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NONCENTROSYMMETRY IN MICROPOLAR ELASTICITY 

RODERlC S. LAKES and ROBERT L. BENEDICT 

Division of Materials Engineering, The University of Iowa. Iowa City. IA 52242, U.S.A. 

Abstract-Consequences of noncentrosymmetry in a micropolar elastic solid are considered. A solid which 
is isotropic with respect to coordinate rotations hut not with respect to inversions, has three new elastic 
constants in addition to the six considered in the fully isotropic micropolar solid. The acentric micropolar 
solid is predicted to undergo torsional deformation when subjected to tensile load. 

I. INTRODUCTION 

GENERALIZED continuum theories for mechanical behavior developed over the last century admit 
degrees of freedom not considered in the classical theory of elasticity. Common to such 
theories as those of the Cosserats[l], the indeterminate couple stress theory of Mindlin and 
Tiersten[Z] and the micropolar theory of Eringen[3] is the assumption of couple stress and the 
associated asymmetry of the force stress tensor. Generalized continuum theories are thought to 
have applications in the modelling of materials with microstructure, such as granular or fibrous 
materials, or materials with a lattice structure. Micropolar theory has in recent years stimulated 
considerable interest, and analytical solutions to many problems in micropolar elasticity are 
available. Of particular interest to the experimentalist are the predictions of size effects in the 
apparent stiffness of a cylindrical member in torsion[4] and in bending[5]. In most published 
solutions, material isotropy is assumed. Some materials, however, are not invariant to coor- 
dinate inversicns and this type of anisotropy can be expected to result in qualitatively different 
behavior in comparison with isotropic solids. Some aspects of initial stress in noncentrosym- 
metric Cosserat continua have been examined [6] but geometries addressable experimentally 
were not considered. Structural noncentrosymmetry is characteristic of bone, as well as 
synthetic composites containing twisted fibers. in this paper the behavior of a noncentrosym- 
metric micropolar elastic solid is examined. 

2. NONCENTROSYMMETRIC MICROPOLAR THEORY 

In the linear theory of an anisotropic micropolar solid, the free energy 21’ is given in terms 
of the microrotation 4 and the micropolar strain ekl = ekl + &,,(r,,, - #,) by[3] 

+ ; ~k,mnd’k,lhn.n + ~k l mn~k l dh . n~ (2.1) 

in which p is the density, and the A’s, B’s and c’s are elastic constants. In the expression for 
micropolar strain, ek/ = 1/2(&,+&k) is the usual macrostrain tensor, defined in terms 
of the displacement u, &,,, is the permutation symbol, and rk = l/2(k?k&&,1) is the macrorotation 
vector. The usual Einstein summation convention is used, and the comma denotes partial 
differentiation with respect to spatial coordinates. The stress ai;! and the couple stress mk, are 
given by 

In the absence of initial stress Akl = 0 and in the absence of initial couple stress Sk1 = 0. The 
constitutive equations, obtained from (2.2) and (2.1) are 

@k/ = Akw%n + Ckhd#‘m.n 

libl 

(2.3) 
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ml, = &,m&,.,, + (-'mn,~~,,,,~. ('.?I 

Now & is an axial vector, therefore, the terms in eqn (2.1) containing Cklmn and Bk, change sign 
under an inversion of spatial axes. The other terms do not change sign, therefore, the internal 
energy is not invariant to such inversions if Ck,mn f 0 or Bk,#  0. This lack of invariance is 
permitted if the material does not have a center of symmetry. The case of centrosymmetric, 
isotropic materials has been treated at great length in the literature. In the present analysis. we 
consider a material which is noncentrosymmetric but is isotropic with respect to coordinate 
rotations. 

