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Abstract

Lattices composed of cubic and triangular prismatic unit cells with polymeric Sarrus linkage
rib elements are designed, fabricated via 3D printing and studied experimentally. Size effects in
these lattices are observed experimentally; slender specimens appear more rigid in torsion and in
bending than expected via classical elasticity. Effects are analyzed via Cosserat elasticity. The
magnitude of size effects is sensitive to geometry of the lattices; triangular cells with short ribs
revealed the most extreme effects, also the largest characteristic length in relation to cell size.
The torsion coupling number is 1, its upper bound, for all lattices. A path to the attainment of
arbitrarily large nonclassical effects is delineated.

1 Introduction

Continuum theories are commonly used to model materials with microstructure, including the
lattices presented here, as continuous media. Many different continuum theories of elasticity with
varying degrees of freedom exist. One of the earliest theories, the uniconstant theory, was developed
by Navier [1]. The uniconstant theory allows only one isotropic elastic constant, a modulus. This
theory was governed by the assumption that forces acted along the lines joining pairs of atoms
and were proportional to changes in the distance between them. This uniconstant theory predicted
a Poisson’s ratio of 1/4 for all isotropic materials and was proven obsolete when experimentation
disclosed a range of Poisson’s ratios. The currently accepted classical theory of elasticity is a step up
in complexity and descriptive capability from Navier’s uniconstant theory because it incorporates
two independent isotropic elastic constants. The classical theory of elasticity predicts Poisson’s
ratio to range from -1 to 1/2 for isotropic materials.

Classical elasticity suffices for objects in which the structure size is many orders of magnitude
smaller than the experimental size scale. Generalized continuum theories such as Cosserat elasticity
entail more freedom than classical elasticity. Such theories are intended to deal with solids in
which the structural length scale is non-negligible. To experimentally determine what kind of
theory applies, one may do size effect measurements or study concentration of strain or stress.
Experimental tests for Cosserat elasticity at the macroscopic scale in aluminum disclosed classical
behavior [2]. However, classical elasticity can break down when the experimental length scale
approaches the structural length scale of the material or structure being tested as reviewed later in
the introduction. Additionally, neither classical elasticity nor the uniconstant theory incorporate
a length scale in their definitions which is important when considering material properties such as
toughness which has a length scale in its units, MPa

√
m. The lack of a length scale prohibits either

of these theories from being used to describe materials that are sensitive to strain gradients.
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The Cosserat theory of elasticity [4] (with inertia terms called micropolar [5]) has even more
freedom than the classical theory; Cosserat elasticity incorporates a local rotation of points and a
couple stress (torque per unit area) in addition to the translation of points and force stress (force
per unit area) present in classical elasticity. The physical origin of the Cosserat couple stress is the
summation of bending and twisting moments transmitted by the structural elements in materials.
The Cosserat local rotation corresponds to the rotation of structural elements. Forces and moments
were considered in the classic analyses of foam by Gibson and Ashby [6] in which classic elastic
moduli were determined; effects of rotation gradients were not considered.

The additional freedom in Cosserat elasticity is represented by its six isotropic elastic constants,
α,β, γ,κ,λ, and G. The constitutive equations for a linear isotropic elastic Cosserat solid [5] are
as follows.

σij = 2G�ij + λ�kkδij + κeijk(rk − φk) (1)

mij = αφk,kδij + βφi,j + γφj,i (2)

In Cosserat elasticity the stress, σij , can be asymmetric. The moment that results is balanced

by a couple stress, mij . The antisymmetric part of the stress is related to local rotations: σantisym
jk =

κejkm(rm−φm) in which φm is the rotation of points, called micro-rotation, ejkm is the permutation
symbol, and rk = 1

2eklmum,l is the macro-rotation based on the antisymmetric part of gradient
displacement ui.

On their own, the six elastic constants do not provide sufficient physical insight. To do so, the
following technical constants have been derived from them:

Y oung�s modulus E =
G(3λ+ 2G)

λ+G
(3)

Shear modulus G (4)

Poisson�s ratio ν =
λ

2(λ+G)
(5)

Characteristic length, torsion �t =

�
β + γ

2G
(6)

Characteristic length, bending �b =

�
γ

4G
(7)

Coupling number N =

�
κ

2G+ κ
(8)

Polar ratio Ψ =
β + γ

α+ β + γ
. (9)

Extension of this analysis to include viscoelasticity can be done by invoking the correspondence
principle as is done in the classical case. Elastic constants then become dependent upon time or
frequency. Extensions to nonlinear behavior are also known.

The range for Poisson’s ratio is the same as in classical elasticity, from -1 to 1/2. Cosserat
solids differ from classical solids as follows. Circular and elliptic holes demonstrate lower stress
concentration than expected classically. Small holes impose less stress concentration than larger
ones [7]. Pertinent to the work presented here, Cosserat elasticity predicts size effects in the torsion
[8] and bending [9] of circular cylinders of Cosserat elastic materials. A size effect in this context is
the nonclassical dependence of specimen rigidity on one or more of its dimensions. Size effects are
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manifested as slender cylinders appearing stiffer than predicted classically. In contrast to classical
elasticity, Cosserat elasticity incorporates a length scale, manifested as characteristic lengths of
bending and torsion, equations 6 and 7. Both the characteristic lengths of bending and torsion and
size effects in the same modes will be explored in this work.

