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Abstract

Reticulated open cell polymer foams exhibit substantial size e↵ects in torsion and bending:
slender specimens are more rigid than anticipated via classical elasticity. Such size e↵ects are
predicted by Cosserat (micropolar) elasticity, which allows points to rotate as well as translate
and incorporates distributed moments (couple stresses). The Cosserat characteristic length is
larger than the cell size. The Cosserat coupling coe�cient is larger than in dense closed cell
foams and approaches 1 for foam with 0.4 mm cells.

1 Introduction

Materials that are deformed at su�ciently small strain typically exhibit linear behavior. If the
response is also independent of the path of deformation and its time history, the material is consid-
ered to be elastic. Classical elasticity is routinely used to model such behavior. There is no length
scale in classical elasticity. Length scales do occur in the definition of fracture toughness. Also,
toughness of foams is related to the size scale of the cells in the foam [1]. E↵ects of material length
scales may be understood in the context of more general theories of elasticity.

Classical elasticity however is not the only theory of elasticity. Theories that incorporate less
freedom or more freedom are available. The Cosserat theory of elasticity [2] [3] incorporates a local
rotation of points as well as the translation of classical elasticity, and a couple stress (a torque
per unit area) as well as the force stress (force per unit area; just stress in classical elasticity).
Eringen [4] incorporated micro-inertia and renamed Cosserat elasticity micropolar elasticity. At
frequencies su�ciently low that local resonances are not approached, Cosserat and micropolar are
used interchangeably.

The physical origin of the Cosserat couple stress is the summation of bending and twisting
moments transmitted by ribs in a foam or by structural elements in other materials (Figure 1).
The Cosserat local rotation corresponds to the rotation of ribs. Forces and moments are also
considered in the classic analyses of foam by Gibson and Ashby [1] in which classical elastic moduli
were determined; e↵ects of rotation gradients were not considered.

The Cosserat theory of elasticity is a continuum theory that entails a type of nonlocal [5]
interaction. The stress �jk (force per unit area) can be asymmetric. The distributed moment from
this asymmetry is balanced by a couple stress mjk (a torque per unit area). The antisymmetric
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Figure 1: Foam ribs with increment of force dF and increment of moment dM upon ribs.

part of the stress is related to rotations. �

antisym
jk = ejkm(rm � �m) in which  is an elastic

constant, �m is the rotation of points, called micro-rotation, ejkm is the permutation symbol, and
rk = 1

2eklmum,l is “macro” rotation based on the antisymmetric part of gradient of displacement
ui. The constitutive equations [4] for linear isotropic Cosserat elasticity are as follows.

�ij = 2G✏ij + �✏kk�ij + eijk(rk � �k) (1)

mij = ↵�k,k�ij + ��i,j + ��j,i (2)

Cosserat elasticity incorporates sensitivity to gradients of rotation by virtue of the coupling
between rotations and stresses. It is also possible to supplement classical elasticity with sensitivity
to gradients of dilatation [6].

The six isotropic Cosserat elastic constants are as follows in which � is a Lamé constant from
elasticity theory.
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�
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(7)

Coupling number N =

r

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(8)

Polar ratio  =
� + �
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. (9)

Cosserat elasticity has the following consequences. A size e↵ect is predicted in the torsion [7]
and bending [8] of circular cylinders of Cosserat elastic materials. Slender cylinders appear more
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sti↵ than expected classically. A similar size e↵ect is also predicted in the bending of plates. No
size e↵ect is predicted in tension or compression. The stress concentration factor for a circular hole
is smaller than the classical value, and small holes exhibit less stress concentration than larger ones
[9]. By contrast, in classical elastic solids, there is no size e↵ect in torsion or bending; structural
rigidity goes as the fourth power of the radius; too, stress concentration is independent of hole size.

