the theory of elasticity. More recently, theories incorporating
couple stresses were developed using the full capabilities of modern continuum mechanics [4.6-
4.10]. Eringen [4.9] incorporated micro-inertia and renamed Cosserat elasticity micropolar
elasticity. In the isotropic Cosserat solid there are six elastic constants, in contrast to the classical
elastic solid in which there are two, and the uniconstant material in which there is one. The
constitutive equations for a linear isotropic Cosserat elastic solid are, in the symbols of  Eringen
[4.9]:

σkl =  λεrr δkl + (2µ + κ  )εkl + κeklm(rm-φm) (4.3)
mkl =  α φr,r δkl + βφk,l + γφl,k (4.4)

The usual summation convention for repeated indices is used throughout, as is the comma
convention representing differentiation with respect to the coordinates.  σkl is the force stress, which
is a symmetric tensor in equations 1 and 2 but it is asymmetric in Eq. 4.3. mkl  is the couple stress,
εkl = (uk,l + ul,k)/2 is the small strain, uk is the displacement, and eklm  is the permutation symbol.
The microrotation φk in Cosserat elasticity is kinematically distinct from the macrorotation rk =
(eklmum,l)/2 obtained from the displacement gradient. Components of stress and couple stress on a
differential element of a Cosserat solid, and the corresponding increments of force and moment on
the structural elements of a real material are shown in Fig. 4.1.

In three dimensions, the isotropic Cosserat elastic solid is described by six elastic constants
λ, µ, α, β, γ, and κ. Symbols used by various authors were compared by Cowin [4.11]. The
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following technical constants derived from the tensorial constants are more beneficial in terms of
physical insight. These are [4.9,4.12]:

Young's modulus E = (2µ+κ)(3λ+2µ+κ)/(2λ+2µ+κ),
shear modulus G = (2µ+κ)/2,
Poisson's ratio ν = λ/(2λ+2µ+κ),
characteristic length for torsion lt = [(β+γ)/(2µ+κ)]1/2,

characteristic length for bending lb =  [γ/2(2µ+κ)]1/2,
coupling number N = [κ/2(µ+κ)]1/2, and
polar ratio  Ψ = (β+γ)/(α+β+γ).

The Cosserat characteristic lengths are of particular interest. They are in contrast to classical
elasticity which has no length scale. When the Cosserat elastic constants α, β, γ, κ vanish, the solid
becomes classically elastic. The case N = 1 (its upper bound) is known as 'couple stress theory'
[4.8. 4.13]. N = 1 corresponds to κ → ∞, a situation which is permitted by energetic
considerations, as is incompressibility in classical elasticity. The case κ = 0 corresponds to a
decoupling of the rotational and translational degrees of freedom. Although some theoretical writers
choose to solve problems for this case since the analysis is simpler, the limit κ → 0 presents
physical difficulties [4.14].

Predicted behavior
Materials obeying different continuum theories can be distinguished since predicted

behavior is different. Some of these differences in behavior  can be used in the design of
experiments to explore the generalized continuum aspects of materials. The discussion below is for
the most part restricted to isotropic materials since their behavior is simpler.

The uniconstant  theory predicts a Poisson's ratio of › for all  isotropic materials. Since

most common isotropic materials exhibit a Poisson's ratio close to ‹, the uniconstant theory was
rejected based on experimental measurements of Poisson's ratio. The issue was not decided until
well after the introduction of the theories since decisive experiments were difficult to perform in the
late 1800's.

Classical  elasticity is, according to its name, the currently accepted theory of elasticity. The
following behavior is predicted.
(i) The rigidity of circular cylindrical bars of diameter d in tension is proportional to d2; in
bending and torsion, the rigidity is proportional to d4.
(ii) The wave speed of plane shear waves and dilatational waves in an unbounded medium is
independent of frequency.
(iii) There is no length scale in classical elasticity, hence stress concentration factors for holes or
inclusions in an infinite domain under a uniform stress field depend only on the shape of the
inhomogeneity, not on its size.
(iv) Poisson's ratio ν for isotropic materials can have values in the range -1 ≤ ν ≤ ¤.