Cosserat elastic effects have been observed in several materials with structure on the µm and mm
scales. Cosserat elastic size effects in bending and torsion have been observed and measured in closed
cell foams [10][11], open cell foams [12][13], and negative Poisson’s ratio tetragonal lattices [14]. In
each of these studies, the apparent moduli increased as specimen diameter decreased in contrast to
classical predictions in which modulus is independent of diameter. Cosserat characteristic lengths
were found to be on the order of the size scale of the cells in the materials. Cosserat elastic constants
on the scale of spacing between atoms have been inferred from wave dispersion in diamond crystals
[15].

The Cosserat characteristic length has been determined experimentally in a two-dimensional
polymer honeycomb [16] and via theoretical homogenization in straight elastic ribbed lattices
[17, 18, 19]. In the latter case, the characteristic lengths were much smaller than the cell size
of the lattices and the lattices behaved nearly classically. This is because these structures were
stretch dominated, meaning the effects of rib extension dominate the effects of rib bending and tor-
sion. Cosserat elastic effects depend on bending and twisting of the ribs to transmit the moments
corresponding to the Cosserat couple stress. The characteristic lengths of the two-dimensional poly-
mer honeycomb were similar to the average cell size of the material. The honeycomb material was
determined to be bend dominated, meaning rib deformation occurred primarily in bending rather
than compression or axial stretch. Consequently, the size effects measured were much greater than
those observed in the lattice with straight elastic ribs.

Recent experimental study of cellular materials (foams) has demonstrated dramatic Cosserat
characteristics [12] [13]. Additionally, truss lattice materials with cubic symmetry have been ana-
lytically and numerically modeled as classical media in the elastic regime and in the plastic regime
via continuum mechanics [20]. Nonclassical plastic effects have been observed in the bending of
epoxy microcantilevers [21]. However, experimental studies in generalized continua are few com-
pared with the number of theoretical studies. The work detailed here seeks to improve the balance
of experiment in relation to theory. The primary purpose of this study is to compare the non-
classical phenomena of lattices with similarly designed rib structures but different unit cell shapes
within the framework of linear Cosserat elasticity. Experiments on lattices are comparatively new
compared with studies on other materials, and comparisons of lattices in the literature mostly deal
with classical behavior.

2 Methods

2.1 Materials and Experiment

The lattices detailed in each section were printed using a 3D Systems sPro 60 HS-HD selective
laser sintering printer. This printer provided the best resolution available at the time. The parent
material was a polyamide considered equivalent to nylon 12. Progressively larger lattices of each
type were made. Each lattice was cemented to metal end pieces to provide appropriate end condi-
tions. Cell sizes were chosen as a compromise between desired smoothness of ribs and to prevent
specimens from becoming too large. Roughness of ribs was not a problem because there were so
many of them in even the smallest specimens.

In an attempt to incorporate unique structural effects into these lattices, the ribs of each unit cell
for all structure types were constructed with Sarrus linkages as shown in Figure 1. A Sarrus linkage
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is a mechanical linkage which achieves limited but exact straight line motion from a combination of
flexure joints [22]. The idealized linkage contains frictionless hinge joints; the compressive rigidity
is exactly zero. An all flexible linkage, or corrugation as it will be called, is characterized by high
bending and torsional rigidity as compared to compressive rigidity [23]. The moduli in bending,
torsion, and compression are detailed further in §2.2.1. The rationale for such a rib shape is to
enhance the resistance to gradient of rotation of the rib, hence enhance the Cosserat effects of
the lattice considered as a continuum. A related concept, corrugated fibers, was used to design
unidirectional composites incorporating segments of corrugated tubing [24]. In these composites,
experimental results disclosed large sensitivity to gradients and large Cosserat elastic constants.
Based on these observations, lattices incorporating strain gradient sensitive structural elements in
different configurations offer potential for similar nonclassical size effects.

Figure 1: Four-sided Sarrus linkage. Left, drawing; right, detail of SLS 3D printed segment.

The lattice structures studied here are (a) cubic with orientation in the [100] direction; (b)
cubic with orientation in the [111] direction; (c) triangular cells with long ribs corresponding to a
relatively open structure; (d) triangular cells with shorter ribs corresponding to a more compact
structure. Optical images of the lattice structures are shown in shown in Figure 2. Corresponding
drawings are shown in shown in Figure 3.

4



Figure 2: Lattice structure images: (a) cubic, [100]; (b) cubic, [111]; (c) triangular open (long rib);
(d) triangular compact (short rib). Scale bar is 10 mm for all.
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Figure 3: Lattice structure drawings: (a) cubic, [100]; (b) cubic, [111]; (c) triangular open (long
rib); (d) triangular compact (short rib).

Torsional and bending rigidities for each specimen were measured using a broadband viscoelastic
spectrometer (BVS). The BVS device uses a pair of orthogonal Helmholtz coils to generate a torque,
either in bending or torsion, upon a magnet attached to the specimen’s end piece via a ceramic
stalk (Figure 4). The ceramic stalk was necessary because the specimens are too large to fit in
the Helmholtz coils. The magnet is centered in the Helmholtz coils. Deformation of the lattices
was measured by reflecting a laser beam from a mirror cemented to the top surface of the bottom
end piece of each specimen onto a silicon light detector. Mounting mirrors on the specimens this
way was necessary to eliminate possible error from compliance of the ceramic stalk. The silicon
light detector measures either horizontal or vertical displacement of the laser beam, depending on
its setting, as a change in voltage. The light detector was calibrated prior to bending and torsion
tests. Calibration was done by measuring the change in output voltage over the linear measurement
regime of the detector using a precision micrometer driven calibration stage. The change in output
per change in position was used as the beam calibration constant (V/µm).
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Figure 4: Instrument diagram.

