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Bounds on the complex bulk modulus of a two-phase viscoelastic
composite with arbitrary volume fractions of the components

L.V. Gibiansky ! and R. Lakes?
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The complex bulk modulus of an isotropic two phase composite material is analyzed in terms of the complex moduli
of its phases. Bounds are developed for the complex bulk modulus k. = x| + ix! of the composite with arbitrary
volume fractions of phases. These bounds enclose a region in the complex plane (x,,x.) or in a stiffness loss map
{|x.], k) /. = tand). The frequency range is assumed to be well below frequencies associated with the inertial terms;
the acoustic wavelength is much larger than the inhomogeneities. The bounds are obtained from the bulk modulus
bounds by Gibiansky and Milton (1993, Proc. R. Soc. London A440, 163-188) for the two phase composites with
Jixed volume fractions of phases. The composite bulk modulus is shown to be constrained to a lens shaped region of
the complex (x,x.) plane by the outermost pair of several circular arcs, which depend on the component material
properties. The bounds are investigated numerically to explore conditions which give rise to high loss combined with
high stiffness. Composite microstructures corresponding to various points on the circular arcs are identified.

1. Introduction

Viscoelastic materials are used in the damping
of mechanical vibration and in the absorption of
sound. The loss tangent tan d, or tangent of the
phase angle J between stress and strain in sinu-
soidal loading, is a useful measure of material
damping. Common structural materials such as
steel and aluminum, however, have small loss
tangents. Conversely, the materials with high loss
tangents tend to be compliant, hence not of struc-
tural interest. The future development of strue-
tural materials with a combination of stiffness
and loss is expected to be aided by understand-
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ing of the bounds on the behaviour of viscoelas-
tic composite materials,

Such bounds allow to predict the range of the
properties of new composite materials without
making costly experiments, they show the limits
of improving the composite properties by chang-
ing the composition and the microstructure. The
structures that achieve the bounds are important
for optimal design problems.

There exists an extensive literature dealing with
the bounds for the elastic composites (see Hashin
and Shtrikman (1963), Avellaneda (1987), Cher-
kaev and Gibiansky (1993a) and references therein ).
Similar problems for the viscoelastic compos-
ites are more difficult to solve and the bounds
that have been obtained were rather wide (see
Hashin (1965, 1970), Christensen (1969), Ros-
coe (1969, 1972) and references therein) until
the new variational principle for the description
of the material with complex moduli has been

suggested by Cherkaev and Gibiansky (1993b)
(see also Milton (1990)). It was implemented
by Gibiansky and Milton (1993) for bounding
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of the viscoelastic bulk modulus of the two-phase
composites with prescribed proportions of phases.
We use these results to bound the bulk modu-
1us of a composite with arbitrary proportions of
phases. Bounds on the complex bulk modulus

.of a material allow to estimate the dissipation in

the composite under the action of the hydrostatic
strain or stress fields.

Tt is well known (sce, for example, Hashin
(1970) and Christensen (1971)) that the be-
haviour of the viscoelastic materials at sufficient-
ly low frequencies of oscillation can be described
by the equations that formally coincide with the
usual equations of elasticity but with complex
strain and stress fields and complex moduli. The
properties of the elastic isotropic material can be
described by a pair of moduli. In engineering lit-
erature the Young’s modulus E and the Poisson’s
ratio v are used to characterize the properties of
the material, in mathematical literature the bulk
x and shear g moduli are used to describe the
properties of an isotropic body. Both descrip-
tions are equivalent and the relations between
these pairs of moduli are given by the formulas’

Sxcu 3k —2u

TS V= 23k + p1)’ a.n
or
E E
=30y AT aasey O

(see Christensen (1979), for example). Note also
the helpful formula

_31-2)
=30+

For the viscoelastic material all these moduli
may have complex values and depend on the fre-
quency of oscillations. We assume that the fre-
quency is fixed and therefore the properties of
the original materials are fixed as well. h

In this paper we study the properties of the
isotropic composite prepared from two isotropic
viscoelastic materials. We are interested to find
the range of the moduli which can be achieved
by varying the volume fractions of the compo-
nents and the geometry of the composite, i.e.,

U= cK, (1.3}

the disposition of the phases in the composite.
Such problem is known as a Gy-closure prob-
Jlem if the proportions of the components in the
composite are fixed, or as a G-closure problem if
these proportions are arbitrary (see, for example,
Lurie and Cherkaev (1986), Kohn and Milton
(1988), Cherkaev and Gibiansky (1992) and
references therein). As we already mentioned,
the properties of the isotropic viscoelastic mate-
rial are characterized by two complex numbers
(for example, by the bulk x and shear 4 mod-
uli). To describe the set of the properties of all
isotropic composites means to describe such set
of pairs (x., ) that each point of this set cor-
responds to some composite and vice versa, the
pair of the moduli (x., u) of any composite
lies inside this set. It is a very difficult problem;
a similar problem has not been solved even for
the purely elastic composite when the properties
of the isotropic material are described by only
two parameters (real elastic moduli).