Cosserat  or micropolar  elasticity has the following consequences in isotropic materials.
(i) A size-effect is predicted in the torsion of circular cylinders of Cosserat elastic materials.
Slender cylinders appear more stiff then expected classically [4.12]; Fig. 4.2. A similar size effect is
also predicted in the bending of plates [4.12] and of beams [4.15]; Fig. 4.3.  No size effect is
predicted in tension.
(ii) The stress concentration factor for a circular hole, is smaller than the classical value, and
small holes exhibit less stress concentration than larger ones [4.16].
(iii) The wave speed of plane shear waves and dilatational waves in an unbounded Cosserat
elastic medium is independent of frequency  as in the classical case. The speed of shear waves
depends on frequency in a Cosserat solid [4.9]. A new kind of wave associated with the micro-
rotation is predicted to occur in Cosserat solids.
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(iv) The range in Poisson's ratio is from -1 to +0.5, the same as in the classical case [4.12].
Chiral Cosserat solids
New phenomena are predicted in Cosserat solids which lack a center of symmetry. These

solids are called noncentrosymmetric or chiral materials. A rod under tensile load deforms in
torsion [4.17]. Wave speed for transverse circularly polarized waves depends on the sense of
polarization. This leads to rotation of the principal plane of elliptically polarized transverse waves
[4.18]. Crystalline materials such as sugar are chiral on an atomic scale, and composites with helical
inclusions or spiraling fibers are chiral on the microstructural level.

Chirality has no effect on the classical elastic properties of a material. To demonstrate this,
consider the tensorial Hooke's law for classical elasticity:
σij= Cijkl εkl, (4.5)
in which σij  is  stress, εkl  is strain and C is the elastic modulus tensor.
The transformation law for the modulus tensor under coordinate changes is
Cijkl ' = aimajnakoaln  Cmnop. (4.6)
For an inversion, the transformation matrix is just the negative of a Kronecker delta
aim = - δim. (4.7)
So the classical elastic modulus tensor is unchanged by chirality:
Cijkl ' = (-1)4 Cijkl = Cijkl. (4.8)

Since the constitutive equation for Cosserat elasticity (allowing anisotropy) has higher order
tensors, any lack of invariance to inversion will have an effect. Therefore the constitutive equation
for a Cosserat solid which is directionally isotropic but chiral, will contain extra terms [4.17]; there
are 9 elastic constants for such a chiral solid in contrast to the 6 which describe the fully isotropic
Cosserat solid.

Experiment designs
Uniconstant and classical solids may be distinguished by measurements of Poisson's ratio.

Such experiments done in the last century led to the adoption of what is now called classical
elasticity.

Cosserat solids may be characterized via size effects in rigidity. Exact analytical solutions
for size effects form the basis of a variety of experiments for the characterization of Cosserat solids.
For example, Gauthier and Jahsman [12] give Ω, the ratio of rigidity to its classical value, for
cylindrical bending of a plate,

Ω = 1 + 24 
lb2(1-ν)

h2 (4.9)

with h as the plate thickness. The length parameter of Gauthier and Jahsman was converted into the
characteristic length for bending defined above. In plate bending, the anticlastic curvature due to the
Poisson effect is constrained, in contrast to beam bending.

For torsion of a circular cylinder [12], the ratio Ω of rigidity to its classical value is

Ω = 1 + 6(lt/r)2 [1 - 4ΨΧ/3)/(1 - ΨΧ)], (4.10)

with r as the rod radius, Ψ = ( β + γ)/(α + β + γ) and Χ = I1(pr)/pr I0(pr), and p2 = 2κ/(α + β + γ).
I1 and I0 are the modified Bessel functions of the first kind. A special case of interest, referred to as
'couple stress elasticity',  is for N = 1 (κ → ∞) in which the [] bracket in equation 4.10 becomes
unity. If the rod diameter is large, the corresponding rigidity ratio is Ω ≈ 1 + 6(lt/r)2.

For bending [4.15]  of a circular section rod of radius r, the rigidity ratio Ω  is

Ω = 1 + 8(lb/r)2 (1 - (β/γ)2) + [(8N2(β/γ + ν)2 / (ζ(δa) +N2(1 - ν))(1 + ν)]      (4.11)

with  ζ(δr) = (δr)2 [(δr I0(δr )  - I1(δr)) / (δr I0(δr)  - 2I1(δr))], and  δ = N/lb .
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Data may be plotted as Ω vs radius; however one may also plot rigidity divided by the
square of the diameter vs. the square of the diameter for torsion (Fig. 4.2) and bending (Fig. 4.3).
They are not stress strain curves. The utility of such plots is that the characteristic lengths can be
extracted from the intercept of the extrapolated straight portion of the curve upon the ordinate.