Each specimen was tested using a sinusoidal signal with a frequency of 1 Hz from an SRS
Model DS345 function generator. A frequency of 1 Hz was used because it is well below any
resonant frequencies. By using the same frequency for all tests across all specimens, viscoelastic
effects are decoupled from the size effects being probed. Even if one does not probe viscoelastic
effects, the input has a time history; the protocol chosen will decouple viscoelastic effects from the
size effects of interest. Torque was inferred from the voltage across a 1Ω resistor in series with
the coils. The torque channel was calibrated via measurements on the well characterized 6061
aluminum alloy. The torque signal vs. angular displacement signal was displayed as a Lissajous
figure on a Tektronix TDS3014B oscilloscope using DC coupling. Data points from the Lissajous
figures along with dimensional measurements of the specimens were used to calculate the moduli
of the specimens. Maximum strain during testing was 5 × 10−5, well within linearity for these
specimens. Linearity was verified from the shape of the Lissajous figures.

Compression tests were conducted to ascertain the moduli of the specimens in the absence of
macroscopic gradients of strain and rotation. This was accomplished using an Instron screw driven
load frame at constant strain rate. Poisson’s ratio was also calculated using compression testing by
measuring transverse deformation via digital photography and a micrometer.

2.2 Lattice structures

2.2.1 Rib properties

The Sarrus linkage rib element incorporated in these lattices were tested individually. The mea-
sured effective bending modulus of an individual rib was 281 MPa while the Young’s modulus in
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compression was 14 MPa. The torsional modulus was measured to be 387 MPa. The ribs, therefore,
resist torsion and bending to a much greater extent than compression. In such flexible structures,
the compressive Young’s modulus is not exactly zero as it would be in a hinged structure. Ideal
hinges cannot be made via 3D printing.

2.2.2 Cubic Unit Cell Lattices

Analytical and numerical studies have been performed on a variety of lattices containing straight
ribs as classical media [20] in and beyond the elastic regime. The strengthened diagonal unit cells
in the present study were essentially face centered cubic (FCC) unit cells where the bonds between
atoms were replaced with elastic ribs. The cells are referred to as cubic in the sequel. If the ribs
are straight the elastic properties do not differ much from isotropy. The lattices presented in this
section use a similar unit cell but incorporate a fourfold Sarrus linkage rib element rather than a
straight rib.

Lattices with ribs 14 mm long containing all flexible Sarrus linkage and with cubic unit cells
are explored, Figure 2. A first set of lattices was created that had the cubic unit cells oriented with
their <111> axes parallel to the longitudinal axes of the specimens. A second set of lattices was
then made wherein the unit cells were oriented such that their <100> axes were parallel to the
longitudinal axes of the specimens. Both sets of lattices use identical cubic unit cells.

As for structures with <100> cell axes parallel to longitudinal axis, four progressively larger
specimens were created for this orientation. Because of the orientation of the unit cells, it was
possible to create a specimen of only one unit cell in cross section. The largest specimen size was
dictated by the dimensions of the BVS chamber. The average density of this set of lattices was
0.201 g/cc. Since these specimens have square cross sections, equations 14 and 12 were used to
analyze experimental data gathered from bending and torsion, respectively.

2.2.3 Triangular Unit Cell Lattices

As for triangular unit cell structures, two sets were made, one with longer ribs and one with shorter
ribs. The rationale was that for a structure without 45◦ cross ribs, larger gradient effects were
hypothesized. The first set of lattices was made with rib elements the same length, 14 mm, as
those in the cubic unit cells. The smallest specimen was limited to one unit cell in cross section
while the largest specimen was governed by the height of the BVS chamber. The cross section of
the larger specimens were hexagonal while the cross section of the smallest specimen was triangular.
All specimens were approximated as circular so that the exact solution for Cosserat torsion and
bending of elastic materials with circular cross section, Eq. 10 and Eq. 11, could be used. The
average density for these lattices was 0.093 g/cc.

The design of short rib triangular cell lattices was driven by the observation of deformation
induced tilt of the ribs in torsion and bending of the long rib triangular prismatic unit cell struc-
tures. By shortening the rib portions of the structural elements and keeping the corrugation region
constant, the effects of the corrugations were expected to govern the behavior of the lattices to a
greater degree. The new structural elements here were 8 mm long compared to 14 mm long in the
previous set of lattices. Including hexagonal nodes, the cells were approximately 10.5 mm long on
each side of the triangular base and 9.0 mm tall.

2.3 Analysis and Interpretation

Size effects were interpreted within the framework of Cosserat elasticity. Specimens with hexagonal
cross sections were approximated as circular and corresponding results were interpreted using exact
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analytical solutions for the torsion and bending of Cosserat elastic solids with circular cross sections.
Exact solutions for bending and torsion of Cosserat elastic solids with square cross sections do not
exist so approximate solutions were used. The analysis of materials with square cross sections
entails warp in torsion. This is in contrast to materials with a circular cross section for which
warping does not occur. In both cases, isotropic solutions are used because no anisotropic solutions
are available. Therefore, elastic constants obtained are technical constants. This is similar to
classical elastic constants obtained from quasistatic tests such as standard tensile or compression
tests in principal directions. Size effects do not occur in classical anisotropic elasticity [25], effective
modulus is independent of specimen size just as in isotropic elasticity. Therefore, size effects are a
distinct nonclassical behavior and anisotropy is not a confounding factor.

