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Abstract

Strong Cosserat elastic effects are observed in a designed composite consisting of unidirec-
tional corrugated tubes in a hexagonal array. The torsional characteristic length is much larger
than the tube diameter. The effective coupling number N approaches its upper bound of 1.
Extremely large size effects are observed, about a factor of 128 in torsion.
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1 Introduction

All physical materials have microstructure, but for many practical purposes it is useful to represent
them as continuous media. Continuum theories with different degrees of freedom are available. An
early theory of Navier [1], known as uniconstant elasticity, was based on a a theory assuming that
forces act along the lines joining pairs of atoms and are proportional to changes in distance between
them. It only allowed one elastic constant, a modulus. The theory was abandoned since it predicted
a Poisson’s ratio of 1/4 for all isotropic materials and experiments disclosed a range of Poisson’s
ratios. The currently accepted classical theory of elasticity has two independent isotropic elastic
constants and allows for Poisson’s ratios in isotropic materials to range from -1 to 1/2. Cosserat
elasticity has more freedom than classical elasticity. The Cosserat theory [2], (with inertia terms
called micropolar [3]) incorporates local rotations of points and a couple stress (a torque per unit
area) as well as the translation and force stress (force per unit area) of classical elasticity; there
are six independent isotropic elastic constants. A simpler variant presented by Koiter assumed
that all the macrorotation and microrotation vectors are equal. This corresponds to N = 1, or
equivalently κ approaching infinity in Cosserat elasticity. The Koiter [4] variant is called couple
stress elasticity in which there are two characteristic lengths in addition to the classical constants:
four isotropic elastic constants. The microstructure elasticity theory of Mindlin [5], also called
micromorphic elasticity, has more freedom than classical or Cosserat elasticity; it allows points to
translate, rotate, and deform within the media. This adds a high degree of complexity; for an
isotropic solid, there are 18 micromorphic elastic constants compared with 6 for Cosserat elasticity
and only 2 for classical elasticity.
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The physical origin of the Cosserat couple stress is the summation of bending and twisting
moments transmitted by the structural elements or ribs in materials. The local rotation in the
Cosserat continuum corresponds to the rotation of the structural elements. Forces and moments
are also considered in the classic analyses of foam by Gibson and Ashby [6] in which classical elastic
moduli were determined; effects of rotation gradients were not considered.

Figure 1: Composite containing unidirectional tubular inclusions with increment of force dF and
increment of moment dM.

The constitutive equations for an anisotropic [3] Cosserat elastic solid are as follows.

σij = Cijklεkl + Pijklφk,l, (1)

mij = Qijklφk,l + Pijklεkl, (2)

in which Cijkl is the elastic modulus tensor, εkl is strain, σij is stress (symmetric in classical elastic-
ity but asymmetric here), and the usual Einstein summation convention assumed in which repeated
indices are summed over. mij is the couple stress tensor, moment per unit area, asymmetric in gen-
eral. Pijkl and Qijkl are Cosserat elastic constants that provide sensitivity to local (micro) rotation
gradient. The Cosserat microrotation vector φi is kinematically distinct from the macrorotation
vector ri = (eijkuk,j)/2 associated with the motion of neighboring points.

The isotropic form [3] of the constitutive equations is as follows.

σij = 2Gεij + λεkkδij + κeijk(rk − φk) (3)

mij = αφk,kδij + βφi,j + γφj,i (4)
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There are six independent isotropic Cosserat elastic constants λ, G, α, β, γ, κ. Physically, λ,
a Lamé constant from elasticity theory, is an elastic modulus component which couples a strain
in one direction with stress in a perpendicular direction with all other strains held constant. The
physical meaning of G, shear modulus, is the resistance to shear deformation. α, β, and γ provide
sensitivity to rotation gradients while κ is a modulus which quantifies the coupling between macro
and micro rotation fields [29]. The following technical constants, beneficial for physical insight,
are obtained from them. As in classical elasticity, several are interrelated; specifically of the seven
below, the classical relation between E, G and ν applies.