In classical elasticity, the torsion size effect plot is a straight line through the origin with
slope proportional to the shear modulus G; similarly the slope of the size effect plot for bending
gives Young's modulus E. Cosserat elastic constants for a material may be extracted via comparison
of the experimental curve with the theoretical one.  The characteristic lengths are obtained by
intercepts as indicated in the figures. Either graphical or numerical methods may be used. The
shape of the torsion plot is then used to extract the coupling number N. A large value of N (the
upper bound is 1) leads to a large apparent stiffening for slender specimens. The shape of the
torsion plot in the vicinity of the origin is used to determine Ψ; this is difficult since it requires very
thin specimens. We have used a numerical algorithm to minimize the mean-square deviation
between the experimental data and the theoretical graphs, to extract the elastic constants.

Experimental results
Experimental results have been reported for a variety of materials. For example, metals such

as steel and aluminum behave entirely classically [4.19], with l = 0, as might be expected from the
long history of successful use of classical elasticity. Gauthier and Jahsman [4.12] fabricated a
particulate composite in the hope that it would manifest size effects consistent with Cosserat
elasticity, however no such effects were found.

Human compact bone was found to be Cosserat elastic [4.20-4.22] with characteristic
lengths on the order of the size of the osteons, which are fiber-like structures, about 0.2 mm in
diameter, within bone. An amorphous polymer, PMMA, studied as a control, proved to behave
classically. Ascenzi et. al. [4.23] recently reported high shear moduli in tests upon wet single
human femoral osteons of various fiber architectures.  These were interpreted in terms of a Cosserat
view [4.24]. As shown in Fig. 4.4, the apparent   shear modulus of bone specimens of different
diameter, in torsion, depends upon the diameter. Large size effects are observed. Although some
writers consider effects associated with generalized continuum mechanics to be "higher order
terms" which are supposed to be invariably small, these experiments show that for certain materials,
large effects may be observed; in bone, a factor greater than six  in effective stiffness.

Cosserat elastic effects were also observed experimentally in a variety of foam materials
[4.25,4.26]. The Cosserat curves in Fig. 4.2 and 4.3 are representative of the sort of data obtained.
Inferred characteristic lengths were on the order of the size of the cells in the foams for most foams
studied. In the case of an isotropic foam [4.26] it was possible to conduct cross-checks similar to
the relation among Young's and shear moduli and Poisson's ratio in classical elasticity. The cross-
checks, which depend on the fact that some Cosserat elastic constants influence the shape of both
the bending and torsion size effect plots, were satisfied.  Syntactic foam [4.26], which consists of
stiff hollow glass microspheres in an epoxy matrix, proved to behave nearly classically, in contrast
to other foams. The microspheres behave as stiff particles. Classical behavior of particulate
materials is consistent with generalized composite theory as described below.

One may experimentally explore materials as generalized continua via study of the
distribution of strain in deformed objects, in contrast to the above study of size effects in which the
rigidity, a global quantity, is measured. The distribution of strain in a bar of rectangular cross
section under torsion was analyzed [4.27] and the analysis applied to deformation of square bars of
bone [4.28] which was earlier characterized by size effect methods [4.20,4.21]. The surface strain
does not vanish at the corner of the cross section, in contrast to the case of classical elasticity. The
presence or absence of corner strain may be illustrated in holographic interferometry images [4.29]
or in macroscopic observation of a notch in the corner of a flexible bar of foam [4.30]. Moreover
the strain field around a stress concentrator such as a circular hole is predicted to differ depending
on whether the solid is classical [4.2,4.3] or Cosserat [4.9, 4.13,4.16].

Predictive power
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The experimental evaluation of materials as Cosserat solids is useful if it permits one to
predict stresses and strains under conditions which differ from those in the experiments used to
find the elastic constants.

Predictive power of Cosserat elasticity has been studied experimentally. For example, size-
effect studies of a dense polyurethane foam yielded the six Cosserat elastic constants [4.25].
Holographic study of a square section bar of the same foam under torsion disclosed deformation at
the corner [4.29] which was predicted by Cosserat elasticity. This is in contrast to a similar bar of
amorphous polymer (PMMA) which is classical as demonstrated via size effects, and which
exhibited no deformation at the corner, in agreement with predicted behavior.