Considering elastic solids with circular cross sections of radius r, the classical torsional rigidity
is M

θ = G[π2 r
4]. Cosserat torsional rigidity if N = 1 or for large r is M

θ = G[π2 r
4](1 + 6(�t/r)2).

G is the true shear modulus in the absence of gradients; M is applied moment and θ is angular
displacement per unit length. This expression is exact when N = 1. For all other N the exact
solution involves Bessel functions and is as follows [8]:

Ω = (1 + 6(�t/r)
2)[

(1− 4Ψχ/3)

1−Ψχ
], (10)

Here, χ = I1(pr)/prI0(pr), p2 = 2κ/(α+ β + γ) and I0 and I1 are modified Bessel functions of
the first kind. The constant Ψ only has an appreciable influence for small radius specimens and was
determined based on behavior of the data near the origin. The shear modulus, G, characteristic
length of torsion, �t, and the coupling number N were found by fitting Eq. 10 to the full set of
experimental data using MATLAB.

For bending of a Cosserat elastic rod with radius r, the relative rigidity ratio involving Bessel
functions is:

Ω = 1 + 8(�b/r)
2 (1− (β/γ)2)

(1 + ν)
+

8N2

(1 + ν)
[

(β/γ + ν)2

ζ(δa) + 8N2(1− ν)
] (11)

with δ = N/�b and ζ(δr) = (δr)2[((δr)I0((δr)) − I1((δr)))/((δr)I0(δr) − 2I1(δr))]. Classical
bending rigidity follows M

θ = E[π4 r
4]. Both Young’s modulus, E, and the Poisson’s ratio ν were

calculated from compression testing. The coupling number, N , β/γ, and the characteristic length
of bending, �b, were determined by fitting the full set of experimental data with Eq. 11.

Cubic lattices with <111> orientation and lattices with triangular prism cells were not circular
in cross section but hexagonal. Such specimens were treated as circular with equivalent area so
that the solutions for Cosserat torsion and bending, Eq. 10 and Eq. 11, could be used.

The procedure for analyzing and interpreting data from specimens with square cross sections is
similar; different analytical solutions are used as follows. Torsion of a square cross section Cosserat
elastic bar of width 2a gives rise to the following relation between torque and angle. When κ → ∞,
corresponding to N = 1, the total torque M [27] simplifies to

M =
4

21
G(

a

2
)4θ

1796 + 126
�
449 + 2740�̄2 + 3960�̄4

�
�̄2 + 693

�
152 + 2280�̄2 + 6615�̄4

�
�̄2b

8
�
19 + 465�̄2 + 990�̄4

�
+ 1485

�
6 + 49�̄2

�
�̄2b

. (12)

in which �̄ = 2�t/a, �̄b = 2�b/a and θ as the angular displacement per length. This solution is
superior in the regime of strong coupling or for β/γ < 0, to that of [28], which overestimates the
effects for large N .
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For bending of a rectangular bar of width 2a, the rigidity ratio depends on the characteristic
length and the Poisson’s ratio [26]. If β/γ = −ν, the rigidity ratio Ω = M

1/R
1
EI is, with M as

moment and R as radius of curvature,

Ω = [1 + 24(�b/2a)
2(1− ν)]. (13)

For other values of Poisson’s ratio, the rigidity ratio is, (to fourth order in �b/2a),

Ω =

�
1+24

1 + 2β
γ ν + ν2

1 + ν

�
�b
2a

�2

−480

�
β

γ
+ ν

�2 44− 38ν + 3N2(1− ν)(13− 9ν)

N2(1 + ν)(22− 19ν)

�
�b
2a

�4
�
. (14)

3 Results and Discussion

3.1 Cubic Unit Cell Lattices

3.1.1 Lattices with <111> Cell Axes Parallel to Longitudinal Axis

Three progressively larger specimens were created in this orientation. The size of the smallest
specimen was dictated by the minimum resolution of the SLS printer while the maximum specimen
size was limited by the diameter of the BVS chamber. These specimens were hexagonal in cross
section but approximated as circular so the exact solutions for torsion, Eq. 10, and bending, Eq.
11, of Cosserat elastic solids could be used to analyze experimental data. The average density of
this set of lattices was 0.230 g/cc.

The results of torsion testing are shown below in Figure 5. For analysis, N was allowed to vary
between 0 and 1, �t was restricted by thermodynamic limitations to be greater than 0 mm, and the
asymptotic shear modulus was restricted to values greater than 0 Pa. Since no roll off occurred for
small sizes, the fit was insensitive to Ψ, although best fit occurred for Ψ = 1.5. The best fit yielded
the following results: �t = 6.0 mm, G = 3.9 MPa, N = 1.0, and Ψ = 1.5. The goodness of fit was
R2 = 0.99. The maximum size effect in torsion was Ω = 2.8.
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Figure 5: Size effects in torsion for specimens composed of cubic unit cells with their <111> axes
parallel to specimen axes. Points are experimental. The solid curve is theoretical for �t = 6.0 mm,
G = 3.9 MPa, N = 1.0, and Ψ = 1.5. Fit is insensitive to Ψ because no roll off occurs at small
sizes. Classical elasticity predicts Ω independent of diameter as illustrated by the red horizontal
dashed line. Inset: lattice structure.