The most general fourth order isotropic tensor may be written 

D klmn = D,hdmn + h%,,~~n + ~&bn~ (2.5) 

The constitutive eqns (2.3) and (2.4) become 

mk[ = B, &, + &b,.k + B345k.l + c, &k, + C?Elk + C+kl. (2.7) 

In terms of the macrostrain ek, and conventional notation for the elastic constants, these 
may be written 

These are the constitutive equations for a micropolar solid which is isotropic with respect to 
coordinate rotations but not with respect to inversions. Elastic constants C,, Cz and C3 are 
associated with noncentrosymmetry; if these vanish, the equations of isotropic micropolar 
elasticity are recovered. The quantities a, p, y and K  are micropolar elastic constants; if these 
also vanish, eqns (2.8) and (2.9) reduce to the constitutive equations of classical isotropic, linear 
elasticity theory, in which A and Al. are the Lame constants. Boundary conditions do not depend 
on assumed material symmetry. One may prescribe the displacements uk or the surface traction 
f(n)k and the microrotations & or the surface couples m(n)k on the surface which has exterior 
normal n,. If tractions are specified, the boundary conditions are[3] 

(2.10) 

M,,n, = m(nlk. (2.11) 

The laws of motion also are independent of material symmetry and are given by[3] 

gik.f + d_fk - ak) = 0 (2.12) 

(2.13) 

In which fk is the body force, ak iS the local acceleration, /\k is the body couple and ak is the 
local angular acceleration. 

3. RESTRICTIONS ON MICROPOLAR ELASTIC MODULI 

In order that our noncentrosymmetric micropolar solid be stable, it is necessary that the 
internal energy be nonnegative. From this requirement, one may obtain restrictions on the 
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micropolar elastic moduli. Consider the internal energy: 

1163 

Using the definitions btk,[, = (4k.l + 4,,k)/2, f#~ [k.,t = (4k.r - 4(.k)/2 We may rewrite the energy 

&?\I = [Aekkei, + (2p + K)ek,ekl] + [2K(rk - dk)(rk - dk)] 

+ ]1/3(3a + B + Yb$‘k.kd’,.,l + [(r - Phi’,k.l,~[k.fll 

+(y+ b)[dtk.i,- 1/3h,,~k11[d,k.l,- 1/34,,,&,1 

+ [1/3ekkh.1(3CI + c? + cdl + [dll.klekl(C?- cdl 

+ [(db.k, - ~/~&.&%kb?k(~? + cdl 

+ [(r”i - ‘$m)(~2hdb~,k + c3%&,)1. 

Observe that the quantities q,, 41,.al and (rk - 41) can be varied independently 
another. If the first bracketed term in eqn (3.2) is the only one present, the requiremenl 
term be nonnegative yields 

(3.2) 

of one 
that this 

(3.3) 

as in classical elasticity; the quantity p + ~/2 is identified with the Lame shear modulus. The 
energies represented by the second, third and fourth terms must each be nonnegative, so for q 
to be nonnegative it is necessary that 

K20,3ff+p+ya0, -yspsy, (3.4) 

a result obtained by Eringen for the fully isotropic micropolar solid [3]. 
The product terms containing both e and $J cannot exist independently of the first-fourth 

terms, therefore, the above approach cannot be used to restrice the C coefficients; they can be 
positive or negative. However, for P to be nonnegative, it is necessary that a negative product 
term not be greater in magnitude than the sum of the corresponding positive terms containing e 
and 4 individually. For example if 4k.l and ek/ are traceless, 4tr,,, = 0 and rk = &, it is necessary 
that 

K;,, = tc2+ Cd2 
W/J + K)(P + Y) 

~, (3.5) 

for the energy P to be nonnegative. Similarly, considering other possible combinations, one 
obtains 

(C, - CSY 
KT'=4(2p+K)(y-/#' 

Kfz = (3C, + Cz + Cs)? < , 
4(3A + 2/J + K)(3a + p + y)- 

(3.6) 

(3.7) 

as necessary conditions for q to be nonnegative. The C coefficients associated with noncen- 
trosymmetry are bounded by products of combinations of classical elastic and micropolar 
coefficients. The quantities K:,, K:,, KT2 are analogous to the coupling coefficients developed in 
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the linear theory of piezoelectricity, and can be obtained in a similar fashion. This cor- 
respondence is anticipated on the basis of the formal similarity between the constitutive 
equations of linear piezoelectricity and those of noncentrosymmetric micropolar elasticity, eqns 
(2.3) and (2.4). 