In human compact bone, Cosserat elastic constants (based on isotropic theory) [4.21] were
used to predict the strain distribution around a hole in a strip under tension. Reasonable agreement
with experiment was found [4.31] even though bone is anisotropic. Cosserat elastic constants,
derived from size effect studies, were used to predict strain distributions in a square bar under
torsion. Nonclassical strain distributions were in fact observed [4.28] and agreed well with the
distributions predicted by Cosserat elasticity.

Cosserat composite theory
Several authors have developed composite theoretical approaches to the determination of

Cosserat elastic constants from consideration of the microstructure and from the constituent elastic
properties [4.32-4.35]. Fibrous and laminated structures give rise to Cosserat elastic behavior while
particulate morphologies give zero Cosserat characteristic length. These theoretical results are in
harmony with the above experiments: bone is fibrous but a model particulate material [4.12]
disclosed no Cosserat effects.

We remark that the recent use of homogenization procedures in the theoretical study of
composite mechanics gives the classical elastic properties, with no unexpected freedom. Since the
extra freedom is not injected into the theory in the initial stages, it will not appear in the results.

Significance
The significance of Cosserat elasticity is that it predicts strain distributions and resultants

which, for a certain class of materials, is in better accord with reality as revealed by experiment, than
classical elasticity. One practically important aspect of the altered distributions is that strain tends to
"spill over" from regions which classically would have high strain to those which classically would
have low strain. The result is a toughening effect. It is interesting to observe that although classical
elasticity has no length scale, the units for toughness, MPa√m, incorporate a length dimension. In
many materials, the connection between the length dimension in toughness with structural length
scales is rather indirect. However, in foams, formulae for the toughness depend on the size of the
foam cells in an explicit way [2.7]. In the structural view, the cause of both Cosserat elasticity and
toughness may be sought in the largest length scale in the material, as depicted in Fig. 1.1.

5 Structural hierarchy
Structural hierarchy refers to a solid or structure which contains structural elements which

themselves have structure (see, e.g., [5.1]). The hierarchical order of a structure or a material may be
defined as the number n of levels of scale with recognized structure. n = 0 corresponds to a material
viewed as a continuum for the purpose of analysis of physical properties; n = 1 (first order) could
represent a latticework of continuous ribs or the atomic lattice of a crystal. Macroscopic hierarchical
frameworks can be traced back at least to Eiffel's design for his tower [5.2] and of Eiffel's bridges
such as the Garabit Viaduct. The role of multiple length scales in relation to the other structural
issued examined here, is illustrated in Fig. 1.1.

Hierarchical honeycomb and foam materials exhibit substantial improvements in
compressive strength in comparison with conventional materials of hierarchical order 1. The
demonstration of the strength enhancement may be done [5.1] with the aid of the governing
equations for the conventional cellular solids [5.3]. As shown in Fig. 5.1, strength of hierarchical
foam and honeycomb can be greatly enhanced by the use of structural hierarchy. Some preliminary
confirming experimental results [5.1] demonstrated strength improvement in a second order
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honeycomb. The physical mechanism for the improved strength is the suppression of buckling in
the hierarchical structure.

Human compact bone is a natural composite which exhibits a rich hierarchical structure.
The largest structure is that of the whole bone. On the microstructural level are the osteons, which
are large (0.2 mm dia.) hollow fibers composed of concentric lamellae and of pores. The lamellae
are built of fibers, and the fibers contain fibrils. At the ultrastructural level (nanoscale) the fibers are
a composite of the mineral hydroxyapatite and the protein collagen. There is a relation between
bone structure and various physical properties. Stiffness [5.4] of bone arises from the composite
structure of mineral microcrystals and protein (principally collagen) fibers. The cement lines as
weak interfaces between osteons (large fibers) impart a degree of toughness  [5.5] to bone as well
as viscoelasticity  [5.6]. As for pores, the lacunae are ellipsoidal pores which provide space for the
osteocytes, the living cells of bone. The bone cells at this level of scale permit bone tissue to
remodel its structure in response to prevailing stresses [5.7]. Haversian canals are cylindrical pores
which contain blood vessels which nourish the tissue. Canaliculi are very fine channels radiating
from the lacunae. Mechanical stress in bone due to physical activity is considered to be important in
pumping nutrients through these channels [5.8]. The pore structure of bone is essential in
maintaining its viability and consequently its ability to adapt to mechanical stress. A two level
hierarchical analytical model [5.9] has been used to predict anisotropic elasticity of bone; it
successfully modeled how bone stiffness depends on the orientation of applied stress with respect
to the osteon axis.  Other materials of biological origin, such as wood and tendon, also have a rich
hierarchical structure.