As for freedom of theories, the early uniconstant elasticity theory of Navier [10] has less free-
dom than classical elasticity; it has only one elastic constant and Poisson’s ratio must be 1

4 for all
materials. This theory is based upon the assumption that forces act along the lines joining pairs of
atoms and are proportional to changes in distance between them. This theory was abandoned based
on experiments that disclosed a range of Poisson’s ratio. Classical elasticity has two independent
elastic constants for isotropic materials; the Poisson’s ratio can have values between -1 and 0.5.
Cosserat elasticity has more freedom than classical, that of local rotations and couple stress; there
are 6 independent isotropic elastic constants. A simpler variant presented by Koiter [11] assumes
that the macrorotation and microrotation vectors are equal. This corresponds to N = 1, or equiv-
alently  ! 1 in Cosserat elasticity. The Koiter variant is called couple stress elasticity; there
are two characteristic lengths in addition to the classical constants: 4 isotropic elastic constants.
The microstructure elasticity theory of Mindlin [12], also called micromorphic elasticity, has more
freedom than classical or Cosserat elasticity; it allows points in the continuum to translate, rotate,
and deform. This adds considerable complexity; for an isotropic solid, there are 18 micromorphic
elastic constants compared with 6 for Cosserat elasticity and 2 for classical elasticity.

Cosserat elastic e↵ects have been observed experimentally. Size e↵ects observed to occur in
torsion and bending of closed cell foams [13], [14] and of compact bone [15] are consistent with
Cosserat elasticity. The apparent modulus increases substantially as the specimen diameter becomes
smaller, in contrast to the predictions of classical elasticity. Cosserat elasticity can account for these
observations. For dense (340 kg/m3) closed cell polyurethane foam [13], E = 300 MPa, G = 104
MPa, ⌫ = 0.4, `t = 0.62 mm, `b = 0.33 mm, N2 = 0.04,  = 1.5. The cell size ranges from 0.05
mm to 0.15 mm. For dense (380 kg/m3) polymethacrylamide closed cell foam (Rohacell WF300)
[14], E = 637 MPa, G = 285 MPa, `t = 0.8 mm, `b = 0.77 mm, N2 ⇡ 0.04,  = 1.5. The cell size
is about 0.65 mm. For this material, it was di�cult to determine N accurately due to di�culty in
cutting su�ciently slender specimens.

The Cosserat characteristic length was determined in a (two dimensional) polymer honeycomb
[16]. Full field measurements of deformation reveal non-classical elastic e↵ects that are consistent
with Cosserat elasticity. Warp of a bar of rectangular cross section in torsion is predicted to be
reduced in a Cosserat elastic solid [17]. The corresponding non-classical strain field was observed
in compact bone [18]. Deformation spills over into the corner region where it would be zero in
classical elasticity [19] as revealed by holography. This ameliorates concentration of strain. Strain
at the corner entails asymmetry of the stress as predicted by Cosserat elasticity. The reduction
of warp deformation has been observed via holography [20]. As for plastic deformation, rotational
plastic deformation mechanisms were interpreted via gradients in a micropolar continuum theory
[21].

The present research deals with experimental study of size e↵ects and Cosserat elasticity in low
density open cell polymer foams.
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2 Methods

2.1 Materials and experiment

Reticulated polyurethane foam (Scott Industrial foam [22]) was used. One foam had average cell
size 1.2 mm or 20 pores per inch (Figure 3); the other foam had average cell size 0.4 mm. For both
foams, the density was 30 kg/m3 so the volume fraction of solid material in the foam was about
0.03.. Separate compression tests on foam cubes were conducted with a servo-hydraulic frame to
probe anisotropy.

Cylinders were cut from polymer foam with a hot wire cutter such that the cylinder diameter
and length were equal. The wire was Nichrome heater wire of thickness 0.015 inches and resistance
2.5 ⌦. The electric current was 3 Amps. The initial cylinder cut from the bulk foam was 45 mm
in both diameter and length. The foam cylinder was weighed with an analytical balance, then
circular end pieces of the same diameter as the foam specimen were cut from heavy card stock and
cemented with cyanoacrylate (Loctite 401) over the full surface. Slight pressure was applied to the
end pieces to ensure good adhesion. A catalyst was applied to the surfaces to minimize the amount
of cement in order to reduce ingression of the cement into the pores of the smaller cell foam.