Here we restrict our attention only to the bounds
for the complex bulk modulus. From this point
of view each composite is characterized by only
one complex number, namely by its bulk modu-
Ius x. In the complex bulk modulus plane each
composite corresponds to a point. If we fix the
volume fraction f of the first phase and vary
the structure of the composite over all possible
microgeometries, this point traverses the region
that we call Gy (x) set. If in addition we vary vol-
ume fraction f this set G () covers the region
that we call G(x ) set
G(x) = Ugsepo,11Gr (k). (1.4)

We are interested to find the estimates on this
G(x) set. Namely, we look for the bounds that
provide the limit on the ma)&imal extent of this
region. They define the set G(Kl that contains
G(x), ie., such that G(x) C G(x). We also
study the attainability of these bounds, i.e., look
for the particular composites that possess the ex-
tremal bulk modulus.

The question of the minimal extent of similar
to G(x) region has been explored by Chen and
Lakes (1993) in the complex Young’s modulus
plane. They have plotted trajectories in the com-
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plex plane of Young’s moduli associated with
particular composite geometries including those
which are extremal in the context of elastic mod-

ulus versus volume fraction. We show that some’

of those microgeometries also are extremal in
the context of viscoelastic (i.e., complex) bulk
modulus bounds.

In the paper by Gibiansky and Milton (1993)
the bounds for the G (x) set, i.e., the set of the
complex bulk moduli of the isotropic viscoelastic
two-phase composites with fixed volume frac-
tions of the phases were obtained and some mi-
crostructures which possess the extremal visco-
elastic properties-were found. We utilize these re-
sults in the present work to find the bound on the
complex bulk modulus of the composite with ar-
bitrary volume fractions of the phases and to find
the microstructures that achieve these bounds.

Although we found the structures of the com-
posites thq} correspond to some boundary points
of the set G (k) (and therefore lie on the bound-
ary of the G (k) set as well) it is not clear whether
the set G(x) of all possible bulk moduli of two-
phase composites coincides with the set G(K)
that we found.

Throughout the paper we use the notations a’
and &” for the real and imaginary parts of the
complex variable a = a’ + ia”, i = v—1, the
star in @* = a’ —ia” denotes the complex con-
jugate to g, and |a| = /(a')? + (@”)? = Vaa~,
arg(a) = arctan(a’/a’) denotes the absolute
value and the argument of a = |a|exp(iarg(a)).
Symbols xy, ¢y, 1, p and ., i, denote the com-
plex bulk and shear moduli of the first and the
second phases and the composite, respectively,
and Arc(ay, on, a3) denotes the arc of a circle
in the complex plane joining the points «; and
a; that when extended passes through «s. One
can check that such an arc is drawn by the point
a(y)

1—y
ot 1/{e2 —a1) + 7/{a1 — @3)
yoy + (1 -7z
7(L=y) oy —02)?

T U -7)er + paz—oa3° (1.5

aly) =

as the parameter y varies along the real axis in
the interval [0,1].

2. Bounds on the
composite

lex bulk modulus of the

)

To find the bounds we use the following state-
ment that was proved by Gibiansky and Milton
(1993):

Statement A: The effective bulk modulus of
the two-phase composite with prescribed volume
fractions f and (1— 1) of the first and the second
phases, respectively is shown to be constrained
to a lens-shaped region in the complex bulk mod-
ulus plane bounded by the outermost pair of four
circular arcs

) = fra+ (1= iy
SO =) —k)?
(1= xy + frg + ¥y ()
n=12734. (2.1)

Here f € [0, 1] is fixed, y varies along the
real axis in the interval [0, 1] and the functions
y'® (7) are given by the formulas

Y0 G) = 30w + (1= D), 22)