Y oung′s modulus E =
G(3λ+ 2G)

λ+G
(5)

Shear modulus G (6)

Poisson′s ratio ν =
λ

2(λ+G)
(7)

Characteristic length, torsion `t =

√
β + γ

2G
(8)

Characteristic length, bending `b =

√
γ

4G
(9)

Coupling number N =

√
κ

2G+ κ
(10)

Polar ratio Ψ =
β + γ

α+ β + γ
. (11)

Cosserat elasticity has the following consequences. A size effect is predicted in the torsion [7]
and bending [8] of circular cylinders of Cosserat elastic materials. Slender cylinders appear to be
stiffer than expected classically. A similar size effect is also predicted in the bending of plates. No
size effect is predicted in tension or compression. The stress concentration factor for a circular hole
is smaller than the classical value, and the small holes exhibit less stress concentration than larger
ones [9]. However, classical elastic solids do not exhibit size effects in torsion or bending; structural
rigidity goes as the fourth power of the radius. Also, in classical elasticity, stress concentration is
independent of hole size.

Cosserat elastic effects have been observed experimentally. Size effects observed to occur in
torsion and bending of closed cell foams [10, 11], open cell foam [12], negative Poisson’s ratio foam
[13], and compact bone [14] are consistent with Cosserat elasticity. The apparent modulus increases
substantially as the specimen diameter becomes smaller, in contrast to the prediction of classical
elasticity. Large material microstructure size does not guarantee Cosserat elasticity: a composite
containing aluminum beads in an epoxy matrix was tested for such effects and found to behave
according to classical elasticity [7]. Although Cosserat effects are not guaranteed in materials with
large microstructure, the work presented here will demonstrate that these materials can not only
demonstrate the aforementioned effects, but also show effects of large magnitude.

The Cosserat characteristic length was determined in a two dimensional polymer honeycomb
[15]. Full field measurements of deformation reveal non-classical elastic effects that are consistent
with Cosserat elasticity. Warp of a bar of rectangular cross section in torsion is predicted to be
reduced in a Cosserat elastic solid [16]. The corresponding non-classical strain field was observed
in a compact bone [17]. Deformation spills over into the corner region where it would be zero in
classical elasticity [18] as revealed by holography. This improves strain concentration. Strain at the
corner entails asymmetry of the stress as predicted by Cosserat elasticity. The reduction of warp

3



deformation has been observed via holography [19]. As for plastic deformation, rotational plastic
deformation mechanisms were interpreted via gradients in a micropolar continuum theory [20].

The present research deals with experimental study of size effects and Cosserat elasticity in
a designed composite consisting of unidirectional corrugated tubes and silicone rubber matrix in
hexagonal arrays. Each tube is intended to carry a force and a moment as shown in Figure 1.

2 Methods

2.1 Materials and experiment

Corrugated nylon tubing, manufactured by Waytek [21], with inner diameter of 3.18 mm (0.125
in), outer diameter of 6.7 mm, and density of approximately 0.26 g/cm3 was used. Lengths of
tubing were cut with a hot wire cutter such that the length of the array of tubes was three times
longer than the average diameter of the sample. The corrugated tubing came coiled and was
straightened by running a brass tube with an outer diameter of approximately 3 mm through 20
cm lengths of the tubing and heating it in a convection oven at 105◦C for two hours. After two
hours the straightening apparatus was removed and allowed to cool for 15 minutes before removing
the straightened section of corrugated tubing. Four samples were created and tested beginning
with a single tube, followed by an array of three tubes arranged in a triangular formation, then
seven tubes arranged in a hexagonal pattern, and finally 19 tubes again arranged in a hexagonal
formation. The largest of these specimens is shown in Figure 2a as well as its hexagonal array
cross-section, Figure 2b.Because the broadband viscoelastic spectrometer (BVS) used for testing
could not accommodate larger specimens than the one in Figure 2a, the number of specimens
was limited to four. A fifth datum was obtained for the asymptotic modulus in the absence of
gradients. This was done by a compression test for axial deformation and by a composite analysis
for shear deformation. The lengths of tubing were glued together with approximately 1 mm spacing
between each tube using Loctite clear silicone sealant. The entire sample was allowed to cure for
two days per product directions prior to testing. The resulting specimens had an average density
of 0.46±0.07g/cm3. After curing, the ends of the samples were sanded flat using metallography
sanding wheels. Circular end pieces larger than the diameter of the sample were cut from 0.6 mm
thick aluminum plate and cemented to both bases of the sample using cyanoacrylate (Loctite 401)
over the entire surface. Pressure was applied to the end pieces to ensure good adhesion. A catalyst
was applied to the surfaces to reduce the amount of cement used and to improve the bond.