4. SIMPLE TENSION 

Consider a cylindrical rod of radius R, of a noncentrosymmetric micropolar elastic solid. Let 
the rod be stretched by an axial force F, and let it be free of rotational constraint, and let the 
lateral surface be free of force traction and couples. Such a situation is relatively easy to realize 
experimentally, and serves to illustrate the effects of the C coefficients. To solve this tension 
problem, it is useful to express the constitutive equations, equilibrium equations and strain- 
displacement relations in cylindrical polar coordinates. The constitutive equations may be 
written 

=(P + K) 

The equilibrium equations are 

[;:,:l +fr:::l:l =O 

+ tez - tze 11 4, - trz 
td - tar 

= 0. 

: 

+ G 

r Err 
+ C, E,, + (C2 + CJ %e 

The micropolar strains in terms of the displacements u and microrotations 4 are 
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In the case of simple tension of a long cylindrical rod of radius R, the following field of 
displacement and microrotation gives rise to a solution 

1 uH = b,,rz 

in which 

4” = 0, J 

2K 1 

“= a+/i?+y I-K,,?’ 
~ K,,= = 

(C, t cz t c$ 
(a + p + y)(/\ + 2/L + K)’ 

and I, is the modified Bessel function of first order. 

We may identify e with the axial strain and B. with a twist angle per unit length of rod. 
arising from the coupling produced by the C coefficients. We observe that the Poisson-like 
contraction is not associated with a uniform radial strain as is the case in classical elasticity or 
in centrosymmetric micropolar elasticity [4]. 

The quantities bo, I+ and A9 are obtained by solving simultaneously the boundary condition 
equations for zero force traction and zero couple on the lateral surface of the rod. and zero net 
torque at the ends. The values are 

- I, R’el2 - l,R2e 13’A,,- K12(lz2+l,')A,,+ K<A,: 
- KIK,,eIh -K,dK, + lk/h A,,,( I - Kc,‘) + (Kz + K,*U,(pR)/R 

- Kdl& -(&+ I)e/&L (KJ - &)1,(pR)/R 
b,, = 

D 
(lo’ t (R/2)‘)R’/2 - lzR’e/2 13’A,, - K,‘(lz’+ /,‘)A,, + K<A,: 
(Kz - I)/2 - K&eI14 AdI - K,,‘)+(Kz- K,%,(pR)/R 
(K,- I)/2 - &eI&l., (K, - UI,(pR)/R 

&I = 
D 

(l,,‘+(R/2)‘)R’/2 - l,R’e - 1, R’e/2 
(K, - 1)/2 - UK3 + l)e/l, - K&eIl, 
(K, - 1)/2 - (&+ l)e/K& - &e/&l4 

Ag= 
D 

in which 

(1; t (R/2)‘)R’/2 - lzR2e lj’A,l - K,‘(l>‘+ 13’)A,, + K5AIz 
D= (Kz - lV2 -(K, + 1)&e/14 Ajot - K,;) + (K= - K,‘)Z,(pR,/R 

(K, - lV2 - (K4+ l)e/&I~ (Kx - &VdpR)/R. 

In the above, the following quantities have been defined in terms of the microPolar elastic 
constants 

l,,* = (p + y)/(2p + K), 1,’ = (a + p + Y)/(A + 2/J + K ), 

K,,= = (c, t c, + c,)=/(a + p + ?‘)(A + 2P + K) 

Kz = a/(~ + P + Y), Kj = C,/(C, + G + C,), 

K., = A&h + 2/.~ + K), K( = K/(2/L + K). 
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Additional quantities are defined as 

1, = @&I/( 1 - Kd, I2 = 1, KT. /q’ = (I,‘/( 1 -- K,)) - I,,‘. 

K,: = KdG’, Am = (pI,(pR) - I,(~R)/R), 

I 
K 

A,, = RIdpR), A,? = r’11tpR) dr = R’I,(pR)/p, 
0 

in which IO, I, and I, are modified Bessel functions of order zero, one and two, respectively. 
It is instructive to examine several special cases. If Cl = 0, A = 0 and (Y = 0, the twist angle 

per unit length is 

The twist angle is proportional to the axial strain e and to the coupling factor K,, and it 
tends to increase as the cylinder radius decreases. The twist angle can be positive or negative, 
depending on the sign of Ko. A second special case is obtained by constraining the micro- 
rotation to be equal to the macrorotation. This constraint yields a solution to the tension 
problem in noncentrosymmetric indeterminate couple stress theory. The constraint is achieved 
by allowing p to become infinitely large. The twist angle per unit length becomes 

h = - K&I1 - 2K3Kd/(l+ &) + [(Kj + l)K,/(l + K4) - K,)l/(l - KJ 

0 
f * + 1: + ld2[Ki,KI(K3 - I)/(1 - Kd’, + ((1 - K2)- Knz(l - K12)/(1 + K,))/2(1- K4)] e 