YOG = 30/ + =) (23)

y®u) = -
o (/3 4K (/3 + )]
x [7(4p2/3 + x1)
+ (=9 @Em/3 4+ x)171(2.4)

yP @) = —x,

+ [(4u1/3 + 162) (4p2/3 + %2) ]
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Fig. 1. The bounds for the bulk modulus of an isotropic

composite of two isotropic phases, x; = 100, 1 = 46

and k; = i65, #» = i30. (The following notation is
used: Gy = —4w/3, G = —4w/3, C = —}g\(ﬂh
D = kD (f,7.); left-hashed denotes GfA(;c), Kk € Gy (K)
for given f; dotted denotes G (%), k« € G{x) for arbitrary
f; right-hashed denotes Y.

x[7(4p2/3 + 12)

F (1= (/3 +12)]7H2.5)

One can check (se¢ Appendix) that the above
description is equivalent to the one given in the
original paper and that the lines 2.1 ( f is fixed,
y € [0,1]) arereally the arcs in the complex bulk
modulus plane. These arcs are plotted in Fig. 1
and are denoted there as curve 5 (arc (2.1) n =
1), curve 6 (arc (2.1) n = 3), curve 7 (arc (2.1)
n = 4), and curve 8 (arc (2.1) n = 2). Fora
fixed volume fraction f = 0.5 the bulk modulus
k. is confined to the set G (x) bounded by the
outermost of the arcs (2.1), n = 1,2,3,4. While
f changes in the interval [0, 1] this set draws
the region Gi(x). For this example the bound of
the G(x) set is drawn by the angular point .
of the set G ¢ (x) and by the internal point D of
arc 8. For any fixed y = 7. the set of values of
the function k@ (f, y.), while f € [0, 1], is

Arc(xy, K2, A), A = =y@ (y.). It is drawn by
the point B = x¥ (f, y.) while f goes from
zero to one. To find the bounds we draw the
lines Arc(Gy, Ga, o) (curve 1), Arc(Gy, Gz, 0)
(curve 4), Arc (Gy, G2, k1) (curve 2),3nd Arc
(G1, Ga, Kk3) (curve 3). The bounds of G(x) set
are given by Arc(x1, k2, C) and Arc(xy, k3, G2)
of two circles. The first of them contains the set
Y, the other one has only one common point G2
with it.

Note that all four arcs (2.1) intersect at the
points

1-5
1/ (2 —11) + 3F/Gry + A1)
= fr + (1= ez

 fU-Na—m) 2.6)
I=kr + fra + 4 /3

Klx = K1 +

and

K2 = K2

F T - ) + 30 = 1)/ Bk + 4m)
= fr+ (- e

F =) = 1) 27
R T T

because y ™ (0) = 4uz/3, v (1) = 4p/3 for
every n = 1,2,3,4, see (2.2)-(2.5). Arc (2.1),
n = | when extended passes also through the
pointx, = fix; + f2k2) (wherey = co) and can
be described as Are{Kix, K., Kz ). Similarly, arc
(2.1), n = 2 when extended passes through the
point Ky = (fi/K1 + fr/i2)”" (where y = 00)
and can be described as Arc(K1., Ko, Kz ). ATCS
(2.1), n = 3,4 when extended pass through the
points x; and k;, respectively (where y = 0).
They can be described as Arc(ky,, Kz, i) and
Arc(Kix, Kox, K%l.

We denote as G (i) the lens-shape region that
is defined by the outermost 2‘\air of the arcs (2.1)
(see Fig. 1 where the set Gy (k) is drawn and
lines 5-8 represent the arcs (2.1)). Statement A
means that this set contains the set Gr(x). If

|
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we change the parameter f in the interval [0, 1]
this set changes its position in the complex bulk
modulus plane (see Fig. 1/1 and covers the region
G(x), G(r) = UreroGr (k).

It is clear that G(x) C @(x), i.e., this union
contains the set G(x) and.gives us the desir-
able bound on the complex bulk modulus of the
composite with arbitrary volume fractions of the
phases. The boundary points of the set G(f\) are
formed by the boundary points of the sets G (x)
for some values of th& parametér 7, 1.¢., they
can be described by the formula (2.1) for some
n = 1,234 f € [0,1],and y € [0,1]. To
find the desirable bounds we find the track that
each of the arcs (2.1), y € [0, 1] draws while f
varies from zero to ong. The union of all such
tracks gives us the set G(x) (see Fig. 1).