These specimens were tested for torsional and bending rigidity using a broadband viscoelastic
spectrometer (BVS). This instrument makes use of a dual Helmholtz coil acting upon a magnet
attached to the specimen to generate torque. The coil spacing is smaller than the larger specimens
so a short alumina stalk with a magnet on the end was fixed to one of the aluminum end plates.
Because the rigidity of the specimens was not sufficiently different from the rigidities of the alumina
stalk or cement bond between stalk and end plate, a mirror was fixed to the edge of the face
opposite of the alumina stalk on the same end plate. This placement eliminated any measured
loss of motion from the magnet to the specimen. The magnet was calibrated using the BVS and
a lock-in amplifier. The magnetic calibration constants of this particular magnet were obtained
by testing a 6061 aluminum alloy rod of known elastic properties; the calibration constants were
8.18 ∗ 10−6 Nm/A in torsion and 1.33 ∗ 10−5 Nm/A in bending. The free end plate of specimens
was cemented to a steel adapter which was screwed into a 25 mm thick steel rod for holding the
specimen inside the BVS. Prior to testing, viscoelastic strain was allowed to recover overnight to
enable stable measurements. The specimen was lowered into the BVS such that the magnet was
centered in the Helmholtz coils of the BVS. The lower limit on specimen size was limited to the
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(a) (b)

Figure 2: (a) Largest specimen of aligned corrugated tubing and silicone rubber matrix composite.
(b) Cross section of largest sample.

diameter of an individual corrugated tube.
Deformation was measured using the BVS via a semiconductor laser beam reflected from the

mirror attached to the lower aluminum end plate onto a four quadrant silicon light detector. Prior
to each test the silicon light detector was calibrated by aligning the laser beam so that its position
could be measured. The light detector was moved a known amount in either the horizontal or
vertical direction, for torsion and bending respectively, using a calibrated stage. The resulting
measurement of output voltage per change in position, measured in µm, was used as the beam
position calibration constant (V/µm).

To test the specimens a sinusoidal signal with a frequency of 1 Hz, well below any resonant
frequencies, from a function generator (SRS Model DS345) was input to the torsion Helmholtz coil.
Because the same frequency was used for all specimens, viscoelastic effects are decoupled from the
size effects to be probed. The torque signal was obtained as the voltage across a 1Ω resistor in
series with the coil to eliminate effects of inductive reactance from the coil. The torque signal vs.
angular displacement signal was displayed on a digital oscilloscope (Tektronix TDS3014B) using DC
coupling. The torque and angle signals were displayed as a Lissajous figure and used to calculate
the modulus of the specimen. The maximum strain during testing was less than 1.1 ∗ 10−7. This
is will within the range of linearity for this material. For bending, the light detector mode was
switched to vertical detection and the beam position calibration constant was adjusted accordingly;
the driving signal was input to the orthogonal bending Helmholtz coil.

Compression tests were conducted to ascertain the behavior of the largest specimen in the
absence of macroscopic gradients of strain and rotation. This was done using a servo-hydraulic
load frame driven at a sinusoidal frequency of 1 Hz. The output stress and strain signals were
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displayed on a digital oscilloscope as a Lissajous figure so that the modulus of the specimen could
be calculated. Poisson’s ratio was also determined using compression testing by measuring the
transverse strain with a micrometer.