In both special cases the twist angle is proportional to the coupling factor K. and the axial 
strain e. For a thick rod of radius R % lo, the twist angle increases as the inverse square of the 
radius. For a sufficiently small radius, R 4 I,, the twist angle per unit axial strain approaches a 
constant value. 

5. PHYSICAL INTERPRETATION 

The quantities lo - f4 have dimensions of length and may be referred to as characteristic 
lengths. lo is the characteristic length defined in connection with the problem of torsion in 
centrosymmetric micropolar theory by Gauthier and Jahsman[4]. In generalized continuum 
models of structured materials, the characteristic lengths are generally found to be related to 
the size of structural elements. The quantities Ko- K5 are dimensionless. K. and K, are 
measures of the strength of the noncentrosymmetric coupling and are analogous to the coupling 
coefficients of piezoelectricity theory. K4 is equivalent to the classical Poisson ratio, since 
F + K/2 is the observed shear modulus. K2 and K3 are similar in nature to K4, as seen by 
comparing the role of A with that of C, and a in eqns (2.8) and (2.9). KS represents the strength 
of coupling between the macrostrain field and the microrotation field. 

Micropolar elasticity and related continuum theories are thought to apply to granular, 
fibrous, or composite materials. The noncentrosymmetric theory is intended for solids contain- 
ing twisted or spiraling fibers, in which one direction of twist or spiral predominates. If the 
fibers are distributed randomly in all directions, tensile specimens taken in any orientation will 
appear to have the same Young’s modulus, giving the impression of isotropy. 

6. EXPERIMENTAL 

Few experiments of any kind have been performed to explore micropolar effects in real 
materials. Efforts to find effects describable by indeterminate couple stress theory in metals and 
by micropolar theory in a composite have been unsuccessful. Recently one of the authors (R.L.) 
has found evidence of couple stress effects in human compact bone[7,8]. There is some 
indication that micropolar theory is to be preferred over indeterminate couple stress theory in 
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describing these effects. Regarding effects due to noncentrosymmetry, positive but very 
preliminary experimental results have been found [9]. 

Ropes and cables containing fibers which spiral are structurally noncentrosymmetric. It is 
well known that they untwist when subjected to tensile force with no constraint on rotation, as 
predicted in Section 4. Use of a continuum model for ropes is, however, questionable. 

Future experiments seeking to demonstrate micropolar behavior could be performed using 
the tension mode described in Section 4. This is an attractive modality since great sensitivity is 
possible. It should be possible to detect acentric micropolar effects even if the structural 
asymmetry is on the atomic or molecular scale. For example, a fiber 0.07 mm dia. and 200 mm 
long is typical of boron-epoxy fibers us e d in composites. If such a fiber were subjected to an 
axial strain of 10~ ’ and if l,, = 10 A = 10 ‘) m and K. = 1, the untwisting due to noncentrosym- 
metry could be detected. A reflected laser beam over an 8 m path would be deflected about 
2 mm by rotation of the fiber. 

Experiments based on the results in Section 4 are capable of detecting micropolar behavior, 
but calculation of the nine elastic constants will be less than straightforward. A similar 
complexity in the combination of elastic constants is found in earlier work on centrosymmetric 
micropolar theory[4,S]. From the experimentalist’s point of view, it appears that further 
attention to the solution of micropolar boundary value problems is warranted. 

7. DISCUSSION 

Several consequences of noncentrosymmetry in micropolar elasticity have been considered. 
Torsion deformation in response to tensile load, and size effects in Poisson’s ratio are predicted. 
Very sensitive experiments based on the predicted behavior are possible. Macroscopic noncen- 
trosymmetric micropolar effects may occur in composite materials with twisted or spiraling fibers. 
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