Bending size effects and their interpretation are shown in Figure 6.

Figure 6: Size effects in bending for specimens composed of cubic unit cells with their <111> axes
parallel to specimen axes. Points are experimental. The solid curve is theoretical for �b = 8.2 mm,
E = 6.0 MPa, N = 1.0, and β/γ = 0. Classical elasticity predicts Ω independent of diameter as
illustrated by the red horizontal dashed line.

Fitting was accomplished using the asymptotic bending modulus, 6.0 MPa, determined from
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compression testing and the coupling number, N = 1.0 obtained from torsion; also the Poisson’s
ratio ν = 0.3 from compression tests and was found to be independent of transverse direction. In
the analysis, β/γ was free to vary from -1 to 1, the thermodynamic limits; �b was free to vary among
values greater than 0. Best fit resulted in the following: β/γ = 0 and �b = 7.82 mm. The goodness
of this fit was R2 = 0.995. The maximum size effect in bending was Ω = 4.1. The specimens
are approximately hexagonal in cross section, but the material has cubic symmetry because it is
composed of cubic unit cells. Due to this symmetry, they are elastically anisotropic. Therefore, the
characteristic length of torsion is independent from the characteristic length of bending. Also due
to anisotropy, the coupling number from torsion is not necessarily applicable to bending results.
However, N calculated from torsion led to the best fit results for bending.

In summary, nonclassical size effects are observed in torsion and bending for lattices of cubic
unit cells aligned in the <111> direction. The maximum size effects of 2.8 and 4.1 for torsion and
bending, respectively, are significant deviations from classical predictions. These size effects are
consistent with Cosserat elasticity.

3.1.2 Lattices with <100> Cell Axes Parallel to Longitudinal Axis

Compression testing disclosed E = 9.64 MPa, essentially independent of specimen side length.
Poisson’s ratio in this direction was ν = 0.03. Bending test results are shown in Figure 7, assuming
the asymptotic bending modulus to be that found in the compression test of 9.64 MPa. Best
fitment yielded: �b = 7.4 mm, β/γ = 0.028 and N = 0.23. The goodness of fit was R2 = 0.88. For
comparison with the lattices from the previous section, a second fit was performed using N = 1.
The resulting R2 was 0.32. This suggests the anisotropy in N is real.
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Figure 7: Size effects in bending for specimens composed of cubic unit cells with their <100> axes
parallel to specimen axes. Points are experimental. The solid curve is theoretical for �b = 7.4
mm, E = 9.64 MPa, N = 0.23, and β/γ = 0.28. The red horizontal dashed line illustrates the
relationship of normalized rigidity to specimen diameter in classical elasticity.

The roll off near the origin is due to the second term in the approximate solution, Eq. 14,
dominating at small side length values when β/γ �= −ν, especially when N is small as it is in this
case. After the roll off at the smallest point, the theoretical model predicts a sharp decrease in
rigidity. This phenomenon is likely due to the approximate solution being a two-term approxima-
tion. If more terms were used, fidelity of analysis near the origin is expected to increase. However,
prediction of rigidity at sizes smaller than the smallest structural element, which in this case is an
individual unit cell, is non-physical and can be ignored. Additionally, the function, Eq. 11, does
not vary much over the range of values considered. Consequently there is a range of values for the
coupling number N , and β/γ, that achieve a very similar goodness of fit.

Results for torsion size effect studies are shown in Figure 8. The solution for torsion of a square
bar of Cosserat elastic material, Eq. 12, used here, is specifically for the case N = 1. For analysis,
thermodynamic restrictions were placed on the bounds on the characteristic length of torsion, �t,
and bending, �b to be greater than 0 mm. The asymptotic shear modulus, G was limited to values
greater than 0. Best fit results, assuming N = 1 in torsion, are as follows: G = 4.3 MPa, �t = 3.8
mm, and �b = 3.3 mm. The goodness of fit was R2 = 0.856.
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Figure 8: Size effects in torsion for specimens composed of cubic unit cells with their <100> axes
parallel to specimen axes. Points are experimental. The solid curve is theoretical for N = 1, �t =
3.8mm, and G = 4.3 MPa. Classical elasticity predicts Ω independent of diameter as illustrated by
the horizontal red dashed line. Inset: lattice structure.

The curve fit in Figure 8 is based on Eq. 12 in which rigidity is strongly dependent on �t but
very weakly dependent on �b. Therefore the value of �b obtained from the fit is not at all precise.
Indeed �b = 3.3 mm from torsion is much less than �b = 7.4 mm from the bending experiment; the
latter value is to be used. The difference in R2 between the best fit with �b = 3.3 mm and with �b
= 7.4 mm, all other parameters held constant, is only 0.0003; this illustrates the weak dependence
of Eq. 12 upon �b. Also Eq. 12 applies for the limiting case N = 1; varying N entails considerable
complexity for square sections.