Let us first formulate the result and then give
the explanation. It turns out that the bounds
can be described in the pure geometrical way. In
what follows we refer to Fig. 1 where the values
of the moduli are chosen as x; .= 100, g, = 46,
x; = 165, and y, = i30. Such values of the
moduli look artificial but we chose them only
because they are convenient for the illustration
disposition of all circles and arcs that we use in
the procedure of constructing the bounds.

Namely, to find the bounds we should do the
following. First, we put on the complex bulk mod-
ulus plane the points x, k3, Gy = —4u; /3, and
Gy = —4u,/3 and denote as O the origin and
as co the infinity points of this plane. Then we
draw the lines Arc(Gy, G,, oo) (itis the straight
line connecting the points G, and G, curve 1 in
Fig. 1), Arc (Gy, G, 0) (curve 4), Arc(Gy, G,
¥, ) (curve 2), and Arc(Gy, G, k) (curve 3).
Comparing (1.5) and (2.2)~(2.5) one can see
that these arcs are the sets of the values of the
functions —y™ (y), n = 1,2,3,4 respectively
while y € [0, 1]. Let denote as Y the set defined
by the outermost pair of these four arcs. These
arcs 1, 2, 3, 4 and the set Y have no immedi-
ate physical meaning although they play an im-
portant role in the procedure that we describe.
The bounds on the complex bulk modulus of the
composite with arbitrary volume fractions of the
phases are given by two arcs (Arc(ky, x, C)

and Arc(xy, k3, G ) inFig. 1). They pass through
the points x| and «; of the original materials and
when extended to circles touch the set Y. One of
these circles (circle ;—-C—x; in Fig. 1) contains
this set, the other one (circle ;-G -k; in Fig. 1)
has only one common point with it.

Indeed, as we show, to define the bounds we
need to find the union of the sets of the values
for the functions x™ (f, y), n = 1,2, 3,4 while
f € [0,1], y € [0,1]. For any fixed y = p.
the set of the values of the function x ™ (f, 7,),
f€[0,11 is Arc(xcq, K2, =y (3,)), compare
(1.5) and (2.1). (In Fig. 1 see Arc(xy, K2,A4),
A = —y@ (y,) that is drawn by the point B =
1@ (f, y.) while f goes from zero to one.) The
union over y. € [0, 1] ofall such arcs defines the
track of the corresponding arc (2.1). By repeat-
ing the same procedure for all n = 1,2,3,4 we
clearly end up with the bounds described above.

In other words, any arc that is described by
(2.1), f € [0, 1], for some » and some ¥., passes
through the points x; and x, and when extended
crosses the Y set. The bounds are given by the
outermost pair of all these arcs.

Note the two possible variants how the bound-
ary circle may touch the Y set. It may pass through
one of the corner points of this set, say G, =
—44i5/3 as in Fig. 1. In this case the correspond-
ing bound of the set G (x) is drawn by the corner
point k3, of the set é\f The boundary circle may
also touch the set Y in some internal point C of
their boundary arc. Then the arc of this circle
connecting the points #; and x; is drawn by the
internal point D of the boundary arc of the set
Gy, see Fig. 1. '

Although the description of the results is sim-
ple, it is not so easy to find the exact formulas.
Hereé we give the results, the reader can find the
details and calculations in the Appendix. To find
the bounds on the effective complex bulk modu-
lus we should first calculate the values ¥., Vs, P+
and ¥.. by using the formulas

—By +4/B? - 44,C,

P = 7i ,
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—B,— /B2 —44,C

Voxe = 24, )
if Dy =B}-44:C, >0, 4 #0;

Yo = 7o = —Ci/B1, if A =0

9. and .. are undefined

if D;<0, (2.8)
where
' 4w ﬂz)”
A= 3 (Kl —xy )’
g o (ta+t 8#2/3>”
1= = 2 .
c, = (Bri/At )+ 4/12/3))" (2.9)
e () — 2) (s — 2)
and
_ —B /B340
P = 24, :
 —B— B -44G
Vix = 4, 5

if Dy=B}—44,C;>0, A#0;
P = F=—CofBs, if A=0

3, and 7. are undefined

if Dy<0O, (2.10)
where

301/ = Ym)Y"
4= (4(1/xl—1/xz>> ’
[1/1 + 1/x2 +3/(2p2) ] "
B = ( T - 1) ) ’
LGy = {4/ Gr) + /) 11/ + 3/ (4]

x [(1/Ky = I/K;)

x (1/p1 - 1/p2)1-13" (2.11)

Then on the complex bulk modulus plane we
should enscribe

Arc(x, K2, —4i1/3),

Arc(ky, K2, —4i2/3),

Arc(xy, ko, -yV (), i e l01],
Arc(xy, k2, =3P (7)), i s € 10,11,
ArcGes, k0, 5@ @), i %€ 10,1]
and

Arc(ky, 13, =3P Gan)), i T €10, 1]

The outermost pair of these arcs gives us the

‘bounds of the G () set, that were described above,

see Fig. 1.