2.2 Analysis and interpretation

Size effect results were interpreted using available exact analytical solutions involving Bessel func-
tions for torsion and bending of a Cosserat elastic solid andapproximating the cross-section of each
specimen as circular. Isotropic solutions are used because no anisotropic solutions are available.
Elastic constants obtained are technical constants. This is in the same vein as classical constants
obtained from quasistatic tests rather than ultrasonic tests on anisotropic solids. Size effects mani-
fest as higher effective moduli in slender specimens than thick ones. The classical torsional rigidity
is M

θ = G[π2 r
4]. For Cosserat elasticity in this regime, M

θ = G[π2 r
4](1 + 6(`t/r)

2). G is the true
shear modulus in the absence of gradients; M is applied moment and θ is angular displacement.
This expression is exact for N = 1; for other N the exact solution involves Bessel functions [7]:

Ω = (1 + 6(`t/r)
2)[

(1− 4Ψχ/3)

1−Ψχ
], (12)

in which χ = I1(pr)/prI0(pr), p
2 = 2κ/(α+ β + γ) and I0 and I1 are modified Bessel functions of

the first kind. The constant Ψ only has an appreciable influence for very small radius specimens.
Because of the limitations of testing large samples imposed by the size of the BVS an asymp-

tote of torsional rigidity vs. diameter could not be determined directly from this method. The
asymptotic value of G was calculated from durometer measurements upon a separate cured block
of silicone and from the Reuss relation in which tubes and silicone rubber were considered as con-
stituents. `t and the value N were determined by fitting the entire set of experimental data to Eq.
12 using MATLAB. In order to fit Eq. 12 to the data, the thermodynamic lower bound of zero was
applied to `t, and an upper bound of 1 was set for N . To accelerate convergence, an upper limit of
100 mm was chosen for `t.

For bending, the classical bending rigidity is M
θ = E[π4 r

4]. For bending of a Cosserat elastic
circular rod and radius r, the rigidity ratio is approximately

Ω ≈ 1 + 8(`b/r)
2 (1− (β/γ)2)

(1 + ν)
. (13)

The expression is approximate for small bending characteristic length `b << r. The exact form,
involving Bessel functions, is

Ω = 1 + 8(`b/r)
2 (1− (β/γ)2)

(1 + ν)
+

8N2

(1 + ν)
[

(β/γ + ν)2

ζ(δa) + 8N2(1− ν)
] (14)

with δ = N/`b and ζ(δr) = (δr)2[((δr)I0((δr))− I1((δr)))/((δr)I0(δr)− 2I1(δr))].
Similarly for bending, the asymptotic value of E was impossible to determine via BVS ex-

perimentation because of size limitations. Consequently, compression testing was performed to
determine the value. Longitudinal compression testing was conducted to calculate Poisson’s ratio
for bending calculations. The remaining parameters, N , β/γ, and `b, were determined by fitting
the entire set of experimental data for bending to Eq. 14 using MATLAB. To allow fitment, the
thermodynamic lower bound of zero was used for `b; similarly, the allowed range for N is from zero
to one and β/γ from -1 to 1.
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3 Results and discussion

Density of corrugated tubing specimens composed of more than one tube was independent of size to
within ten percent. The single tube specimen was about half of the density of the larger specimens
on average. The discrepancy in density was cause by the silicone rubber matrix in samples composed
of more than one segment of tubing.

Results of torsion size effect studies are shown in Figure 3.

Figure 3: Size effects for corrugated tubing specimens in torsion. Points are experimental. Curve
is theoretical for G = 890 kPa, `t = 17.3 mm N = 0.996 and Ψ = 1.5. Classical elasticity (`t = 0)
predicts constant Ω = 1 independent of diameter.

For corrugated tubing specimens in torsion, G = 890 kPa, `t = 17.3 mm N = 0.996 and Ψ =
1.5 when Poisson’s ratio is 0.3. The goodness of fit was R2 = 0.99. The maximum size effect in
torsion was Ω = 128.8. The asymptotic value of G was located by using a durometer to determine
the modulus of the silicone matrix materials used in the composite. The inferred Young’s modulus
of the silicone was approximately 1 MPa so the shear modulus is 0.33 MPa. By measuring the
volume fraction of the silicone rubber matrix and using the Reuss relation, the asymptotic shear
modulus for the composite was calculated to be 0.89 MPa.