The unit cell has cubic symmetry. Therefore, an individual unit cell has equal moduli in
principal directions but is elastically anisotropic. The modulus in the <111> direction does not
need to equal the modulus in the <100> direction. Indeed E from compression, in which there
are no gradients, was 9.64 MPa for <100> and 6.0 MPa for <111>, a ratio of a factor 1.6. The
relationship between the asymptotic shear modulus and asymptotic bending modulus determined
for the <100> lattice differs little from the classical elastically isotropic, following E = 2G(1 + ν)
within 10%. Detailed comparisons of anisotropy of lattices is given in Table 1. For a structurally
cubic material, there are three independent classical constants and the isotropic relationship does
not need to hold.

In summary, nonclassical size effects are observed in torsion and bending of lattices composed of
cubic unit cells oriented with their <100> axes parallel to the specimens longitudinal axes. These
size effects are consistent with Cosserat elasticity. The characteristic length of bending was 7.4 mm
and the characteristic length of torsion was 3.8 mm. The largest size effects in torsion and bending
were Ω = 2.2 and 3.3, respectively.
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3.2 Triangular Prismatic Unit Cell Lattices

3.2.1 Long Rib Triangular Unit Cell Lattices

Results for the first set of lattices made using the triangular prismatic unit configuration are
presented in this section. These unit cells were made of rib elements the same length, 14 mm, as
those in the cubic unit cells of previous sections. The smallest specimen was limited to one unit
cell in cross section while the largest specimen was governed by the height of the BVS chamber.
The cross section of the larger specimens were hexagonal while the cross section of the smallest
specimen was triangular. The average density for these lattices was 0.093 g/cc.

The results of torsion testing are shown below in Figure 9. For the analysis, asymptotic G was
allowed to vary between 0 and 0.53 MPa, the smallest shear modulus of the structures tested, N
varied from 0 to 1, Ψ was set to 1.5 owing to the lack of obvious dependence on Ψ, and �t was
allowed to be any value greater than 0. The best fit resulted in G = 0.34 MPa, �t = 8.9 mm, and
N = 1.0. R2 was 0.9988.

Figure 9: Torsion size effect for long triangular unit cell structures. Points are experimental and
the solid black curve is a theoretical best fit for G = 0.34 MPa, Ψ = 1.5, �t = 8.9 mm and N = 1.0.
R2 = 0.9988. The horizontal dashed red line illustrates the classical predicted relationship between
normalized rigidity and specimen size. Inset: lattice structure.

The results of bending size effect studies are shown in Figure 10. The modulus determined from
compression testing, E = 2.3 MPa, was used as the asymptotic bending modulus. Poisson’s ratio,
determined by high resolution digital photography at 60 degree intervals about the longitudinal
axis during compression testing, was ν = 0.05±0.06. The variation in Poisson’s ratio with angle
is consistent with the hexagonal structural symmetry because Poisson’s ratio can have a range
exceeding the isotropic range in hexagonal materials. Limits on variables for fitting are as follows:
N varied between 0 and 1, β/γ was free to vary from -1 to 1, and �b was limited to values greater
than 0. The best fit disclosed N = 0.99, β/γ = 0, and �b = 13.2 mm, resulting in a goodness of fit
R2 = 0.9719.
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Figure 10: Bending size effects for long triangular unit cell structures. Points are experimental and
the solid black curve is a theoretical best fit for E = 2.3 MPa, ν = 0.05, �b = 13.2 mm, β/γ = 0,
and N = 0.99. The goodness of fit is R2 = 0.9719. The horizontal red dashed line illustrates the
classical independence of rigidity ratio to specimen diameter. The asymptotic Young’s modulus
from compression provides an additional datum.

As for comparisons with previous specimens and results, these lattices share more similarities
with bend dominated 2D chiral honeycomb lattices [16] than stretch dominated straight rib lattices
[17, 18, 19]. For torsion and bending, the coupling number approaches or attains the upper bound
of 1, respectively. In torsion, the characteristic length was smaller than the average cell size but
exceeded the relationship of characteristic length to cell size in stretch dominated straight rib
lattices [19]. In bending, the characteristic length was approximately the same as the average cell
size, just as in 2D chiral honeycomb lattices [16]. Due to the relationship of characteristic lengths
to average cell size and the magnitude of the coupling number, these lattices are bend dominated.

Nonclassical size effects are clear in both torsion and bending of these structures. However,
confidence in fitting parameters could be increased with additional specimens which would be
possible if resolution of 3D printing were improved. The height of the BVS chamber coupled with
the configuration of these specimens and the length of the ribs limited the number of specimens to
three with complete cells. A fourth datum is provided by the asymptotic Young’s modulus derived
from compression tests.

Visual analysis of the specimens in torsion and bending by hand revealed deformation induced
tilt of the rib elements from the nodes connecting ribs rather than deformation in the corrugation.
Recalling the relationship between torsional and bending moduli for an individual rib element were
387 MPa and 281 MPa, respectively, the opposite relationship is found in these lattices: the bending
moduli are significantly larger than those in torsion. This phenomenon may be due to the reduced
effect of the corrugations due to long rib length and the presence of deformation induced tilt of the
ribs.

In summary, size effects are observed in the torsion and bending of lattices composed of trian-
gular prismatic unit cells with 14 mm rib elements. The size effects are consistent with Cosserat
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elastic predictions and cannot be explained via classical elasticity. This lattice revealed character-
istic lengths smaller than the cell size; for torsion, considerably smaller. The characteristic lengths
were nonetheless considerably larger than would be expected from a fully stretch dominated lattice.