3. The microstructures that possess the extremal
complex bulk modulus .

The natural way to check whether the obtained
bounds are exact is to try to find the mi_cro;truc—
tures that possess the extremal properties in the
sense that their bulk modulus corresponds to the
pounds. In this section we describe such struc-
tures with the bulk modulus that ligs on the boun-
dary of the G(x) set. Because any of the arcs
(2.1) may form the bound itis interesnpg to find
the structures corresponding to the points on all
of these lines. In order to use the results on the
effective properties of the elastic structures we
recall the correspondence principle, see for ex-
ample Hashin (1970): “The effective complex
moduli of a viscoelastic composite are obtained
by replacement of phase elastic moduli by cor-
responding phase viscoelastic com;_)lex mo@uh
in the expressions for effective elastic moduli of
an elastic composite with identical phase geom-
etr1¥irst we note that the expression (2.6) for the
Arc(x, K2, —4u1/3) for any fixed value of the
parameter f gives the effective bu}k modulus of
an assemblage of the Hashin—Shtrikman coated

spheres (see Hashin and Shtrikman (1963)) with
the inclusions of the second material into the
matrix of the first one. Therefore each point on
this arc corresponds to the effective bulk modu-
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f=f=1-y
f=f=40-»,
f=f9=1-4, (3.4)

lus of the Hashin-Shtrikman coated spheres as-
semblage for some volume fraction f of the first
phase. Similarly each point on the arc Arc(k,
K2, —4p1/3) (see expression (2.7)) corresponds
to the Hashin-Shtrikman coated spheres assem-
blage with the inclusions of the first material into
the matrix of the second one. Hence if any of
these arcs forms the bound this bound is exact
because there exists composite material that cor-
responds to any point on that part of the bound-
ary. .
As to the other possible boundary arcs, only
several points on these lines correspond to some
known structures. As was shown by Gibiansky
and Milton (1993) there exist composites that
possess bulk moduli x;“ s Kéz), ;cl:”, and Ké‘”
such that '

Klin)(f), = frr+ (1=
FU=N) =)
A=Fra+ fra+ 30 (F)
n=1234, (3.1)

where

L - (£ 400y,

3 \i2 H
@ _4
v (f) = g(fﬂz+ (1= Fw), (3.2)
W) = (4~3f)/11 +%7
yé“(f) = (I_TJ()/“+G+M (3.3)

We do not recall the description of these struc-
tures here, the reader can find the details in the
original paper.

Ify = y. 0r y = 7. (see (2.8) and (2.9))
belongs to the interval [0, 1] then the structures

ng),lc;”,and Ké‘” lieonthearcx™ (f, y) when

respectively. We should however check whether
the volume fractions defined by (3.4) lie in the
interval [0, 1]. It is always true for the composite
xé” , but it gives some restrictions on values y for
the composite K;” (namely, ]%(3) € [0,1] when
y € {3/4,1]) and for the composite !cé‘” (f;(‘” €
[0,1] wheny € [0,1/41). In summary, only two
attainable points ;cle) and Ké“ are known on the
boundary arc kW (f, 7) (¥ = Ju OT 7 = Pus
is fixed, f € [0,1]) if y € [0,1/4], only one
such point %’ is known if y € [1/4,3/4], and
only two such points rcéZ) and KIES) are known if
y e [3/4,1].

If y =5, or 7 = J.. (see (2.10) and (2.11))
belongs to the interval [0, 1] then the structure
with the bulk modulus xlil) lies on the arc k@
(f,y) when

f=1"=1-v (3.5)

We can also use the results of the second sec-
tion to obtain the bounds for the properties of an
anisotropic composite. First note, that for every
anisotropic viscoelastic material with the visco-
elasticity tensor C there exists an isotropic poly-
crystal microstructure that possesses the bulk mod-
ulus

1 13
O =3l Cl =5 (3.6)
— =1

and a polycrystal that possesses the bulk modu-
lus (see Avellaneda and Milton (1989), Rudel-
son (1989), Gibiansky and Milton (1993)).