These specimens were tested for torsional and bending rigidity using a Broadband Viscoelastic
Spectrometer (BVS) [23] [24]. This instrument makes use of a Helmholtz coil acting upon a magnet
attached to the specimen to generate torque. The coil spacing is smaller than the larger specimens
so a short stalk with a magnet and mirror on the end was fixed to one of the end pieces. A thin
aluminum end layer was also cemented to provide a su�ciently rigid attachment for the stalk. First,
a small mirror was glued to one face of a cubic magnet. The magnet was then calibrated using
the BVS and a lock-in amplifier. The magnetic calibration constants of this particular magnet
were obtained by testing a 6061 aluminum alloy rod of known elastic properties; the calibration
constants were 8.00 ⇥10�6 Nm/A in torsion and 1.84 ⇥10�5 Nm/A in bending. The free end piece
of the polymer foam cylinder was cemented to a steel adapter which was screwed in to a 25 mm
thick steel rod for holding the specimen inside the BVS. Prior to testing, viscoelastic strain was
allowed to recover overnight to enable stable measurements. The specimen (Figure 2, left) was
lowered into the BVS such that the magnet was centered in the Helmholtz coils of the BVS. The
lower limit on specimen size was imposed by obtrusive presence of incomplete cells, particularly in
the larger cell foam; also by di�culty in handling. The smallest specimen of 0.4 mm cell foam is
shown in Figure 2, right.

Deformation was measured via a beam from a semiconductor laser reflected from a mirror at-
tached to the magnet that applies torque to the specimen free end. The laser beam was reflected
onto a silicon light detector. Prior to torsion tests, the laser based displacement sensor was cali-
brated. This was done by aligning the laser beam so that the position of the beam on the light
detector was centered. The light detector was moved a known amount via a calibrated stage; a cal-
ibration curve was obtained via micrometer adjustment. This change in output voltage per change
in position was used as the beam position calibration constant (in V/µm).

To test the specimen a sinusoidal signal with a frequency of 1 Hz from a function generator (SRS
Model DS345) was input to the torsion Helmholtz coil. Because the same frequency was used for all
specimen diameters, viscoelastic e↵ects are decoupled from the size e↵ects to be probed. The torque
signal was obtained as the voltage across a 1 ohm resistor in series with the coil to eliminate e↵ects
of inductive reactance from the coil. The frequency of 1 Hz was well below any resonant frequencies.
The torque signal vs. angular displacement signal was displayed on a digital oscilloscope (Tektronix
TDS3014B) using DC coupling. The torque and angle signals were displayed as a Lissajous figure,
and used to calculate the modulus and viscoelastic damping of the material. The maximum strain
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Figure 2: Specimens of foam with 0.4 mm cells. Left, larger specimen; scale bar 10 mm. Right,
the smallest specimen; scale marks 1 mm.

during testing was less than 0.3%. This is well within the linear range of 5-10% for this sort of
flexible foam. Linearity was also checked by conducting tests at di↵erent amplitude; moduli were
independent of amplitude. Linear viscoelasticity was verified by observing the shape of the elliptic
torque-angle curve, an elliptic Lissajous figure. The light detector was su�ciently sensitive that
quality of the signals was good and the ratio of signal to noise was high, 40 to 400.

For bending, the light detector mode was switched to vertical detection and the beam calibra-
tion constant was determined accordingly; the driving signal was input to the orthogonal bending
Helmholtz coil. A correction was applied to account for the additional bending moment imposed
by the weight of the magnet and stalk; this correction was 3% or less. A correction was also applied
to the e↵ective specimen length to incorporate the e↵ect of glue in the pores at the ends. The glue
ingression was 0.3 mm or less per end. The correction was at most 10% for the smallest specimen
of small cell foam and considerably less otherwise.

Compression tests were done to ascertain the behavior in the absence of macroscopic gradients
of strain or rotation. This was done by applying force via dead weights on one end piece cemented
to the specimen. The other end piece was cemented to a base upon an optical table. Deformation
was measured using an LVDT; its stem was cemented to the upper end piece. The LVDT was
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calibrated using a micrometer driven translation stage. The maximum strain achieved was 1.1%,
well within the linear range for a flexible foam. A lower limit on specimen size was imposed by the
tendency of small specimens to buckle.

Square section specimens of rubber and of foam with 0.4 mm cells were subjected to torsion with
the aim of illustrating the e↵ect of asymmetric stress in Cosserat elasticity. A small notch, about
1/15 the specimen width, was observed. In classical elasticity the notch will not displace because
the symmetry of the stress implies zero stress, hence zero strain at the corner. In a Cosserat solid,
the stress is asymmetric, so the notch can displace [17]; such displacement was observed in bone
and dense foams [19].

Figure 3: Open cell polyurethane foam. Left, larger cells; scale bar, 5 mm. Right, smaller cells;
scale bar, 5 mm.