Results of bending size effect studies are shown in Figure 4.
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Figure 4: Size effects for corrugated tubing specimens in bending. Points are experimental. Curve
is theoretical for β/γ = 0.995, N = 0.999, E = 14.2 MPa, and `b = 7.91 mm. Classical elasticity
predicts constant Ω = 1 independent of diameter.

Initial fitting of the data using the asymptotic value for E found from compression testing at 1
Hz, 14.2 MPa, and the Poisson’s ratio 0.0±0.1 found from compression testing yielded poor results.
This is attributed to the single measurement of Poisson’s ratio from longitudinal compression testing
and the anisotropic structure of the specimens. The isotropic analytical solution links Poisson’s ratio
to the size effects; this is not expected in anisotropic solids. When subsequent fits were performed
using an asymptotic value for E of 14.2 MPa and allowing Poisson’s ratio to vary in addition to the
other fitting parameters and elastic constants, ν = 0.3, `b = 7.91 mm, β/γ = 0.995, and N = 0.999.
The goodness of fit was R2 = 0.96. The largest size effect in bending under these conditions was Ω
= 2.33. Because the composite specimens were anisotropic the characteristic length of bending was
independent from the characteristic length of torsion. Also due to the anisotropy of the specimens,
the coupling number, N , from torsion is not necessarily applicable to bending results which is why
the N in this fit was allowed to varied. However, the N calculated from torsion experiments is very
similar to the N calculated from bending experimentation.

The material has hexagonal structural symmetry, so it is elastically anisotropic. Consequently
the properties obtained from the experiments are technical constants, not tensorial constants. This
is analogous to materials testing in classical elasticity in which it is not always practical to in-
corporate a full anisotropic interpretation. The elastic symmetry of such a hexagonal structure is
transversely isotropic which means properties in the transverse directions are independent of direc-
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tion. That provides some simplification in the classical case; nevertheless no analytical solutions
for Cosserat elasticity are known for such symmetry. Therefore the isotropic solutions are used and
the elastic constants are interpreted as technical constants. Anisotropy cannot be a confounding
variable because there are no size effects in classical elasticity even in the anisotropic case [23].

As for comparison with theory, no known analysis is available for the structure of the present
material. Cosserat elastic constants have been calculated from theoretical homogenization of several
lattices with straight ribs [24] [25] [26]. These are stretch dominated so the effects of rib bending
and torsion are much smaller than the effects of rib extension. The characteristic lengths of such
lattices are much smaller than the cell size. Two dimensional chiral honeycomb lattice structures
analyzed as Cosserat continua disclosed bend dominated behavior in which Young’s modulus is
governed by rib bending. These honeycombs have large N approaching its upper bound 1, and
characteristic length ` comparable to the cell size [27]. Sigmoid curvature of the lateral surfaces of
bent square cross section bars was analyzed via Cosserat elasticity [28]. Such curvature requires
β/γ 6= −ν and indeed it was observed in conventional as-received open cell foam. Although no
formal measurements were made with the negative Poisson’s ratio foam (for which β/γ ≈ −ν),
visual observation of such bending of a square cross section bar suggested any sigmoid curvature
must be small.

In summary, large size effects are observed in the torsion of aligned corrugated tubing and
silicone rubber matrix composites. The effects are consistent with Cosserat elasticity. Results do not
necessarily exclude the presence of additional freedom such as that incorporated in micromorphic
/ Mindlin microstructure [5] theory or in microstretch elasticity [22].

4 Conclusions

Large size effects are observed in the torsion and bending of aligned corrugated tubing and sili-
cone rubber matrix composites. These effects are inconsistent with classical elasticity, but can be
modeled with Cosserat elasticity. The torsional characteristic length is much larger than the tube
diameter.
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