KR(C) = 3(I:C7' )t

-1
3
3 (Z (C"l)iijj) . (3.7)

ij=1
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Here I is a unit matrix, double dots denote the
scalar product, Ciij; and (C~')y;j; are the ele-
ments of the tensors C and C~!, respectively, in”
the Cartesian basis. Indices V and R refer to the
fact that the expressions (3.6) and (3.7) coin-
cide with the Voigt and Reuss bounds on the ef-
fective bulk modulus of an isotropic elastic poly-
crystal prepared from a monocrystal with the
elasticity tensor C. Therefore for any anisotropic
two-phase viscoelastic composite C the quan-
tities x¥ (C) and xR (C) that measure the re-
action of the composite on the bulk-type stress
or strain field should satisfy the restrictions of
the second section for the bulk modulus of the
isotropic composite. Indeed, we can always pre-
pare from it two isotropic polycrystals with the
bulk moduli k¥ (C) and x® (C) respectively that
should lie within the bounds of the second sec-
tion. The same arguments were used by Gibian-
sky and Milton (1993) to apply the bounds on
bulk modulus to anisotropic composites.

4. Some particular cases and discussion

In this section we implement the obtained re-
sults to study the composite made of particular
phases. We plot these bounds and discuss the
results of numerical calculations.

4.1. Composite of the stiff purely elastic phase
and the soft phase with high damping

Figure 2 shows the numerically obtained bounds
for the composite material, prepared from the
stiff purely elastic phase with moduli x; = 100,
y#y = 46 and the soft phase with high damping

_in shear with moduli 63 = 0.5, u» = 0.5 +
i1.5. The lower bound (curve 1 that coincide
here with the interval of the real axis) is exact
and corresponds to the assemblages of Hashin—
Shtrikman coated spheres where the stiff elastic
phase forms the matrix and the soft dissipative
phase is placed into the inclusions. The dissipa-
tion rate on this curve is equal to zero. Indeed, in
the average hydrostatic strain or stress field the
Jocal fieli in the inclusions is also hydrostatic for

"

K T T

80

40

40

20

Fig. 2. The bounds for the bulk modulus of an isotropic
composite of the stiff elastic phase &1 = 100, 4y = 46 and
the soft viscoelastic phase k3 = 0.5, sz = 0.5 +il1.5.

these structures. Therefore there is no dissipa-
tion because it can occur only in shear deforma-
tion of the second phase, in this example. The up-
per bound (curve 2) has only one point xé” that
is known to be attainable. Curve 3 corresponds
to the Hashin-Shirikman structures where the
stiff inclusions of the first phase are surrounded
by the soft second phase. The outermost pair of
the internal arcs 4, 5, 6, 7 forms the bounds for
the bulk modulus of a composite with fixed vol-
ume fraction f = 0.85 of the first phase. It is
interesting to observe that the soft phase can con-
tribute so much into the whole dissipation of the
composite. This fact have been known for along
time and may be explained by the high concen-
tration of the field in the soft phase. It is consis-
tent with the results of Chen and Lakes (1993).

4.2. Composite of the phases that possess equal
and real Poisson’s ratios

The expressions for the bounds can be greatly
simplified if we assume that the original ma-
terials possess real and equal Poisson’s ratios
v, = vy = v, v" = 0. In this case

M1 = CKy,y My = CKz,
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_30-w)
DK 1)

where ¢ is a real number. It imme 1ately Wi
. d: 1y follows
from (2.8), (2.9) and (4.1) that

A = 4c"/3 =0,
B = (M)
Ky — 12
_ 2(3+4c)( o\
3. Kl—ffz) ’

G = (M !
12¢(x) — x7)2

_3+4 %
4c K| — Kz
”

3+ 4c K \?
+
3 (Kl - Kz) (43)
P = —C1/B,

_ 3 3+4 K2 !
T 8¢ 4c (xl—xz) .
To get the last relationshi i
e e i e e e sty
see, parameter y, depends only on the parameter
R = [/ (k) —x2)].
Similarily from (2.10) and (2.11) we deduce

?__2_6_3+4c( ke
: 3 3 1/"I—I/Kz)

42)

(4.4)

_ 342, 3+4c oo\
3 T3 (Kl—xz)' (4.5)
One can verify that
if Re[—3+sc 3
6+ 8 6+8c]’
then 7« € [0,1] (4.6)
and
if Re [h3+26‘ _ 2¢c
3+4¢’ 3+4c)]’
then %, €[0,1]. @1
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Therefore to find the bounds on the effective
complex bulk modulus of the composite of two
phases with equal and real Poisson’s ratios we
‘need to calculate two quantities y, and 3, by
formulas (4.4).and (4.5). In the bulk modulus
plane we need to enscribe the arcs

Arc(xy, K2, —4p /3),
Arc(xy, K2, —412/3),

Arc(xy, i, =y (), if n€[0,1]

and
Arcliy, K3, ~y@ 3,)), i T € [0,1].