2.2 Analysis and interpretation

Size e↵ect results were interpreted as follows. For torsion, the shear modulus G was found from
the asymptote of rigidity vs. diameter curve for large size. The torsion characteristic length `t

was found from fitting the points for the larger specimens to the following approximate solution.
For torsion of a Cosserat elastic circular rod of radius r, ratio of structural rigidity to its classical
counterpart (in the absence of gradient, for large diameter) is

⌦ = 1 + 6(`t/r)
2
. (10)

This shows size e↵ects to occur in torsion: slender specimens appear to have a higher e↵ective
modulus than thick ones. The classical torsional rigidity is M

✓ = G[⇡2 r
4] so for Cosserat elasticity

in this regime, M
✓ = G[⇡2 r

4](1 + 6(`t/r)2). G is the true shear modulus in the absence of gradients;
M is applied moment and ✓ is angular displacement. This expression is exact for N = 1; for other
N the exact solution is more complicated and involves Bessel functions [7]:

⌦ = (1 + 6(`t/r)
2)[

(1� 4 �/3)

1� � ], (11)

in which � = I1(pr)/prI0(pr), p2 = 2/(↵+ � + �) and I0 and I1 are modified Bessel functions of
the first kind.

The shear modulus G and characteristic length `t were determined by fitting experimental data
for the three largest specimens to Eq. 10. The value of N was found by fitting Eq. 11 to the full
data set using MATLAB. The curve is rather insensitive to  except near the origin.
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For bending, the classical bending rigidity is M
✓ = E[⇡4 r

4]. For bending of a Cosserat elastic
circular rod and radius r, the rigidity ratio is approximately

⌦ = 1 + 8(`b/r)
2 (1� (�/�)2)

(1 + ⌫)
. (12)

The expression is approximate for small characteristic length `b << r. The exact form [8],
which also involves Bessel functions, is

⌦ = 1 + 8(`b/r)
2 (1� (�/�)2)

(1 + ⌫)
+

8N2

(1 + ⌫)
[

(�/� + ⌫)2

⇣(�a) + 8N2(1� ⌫)
] (13)

with � = N/`b and ⇣(�r) = (�r)2[((�r)I0((�r))� I1((�r)))/((�r)I0(�r)� 2I1(�r))].
The Young’s modulus E and an initial value for the characteristic length `b were determined

by fitting data for the three largest specimens to Eq. 12, with N input from the torsion analysis,
�/� = 0.8 based on prior dense foam and also from lattice analysis (see below), and ⌫ from prior
experimental results. Finally the values of `b and �/� were found by fitting Eq. 13 to the full data
set using MATLAB.

To obtain all six Cosserat constants, both torsion and bending experiments are required. The
bend test provides some verification in that the shape of the size e↵ect curve depends not only on
E and `b but also on N and `t.

3 Results and discussion

3.1 Size e↵ects and elastic constants

Density of foam specimens was independent of size to within a few percent. As for tests of
anisotropy, the foam with 1.2 mm cells was anisotropic, with a ratio of compressive moduli in
di↵erent directions of 1.6; the foam with 0.4 mm cells was isotropic to within 10%. Anisotropy was
not obvious in images of foam observed from di↵erent directions.

Results of torsion size e↵ect studies on the foam with 1.2 mm cells are shown in Figure 4. Also
shown for comparison are theoretical curves for various N . Classical elasticity corresponds to a
horizontal line with ⌦ = 1.
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Figure 4: Size e↵ects for foam with 1.2 mm cells in torsion. Top scale, diameter normalized to cell
size. Open circles represent experimental results.

The torsion size e↵ect curve for foam with 1.2 mm cells is consistent with G = 45 kPa, The
characteristic length for torsion was `t = 2.1 mm, N = 0.41, and  = 1.5. The curve is rather
insensitive to  except near the origin.

The Poisson’s ratio was determined [25] to be approximately 0.3. This value was also given by
[1] as the mean of many measurements by various authors.

8



Figure 5: Size e↵ects for foam with 1.2 mm cells in bending. Top scale, diameter normalized to
cell size. Open circles represent experimental results.

Results of bending size e↵ect studies on the foam with 1.2 mm cells are shown in Figure 5. As
above, theoretical curves for various N are shown for comparison. The elastic constants obtained
from the fit were E = 91 kPa, `b = 9 mm, �/� = 0.83. N = 0.41 was used based on torsion. This
foam is anisotropic, so the characteristic length for bending is independent of the characteristic
length for torsion and is independent of �/� inferred from bending.