To achieve larger effects, a further lattice was designed with shorter ribs to maximize the
influence of the Sarrus segment. Shorter ribs also permit a wider range of specimen sizes to be
made and accommodated within the test instrument. Results for this lattice are presented in the
following section.

3.2.2 Short Rib Triangular Prismatic Unit Cell Lattices

Further details on the behavior of these lattices were published in a companion paper [23]. Here
they are presented for comparison with the other lattices.

By shortening the rib portions of the structural elements compared with the prior lattice, more
specimens were able to be created that would fit inside the BVS for testing. The smallest specimen
was one unit cell in cross section and four more incrementally larger specimens were created, all
with approximately the same aspect ratio of 3:1. The average density of these lattices was 0.212
g/cc.

Results for torsion size effect studies are shown in Figure 11. Points are experimental and the
curves are theoretical fits. The black curve is the theoretical best fit while the other two curves
illustrate the effects of changing characteristic length of torsion on the resulting fit. Since no roll
off occurs for small specimens Ψ < 1.5. The best fit occurred when Ψ = 1.0, but the results
were not sensitive to Ψ in this regime. The remaining best fit parameters were G = 1.1 MPa,
�t = 9.4 mm, and N = 0.999. The mean absolute percent error (MAPE) between experimental
results and Cosserat prediction was 12%; between experiment and classical, 3500%. Error bars
were calculated from noise in the signal and uncertainty in specimen dimensions. Error bars shown
are representative of those in all the experiments. The largest size effect in torsion was Ω = 36.
The goodness of fit was R2 = 0.999.
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Figure 11: Size effects for short rib triangular prismatic unit cells in torsion. The solid black curve
is a theoretical best fit for G = 1.1 MPa, �t = 9.4 mm, N = 1, and Ψ = 1.0. Blue and cyan curves
are the theoretical models for �t = 5.0 and 14 mm, respectively. The green horizontal dashed line
is the classically predicted relationship between normalized rigidity and specimen size [23]. Inset:
lattice structure in cross section.

Results for bending size effect studies are shown in Figure 12. The asymptotic bending modulus
and Poisson’s ratio calculated from compression testing were E = 3.14 MPa and ν = 0.05. Points
are experimental and the curves are theoretical fits. The black curve is the theoretical best fit for
the experimental data and corresponds to E = 3.14 MPa, ν = 0.05, �b = 8.8 mm, β/γ = 0.5, and
N = 0.99. The MAPE between experimental data and Cosserat prediction was 14% ; between
experiment and classical, 2843%. The largest size effect in bending was Ω = 29.4. The goodness of
fit was R2 = 0.997. Blue and cyan curves illustrate the effects of changing the characteristic length
of bending on the resulting fits with all other parameters kept constant. The blue curve is for �b
= 4.8 mm and the cyan curve is for �b = 13 mm. The green horizontal dashed line is the classical
relationship between normalized rigidity and specimen size. Error bars were again calculated from
signal to noise ratio and specimen dimension uncertainty.
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Figure 12: Size effects for short rib triangular prismatic unit cells in bending. The solid black
curve is a theoretical best fit for E = 3.14 MPa, ν = 0.05, �b = 8.8 mm, β/γ = 0.5, and N =
0.99. Blue and cyan curves are the theoretical models for �b = 4.8 and 13 mm, respectively. The
green horizontal dashed line is the classically predicted relationship between normalized rigidity
and specimen size [23]. Inset: lattice structure in transverse view.

These specimens exhibit characteristic lengths approximately the same as the average cell size.
Also, the coupling number, N , in torsion and bending were 1.0 and 0.99, respectively. Large size
effects occur.

Shortening the rib segments on the structural elements compared with the long rib lattices in
the previous section has a profound effect on the size effects. Specifically, the magnitude of size-
dependent stiffening is much greater - a factor of more than 35 in torsion here compared to a factor
of 8.5 for the long rib lattices.

Currently, there is no known analysis available for any of the lattice structures studied here.
However, as mentioned earlier, several cellular materials have been analyzed as Cosserat continua.
Several lattices with straight ribs [17, 18, 19] have been theoretically homogenized and had their
Cosserat elastic constants extracted. These lattices were stretch dominated and, consequently,
the characteristic lengths were much smaller than the average cell size. The present lattices are
considered bend dominated because the ratio of characteristic lengths to average cell size exceeds
that of stretch dominated materials and the coupling number approaches the upper bound of 1.

In summary, large size effects were observed in torsion, ΩT = 36, and bending, ΩB = 29.4, of
a lattice with small triangular prismatic unit cells. These results are inconsistent with classical
elasticity but are predicted to occur in Cosserat elasticity. Incorporating strain gradient sensitive
structural elements into 3D printed cellular lattices provides a path to the attainment of arbitrarily
large size effects as advancements in 3D printing technology give rise to better resolution. Such
resolution will allow reduction of the wall thickness of the hollow ribs.
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3.2.3 Comparison of lattices

Size effects were observed in four series of 3D printed cellular lattices incorporating strain gradient
sensitive structural elements. A comparison of elastic constants, density and cell size as well as
maximum size effect is provided in Table 1. The cell size for cubic cells is the edge of the cube.
For other cell shapes, the cell dimension in the longitudinal and transverse directions, (L, T) are
provided. Also shown for comparison are results for negative Poisson’s ratio (denoted neg ν)
tetragonal lattices [14]. These size effects are inconsistent with classical elasticity for which ΩT

= ΩB = 1 but can be modeled via Cosserat elasticity. The magnitude of the size effects depends
sensitively on the geometry of the structures. The largest size effects occurred in the short rib
triangular prismatic unit cell lattices. For these, the characteristic lengths were similar to the cell
size; for the other lattices the characteristic lengths were smaller than the cell size.