6 Discussion and conclusions
The role of the structural and continuum views in the mechanical freedom in solids has been

explored. It has been expedient in that vein to consider the various structural length scales in the
material. It was known for a long time, based on continuum concepts, that negative Poisson's ratios
were energetically permissible. Early structural studies of the question of elastic constants did not
incorporate enough freedom to anticipate such a possibility. The first developments of negative
Poisson's ratio materials have come from the experimental side, and have been linked to the
structural concept of non-affine deformation, which has also been used in developing high
performance viscoelastic materials.

Degrees of freedom in the mechanical behavior of materials are not always anticipated in
optimization schemes. For example, one may derive the continuum properties of a composite via a
homogenization procedure, and obtain a structure which gives the maximal stiffness by an
optimization procedure. Such a procedure will not reveal freedom such as that represented by
Cosserat elasticity unless that freedom is incorporated in the analysis.

As for Cosserat elasticity, the possibility of unusual phenomena was anticipated from the
continuum side, but only recently have these phenomena been explored experimentally. Cosserat
effects have been demonstrated in a variety of materials, and the Cosserat theory found to have the
ability to make predictions of nonclassical effects in geometries different from those used to
determine the Cosserat elastic constants. Further detail as well as methods for comparing different
generalized continuum theories have been presented in a prior review [4.32]. Future development
may include designing material microstructure, inspired by Cosserat concepts, to achieve high
toughness.

As for structural hierarchy, such structure is a ubiquitous feature of biological materials.
Concepts of structural hierarchy have been used to optimize known material properties such as
compressive strength or Poisson's ratio. Such optimization is to be distinguished from the creation
of new and unexpected phenomena. We anticipate the possibility of such developments in the
future.
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Figures
Length scales

One length scale
Poisson's ratio = 1/4, brittle

Two length scales
Poisson's ratio form -1 to 1/2
Foam rib length and thickness
control Poisson's ratio by cell shape
Composite materials
Viscoelastic composites

Many length scales
Biological materials: bone, ligament
Hierarchical cellular solids: high strength
Hierarchical composites, laminates

The largest length scale
Cosserat elasticity
Toughness

1.1 Phenomena associated with length scales in the structural view, linked to continuum concepts.
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c d
2.1 Honeycomb with positive (a) and negative (b) Poisson's ratio [redrawn after 2.3,2.4].



16

2.2 Laminate with negative Poisson's ratio, redrawn after Milton [2.19].
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4.1 Components of stress and couple stress.

4.2 Size effects in torsion of a circular cylindrical rod. Rigidity/ diameter squared vs diameter
squared, for a classical solid and a Cosserat solid.
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4.3 Size effects in bending of a circular cylindrical rod. Rigidity/ diameter squared vs diameter
squared, for a classical solid and a Cosserat solid.
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4.4 Effective torsional stiffness vs diameter for bone, adapted from [4.24].
♦ Osteons (large fibers in bone) , fresh, wet, after Ascenzi, et. al., [4.23].
∆ Bone macro-samples, fresh, wet, after Yang and Lakes [4.20].
∆ Bone micro-samples, fresh, wet, after Lakes and Yang [4.23].
• Whole embalmed femur, after Huiskes, et. al., (adduced in [4.24]).
___ Solid curve, Cosserat elasticity, torsion, assuming technical elastic constants to be:
G = 3.5 GPa, lt = 0.22 mm, lb = 0.44 mm, Ψ = 1.5, N = 0.62.
Apparent shear modulus seems to vary with diameter.
Inset drawings: right, classical elastic continuum with stress due to force increments dF;

 left, bone as a Cosserat elastic continuum with both force increments dF
and torque increments dM upon osteons.

- - - - Dashed line: classical elasticity, torsion. Classical apparent shear modulus is
independent of diameter.
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5.1 Strength to density ratio of hierarchical honeycomb increases with hierarchical order n.
Normalized strength ratio (σn/ρn)/(Eo/ρo), for hierarchical honeycomb microstructure, as a
function of hierarchical order n, for several solid volume fractions ρn/ρo : squares, 0.01;
triangles 0.0001. For the solid the yield strain and fracture strain are assumed to be 0.01.
Open symbols: elastic buckling. Solid symbols: plastic buckling. Inset: second order
honeycomb cell. Solid curves: buckling mode with lowest stress limits the strength. Adapted
from {5.1].