Results of torsion size e↵ect studies on the foam with 0.4 mm cells are shown in Figure 6; results
for bending are shown in Figure 7. Classical elasticity corresponds to a horizontal line with ⌦ =
1. Inferred elastic constants are shear modulus G = 28 kPa, characteristic length for torsion `t =
1.6 mm, N = 0.99, and  = 1.5; Young’s modulus E = 81 kPa, `b = 2.2 mm, �/� = 0.8. As
a test of sensitivity, the point for the smallest specimen was omitted and another curve fit done;
this resulted in N = 0.82; the mean square deviation between data and theoretical fit changed
minimally by 5%.

Characteristic length values were larger for the larger cell foam as expected. The di↵erence was,
however, not directly proportional to the cell size. That is not surprising because the foams do
not have identical structure; the foam with larger cells exhibited anisotropy. Too, surface tension
during foam formation influences the details of the microstructure.
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The inferred N was larger for the 0.4 mm cell foam: 0.99 vs. 0.41. The R

2 value as a measure
of goodness of fit was compared for several values of N . For the 0.4 mm cell foam, R2 = 0.98 for
N = 0.99; 0.6 for N = 0.6. For the 1.2 mm cell foam, R2 = 0.65 for N = 0.41; R2 = 0.4 for N =
0.3 or 0.55. The di↵erence in N is attributed to di↵erences in the structure of the foams, especially
the presence of incomplete cells in the 1.2 mm cell foam as discussed below.

Figure 6: Size e↵ects for foam with 0.4 mm cells in torsion. Top scale, diameter normalized to cell
size. Open circles represent experimental results.
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Figure 7: Size e↵ects for foam with 0.4 mm cells in bending. Top scale, diameter normalized to
cell size. Open circles represent experimental results.

Compression studies disclosed a modest softening size e↵ect in which slender specimens have
a smaller e↵ective Young’s modulus than thicker ones, Figure 8. Straight lines are least squares
fits. This e↵ect is opposite to the torsion and bending size e↵ects observed and is opposite to the
predictions of Cosserat elasticity. It is consistent with the notion of a surface layer of incomplete
cells which do not fully contribute to the structural sti↵ness of the specimen.

A softening size e↵ect is known to occur in foams as a result of damaged or incomplete cells at
the surface [26] [14]. Softening size e↵ects have also been observed in metal foams in compression
and bending; these have been analyzed and attributed to strain localization [27]. Such localization
can occur in foam at su�ciently high strain levels. Incomplete cells can also contribute to the
fluctuation in e↵ective sti↵ness with specimen size. Such fluctuation or scatter was observed to be
considerably greater in the present low density open cell foams than it was for closed cell foams.
Scatter was a result of material heterogeneity, not signal quality (which was good). Too, the low
density foams may have heterogeneity on a scale larger than the cells. The e↵ect of incomplete cells
is for the e↵ective modulus to becomes smaller as specimen size is reduced. This e↵ect was observed
in the compression studies in which average stress is constant and there is no contribution from
Cosserat or other gradient related e↵ect. The e↵ect of incomplete cells in the bending and torsion
studies is to reduce the inferred Cosserat constants, so the intrinsic Cosserat elastic constants will
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be even larger than those reported.

Figure 8: Young’s Modulus of foam in compression; circles, foam with 1.2 mm cells; triangles, foam
with 0.4 mm cells.

3.2 Viscoelastic damping

Viscoelastic response, was determined as mechanical damping tan � at 1 Hz. Because the same
frequency was used for all experiments, viscoelastic dispersion (frequency dependence of modulus)
cannot obtrude in the results or their interpretation. Damping of 1.2 mm cell foam was essentially
independent of specimen size, as shown in Figure 9. Straight lines are least squares fits. The foam
with smaller cells (Figure 10) also exhibited damping independent of size. So the Cosserat e↵ects
entail viscoelasticity but there is no size dependence of the damping. This is in contrast with
the behavior of bone [28] which behaves as a Cosserat solid [15]. Size e↵ects of large magnitude
were observed in the torsional e↵ective shear modulus and damping of bovine plexiform bone.
Damping increased and sti↵ness decreased with bone specimen size. Bone in contrast to foam has
heterogeneity with spatially varying viscoelastic response, specifically there are highly viscoelastic
boundaries called cement lines between large fibers (osteons) in the bone [29]. As for the present
foams, the di↵erence in the overall damping of the two foams suggests a di↵erence in chemical
composition or density of cross links. From the foam density and modulus, The Young’s modulus
Es of the solid material of which the foam is made is calculated from the classic Gibson-Ashby [1]
relation E