The outermost pair of these four, three or two
arcs forms bounds on G(x) set, i.e., on complex
bu11$ modulus of the composite.

Figures 3 and 4 show the numerical results

that de_scribe the dependence of the bounds on
the Poisson’s ratio of phases. We use here, in-
stead of the bulk modulus plane, the stiff;)ess
loss map, where the absolute value |x| of the
bulk modulus is plotted versus the loss tangent
K" /K, to present the results. These coordinates
are more usual for the applications. First (see
Fig. 3) we take the phases with the bulk moduli
K] = IOQ +10.1, ¥, = 30 + 130 and the Pois-
son’s ratio v = —0.25 (curves 1, 2), v = 0
(curves 3, 4), v = 0.25 (curves 5, 6), v =
0.5 (curves 7, 8). For these values of the pa-
rameters all bounds are exact and correspond to
Fhe Hashin-Shtrikman coated spheres. Increas-
ing tI}e Poisson’s ratio of the phases results in in-
creasing the dissipation. For the extreme value
Vo= 0:5 ‘the-lower-and-upper bounds coincide
and pn1qqely define the relation between the real
and imaginary parts of the composite bulk mod-
ulus. Indeed, the value v = 0.5 for the fixed
bulk‘moduli leads to zero shear moduli of the
phases. For the composite made of such mate-
rials Athe properties are defined by the volume
fractions of the phases (namely, k. = (f/xj +
(1= f)/x2)~') and are independent of the mi-
cio;tructure (see Christensen (1979), for exam-
ple).
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13

4o !

P7a

Fig. 3. The bounds for the bulk modulus of a compos-
ite of phases with the bulk moduli ¥, = 100 + i0.1 and
x; = 30 + 130. The Poisson’s ratios of the phases are real
and equal v = —0.25 (curves 1, 2), v = 0 (curves 3,
4), v = 0.25 (curves 5, 6), v = 0.5 {curves 7, 8). All
bounds are exact and correspond to the assemblages of the
Hashin-Shtrikman coated spheres.

2.6 o1 0.4 0.6 0.8

Figure 4 describes the results for the bulk mod-

uli of the phasesk; = 1004i0.1, % = 0.1+4i0.1,

and the Poisson’s ratiov = —0.25 (curves 1, 2),
v = 0.25 (curves 3,4),v = 0.499 (curves 5,6),
v = 0.5 (curves 7, 8). In these examples the up-
per bounds for all values of Poisson’s ratio prac-
tically coincide whereas the lower bounds differ
only in a very narrow interval around v = 0.5.
All these bounds are also exact and correspond
to the Hashin-Shtrikman structures.

4.3. Dependence of the bounds on the Poisson’s
ratios of the phases

If the constituents have real but unequal Pois-
son’s ratios, the bounds are shifted as shown in
Fig. 5 for the bulk moduli of the phases k¥, =
100 + i0.1, %2 = 30 +i30 and the Poisson’s ra-
tios vy = 0.1, v = 0.5 (curves 1, 8), 1 = 0.2,
vy = 0.4 (curves 2, 7), v =12 = 0.3 (curves
3,6),and ¥, = 039, 1n = 021 (curves 4,
5). The structures corresponding to these curves
are the assemblages of the Hashin-Shtrikman

os KK
Fig. 4. The same as in Fig. 3 but ¥, = 100 + i0.1,
Ky = 01 +i01L v = —0.25 (curves 1, 2), ¥ = 0.25

(curves 3,4), v = 0.499 (curves 5, 6), v = 0.5 (curves 7,
8). Note that composite can have a higher value of x than
either of components, but the loss tangent x! Jx, of the
composite can not exceed the loss tangent x” /&’ = p"/ '
of either phase.

coated spheres, in which the spherical inclusions
of the second phase are surrounded by the matrix
of the first phase (for the curves 1,2,3,and 4,
that are the lower bounds) or vise versa, the in-
clusions of the first phase are embedded into the
matrix of the second phase (curves 5, 6,7, and
8, that are the upper bounds). For the Hashin-
Shtrikman coated spheres assemblages the bulk
modulus of the composite does not depend on
the shear modulus of the inclusions, i.e., in our
case it does not depend on the Poisson’s ratio vz
for the lower bounds 1, 2,3, and 4 and on the
Poisson’s ratio v; for the upper bounds 5, 6, 7,
and 8. An increase in the Poisson’s ratio of the
matrix material leads to the increase of the dis-
sipation rate of the composite, as can be seen on
both upper and lower bounds.