The anisotropy may be quantified by the Zener ratio [29], Z = 2 C44
C11−C12

, which applies for
cubic materials; isotropy entails Z = 1. The Zener ratio may be written in terms of technical
elastic constants, Z = 2G(1+ν)

E . By this measure, the negative Poisson’s ratio lattice exhibited
the greatest degree of anisotropy. This is not surprising because the lattice was designed for high
stiffness for compression in the longitudinal direction. The cubic lattice in the <100> direction
had a Zener ratio closest to 1 followed by the triangular short rib lattice. For that lattice, pulsed
acoustic wave measurements revealed the lattice material to exhibit elastic transverse isotropy [14].
The longitudinal modulus was lower than the transverse by a factor 1.3. This value is close to the
inverse of the Zener ratio. So the triangular short rib lattice does not deviate much from isotropy
in comparison with the other lattices.

To obtain an elastically isotropic lattice, desirable for comparative simplicity of interpretation,
one may titrate the length or wall thickness of ribs in different directions. In fully isotropic materials
one can perform internal consistency tests such as independently measuring E, G, ν in the absence
of gradients and checking if the isotropic relation between them is satisfied. One may also measure
compressive moduli in different directions and check if they are equal. As for the Cosserat constants,
�T , �B, and β/γ are related by the definitions of characteristic length, enabling consistency checks
based on a detailed comparison of size effects in torsion and in bending. Moreover in an isotropic
material, N obtained from bending size effects must equal the value obtained from torsion size
effects.

3.2.4 Physical interpretation

The Young’s modulus E represents a continuum average of force-displacement relations or effective
spring constants of the structural elements in each solid. The Cosserat characteristic lengths �T , �B
(equations 6 and 7) quantify the ratio of the average moments (via couple stress mij , equation 2)
transmitted through the solid to the average forces (via stress σij , equation 1). The ratio depends
on both the size and the shape of the structural elements. For example experimental study of a
particulate composite developed as a possible Cosserat solid [8] revealed no nonclassical effects,
hence a characteristic length of zero. This is not intuitively obvious. Rigorous homogenization
analysis disclosed such composites containing stiff spheres have characteristic lengths of zero [30].
The dimensionless coupling number N quantifies the coupling between local and global rotation
fields, hence between forces and moments in the solid. For the solids studied, most N values
obtained equal or approach its upper bound of 1, indicating strong coupling. By contrast, some
solids such as dense foams, exhibit weak coupling [31].

As for limitations of the present study, it is recognized that Cosserat elasticity is not the only
generalized continuum theory. Some theories have more freedom and some have different freedom.
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The difficulty in using such theories is that in most cases the requisite torsion and bending analyses
are not available for interpreting experiments. As for experimental error, the nonclassical effects
observed are so large that experimental errors do not obtrude. As stated, viscoelasticity was
decoupled from size effects by conducting all the tests at one frequency. One could certainly
probe dependence of the Cosserat parameters on frequency. Such dependence is known in bone [32]
which has constituents with different frequency dependence. Frequency dependence of characteristic
lengths is likely to be minimal in lattices which have only one solid constituent. Finer resolution in
3D printing would be helpful as that would allow smaller specimens and more of them. Solids with
a smaller cell size could be made to compare with micro-cellular foams. Lattices with a greater
range of scale in the rib dimensions could enable more extreme behavior. Future advances in 3D
printing are expected to facilitate studies of this type.

Table 1: Summary of maximum size effect, rigidity ratio in torsion ΩT and in bending ΩB; cell size,
density ρ; elastic constants Young’s modulus E, shear modulus G, Poisson’s ratio ν of lattices. Z
is the Zener ratio, a measure of elastic anisotropy. Purely Cosserat elastic constants are coupling
number in torsion NT and in bending NB; characteristic length in torsion �T and in bending �B.

Lattice

Type
ΩT ΩB

Cell
size
(mm)

ρ
( g
cc)

G
(MPa)

E
(MPa)

ν Z NT NB
�T

(mm)
�B

(mm)

Cubic
<111>

2.8 4.1 14 0.23 3.9 6.0 0.3 1.69 1 1.0 6.0 8.2

Cubic
<100>

2.2 3.3 14 0.20 4.3 9.6 0.03 0.92 1 0.23 3.8 7.4

Triangle
Long

8.6 18 16, 17 .093 0.3 2.3 0.05 0.27 1 0.99 8.9 13

Triangle
Short

36 29 9, 10 0.21 1.1 3.1 0.05 0.75 1 0.99 9.4 8.8

neg ν 4.5 1.8 15, 16 .087 0.67 28 -0.5 0.024 1 0.46 5.6 5.4

4 Conclusions

All lattices exhibited Cosserat elastic effects. The magnitude of the effects is sensitive to structure.
The largest size effects and the largest ratio of characteristic length to cell size were observed in the
triangular short rib lattice. Concepts such as those developed here provide a path to the attainment
of arbitrarily large nonclassical effects via additive manufacturing.
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