Es
= Cf [

⇢
⇢s
]2 between rib modulus Es and foam modulus E in which ⇢s is the density, Cf

is a constant of value near one. For both foams, the rib Young’s modulus is about 90 MPa, well
into the transition or leathery regime for a polymer. The relatively large tan � is understandable
in that context.

12



Figure 9: Viscoelastic tan � vs. specimen size for foam with 1.2 mm cells. Solid symbols and dash
line fit: bending. Open symbols and solid line fit: torsion.

Figure 10: Viscoelastic tan � vs. specimen size for foam with 0.4 mm cells.Solid symbols and dash
line fit: bending. Open symbols and solid line fit: torsion.

3.3 Comparison with homogenization

Results show large characteristic lengths considerably larger than the cell size and large values of
N . Comparison with homogenization analyses and with other experiment is of interest.

Lattices with straight ribs have analyzed as Cosserat continua [30] [31] [32]; homogenization such
as long wave approximation reveals similarity to the Cosserat equations [30]. For cubical closed cells
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with thin walls [32], ` = h/2
p
3 is considerably smaller than the cell size h. These lattices are stretch

dominated: the e↵ective Young’s modulus of the lattice is governed by stretching or compression
of the ribs or plates comprising the lattice. Cosserat e↵ects depend on bending or twisting of the
ribs. If the ribs are slender, bending or twisting moments in them decrease more rapidly than axial
forces, so Cosserat e↵ects are weak. Analysis of two dimensional chiral honeycomb lattice structures
as Cosserat continua reveals bend dominated behavior in which Young’s modulus is governed by
rib bending. These honeycombs have large N approaching its upper bound 1, and characteristic
length ` comparable to the cell size [33]. The ribs of this lattice are bend dominated is in contrast
to prior stretch dominated lattices that have been analyzed thus far [35] [36] [37], in which slender
ribs correspond to small N and small `. In summary, the large N and ` values in these materials
is understandable in the context of the role of bending and torsion of the cell ribs.

3.4 Comparison with other experiment

As for comparison with other experiment, prior dense closed cell foams [13], [14] studied experi-
mentally had a relatively small N = 0.2, hence comparatively weak size e↵ects. The maximum
size e↵ect ratio ⌦ was 1.3 for dense polyurethane foam and 1.44 for Rohacell foam, much smaller
than in the present foams. Foam [14] with comparatively uniform closed cell size had ` comparable
to the cell size. Foam [13] with substantial heterogeneity of closed cell size had ` larger than the
cell size. The structures di↵er considerably from that of the low density open cell foams examined
here, which are about one tenth the density of the prior foams. Recently it was shown that classical
continuum theories, such as Bernoulli-Euler beam theory, are inadequate for describing the elastic
bending behavior of metal foams [38]. Some cell models were developed for analysis. While such
models show the physical origin of the local moments that we interpret via Cosserat elasticity,
they have not been couched in such a way to anticipate e↵ects in torsion or changes in strain dis-
tribution as is possible with a generalized continuum approach such as Cosserat elasticity. Large
characteristic lengths, larger than the cell size are consistent with observations of sigmoid curvature
of the lateral surfaces of bent square cross section bars and analysis via Cosserat elasticity [34].
Experimental observation of this sigmoid curvature is consistent too with a large positive value of
�/�. A value �/� between 0.5 and 1 is sensible based on post-processing of the results of [31],
who performed homogenization analysis of a 3-D cubic lattice of straight ribs. No known Cosserat
models are available to predict elastic constants for foam.

3.5 Asymmetry of the stress

Asymmetry of the stress was inferred from displacement of a notch at the corner of a square cross
section bar in torsion. Displacement was observed in foam with 0.4 mm cells but not in rubber
which is classical on a macroscopic scale (Figure 11). Displacement of the corner notch cannot
occur in classically elastic solids because the symmetry of the stress implies stress, hence strain, are
zero at the corner. Generalized continuum theories that entail symmetry of the stress also predict
zero motion of the notch. The foam exhibits such a displacement in contrast with rubber. So the
foam has Cosserat degrees of freedom independent of other freedom associated with generalized
continuum theories.
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Figure 11: Corner of rectangular section bars, with notch marked in black ink. Left, twisted rubber;
scale bar, 5 mm. Center, foam, 0.4 mm cells, not twisted. Right, foam, 0.4 mm cells, twisted.

3.6 Generalized continuum theories

A variety of continuum theories can be used to interpret experiments. We consider it to be sensible
to use the simplest one that incorporates known physics of the material and that is consistent with
experiment. A substantial material size scale does not guarantee the material exhibits generalized
continuum properties. For example a composite containing beads of aluminum in a polymer matrix
behaved classically in size e↵ect studies [7]; a syntactic foam containing hollow glass spheres was also
essentially classical [13] in contrast to dense polyurethane foam which was Cosserat. The present
experimental results show size e↵ects that do not occur in classically elastic materials. They are
interpreted in the context of Cosserat elasticity which has more freedom than classical elasticity
and allows for size e↵ects. Also, Cosserat elasticity incorporates local rotation and distributed
moments. These variables are incorporated in classical analyses [1] of foams in compression to
determine moduli; there are no gradients of rotation in that case. As for variants of the Cosserat
continuum, the smaller cell foam has a large value of N = 0.99. This may be regarded as consistent
with N = 1, corresponding the the special case of Cosserat elasticity called couple stress elasticity
[11]. The larger cell foam has a smaller N , not consistent with N = 1.

As for the possibility of additional freedom, observe that the definitions of characteristic lengths,
Eq. 6, 7 entail a relation between `t, `b, and �/� for isotropic materials. Based on this relation, `b
is larger than expected by a factor of about 2.5. Results do not necessarily exclude the presence
of additional freedom such as that incorporated in micromorphic / Mindlin microstructure [12]
theory. Micromorphic elasticity includes the freedom of Cosserat elasticity as well as the freedom
of the microstructure to deform as well as translate and rotate; it requires 18 elastic constants
for an isotropic material. Microstretch elasticity [39] is a subset of microstructure elasticity that
incorporates the freedom of Cosserat elasticity as well as sensitivity to gradient of local dilatation.
Sensitivity to dilatation gradient of voids [6] when considered alone, gives rise to size e↵ects in
bending but not in torsion. Such a theory cannot account for the observed size e↵ects in any of
the foams studied, including the present ones. Microstretch elasticity, which includes sensitivity
to gradients of rotation and of dilatation could account for bending e↵ects larger than those of
Cosserat elasticity. In bending or compression, the dilatational component of deformation can be
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expected to cause dilation of individual cells, otherwise the bulk modulus would diverge. Indeed,
local dilation [40] was observed in cells of metal foam in compression. Theoretical framework is not,
however, available to determine dilatation sensitivity independently of rotation sensitivity. A highly
simplified plasticity model based on micromorphic theory was used to study stress concentration
e↵ects in metal foam [42]. A characteristic length for plasticity was determined. This is in contrast
to the present experiments which deal with small strain elasticity and viscoelasticity, and with
inference of all the Cosserat elastic constants. As for elasticity, there is no known analytical solution
by which to interpret size e↵ects via micromorphic elasticity theory.

Generalized continuum freedom can also be explored via waves. Indeed, dispersion of longi-
tudinal waves and cut-o↵ frequencies were observed in foams of the type studied here [41]. In
a micro-structural view, the wave e↵ects were attributed to micro-vibrations of the cell ribs in a
structural view. In a generalized continuum view, the e↵ects were associated with microstructure /
micromorphic elasticity; Cosserat elasticity predicts dispersion of shear waves but not longitudinal
waves.

In summary, substantial Cosserat e↵ects do occur in these foams. E↵ects of dilatation gradient
cannot contribute to observed size e↵ects in torsion; they may contribute to size e↵ects in bending.
As for the determination of all the 9 elastic constants of a microstretch model or all the 18 constants
of a micromorphic model, the requisite exact analytical solutions for interpretation of experiments
are not yet available.

4 Conclusions

Large size e↵ects are observed in the torsion and bending of reticulated open cell polymer foams.
These e↵ects are inconsistent with classical elasticity but can be modeled with Cosserat elasticity.
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