We also consider the composites made of the
phases with the complex values of the Poisson’s
ratios. The complex Poisson’s ratios of the phases
influence the bounds as shown in Fig. 6 for the
the bulk moduli of phases k1 = 100 +10.1, %2 =

L.V. Gibiansky and R. Lakes / Bounds on bulk modulus
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Fig. 5. .The bounds for the composite of phases with the bulk

mo_dulx x; = 100 +10.1 and x; = 30 + 130. The Poissor’s

ratios of the phases are real and »; = 0.1, v, = 0.5 (curves

1,8), v =02, v, =04 (curves 2, 7), 1y = v, = 0.3

1(:::;:':: :;eG(:;:;da:3= 0.39, v = 0.21 (curves 4, 5). The
corres)

Hashin-Shtrikman coated sll))}?;ist.o the assemblages of the

0.1+10.1and equal Poisson’s ratios vy = vy = v
andrv = 0.3 (curves 1,4),v = 0.3 exp(~i0.127)
(curves2,5),andv = 0.3 exp(—i0.2257) (curves
3, 6,). A r}egative argument of the complex Pois-
son’s ratio corresponds to higher dissipation on
the shear deformations comparing with the hy-
drostatic deformation of the material. The bounds
1,2, 3, and 4 correspond to the Hashin-Shtrikman
structures and therefore are exact, the points 4
(on curve 5) and B (on curve 6) also are attain-
able and correspond to the composite x, see
(3.1)? (3.3). Curves 7 and 8 correspondbtc; the
Hashin-Shtrikman structures for

v = 0.3exp(—i0.127) v = 0.3exp(-i0.2257),

respectively.

One can see that the loss tangent « /x} of the
composlte can be greater than the loss tangent
of either phase. However, there are two inde-
pendent moduli (e.g., bulk and shear) and one
can prove that the loss tangent associated with
the bulk modulus of the composite can be no
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0 2 4 3

K7k
Fig. 6. The bounds for the composi i

. posite of phases with the
bulk moduli k; = 100 + i0.1 and x; = 0.1 +i0.1.

la{ge.r than the maximal and no smaller than the
munmgl loss tangent (for the bulk or shear de-
formations) of either phase, i.e.,

min [x{/x{, Kk /K3, # [unys 15 /05 S KK,
<max[x{/x{, k5 /155,

s uy e (4.8)
It is clear because the average dissipation rate of
the composite cannot be smaller than minimal
or larger than maximal dissipation rate of the
pha‘ses. Tpe upper bound 6 that allows the com-
posites with a high dissipation rate is similar to
,the, one described by Fig. 3. Indeed, such choice
of the Poisson’s Tatio leads t6 a very small real
part of the shear modulus of the second material

Together with the choice of the bulk moduli it.

tg,r.uaramtees the opportunity of the high dissipa-
ion.

4.4. Conclusions

_In summary, in this paper we obtained the
visual geometrical description and the explicit
formulas for the bounds on the complex bulk
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ax™

B TR (A3)
o

when the parameters f and y vary on of and

3y, respectively. If the arguments of the partial

derivatives of the function k) (f, v) in respect
to-the variable f and y at the point f=rfo
y = 7, are not equal

ax'™
arg |\ Y57 | f = &
= y*
'™
# arg —BT\f = f (A.4)
?= ¥

and if the values fx and 7, are strictly inside the
interval [0,11 (and therefore the variations 6 f
and dy are arbitrary), then by choosing these
variations we can give arbitrary direction to the
variation 8k (fo, ») of the position of the
point " (fi, y,). Therefore this point cannot
e the boundary point of the track of the corre-
sponding arc. 1t means that the necessary condi-
tion for the point x ( fr, 7+) tobe oD the bound-
ary of the +track of the arc is ¥ = Q,ory =1
(in these cases {he bounds are drawn by the end
points (2.6) and (2.7) of the arcs (2.1)) or

axt (9N

K af \ ov ) X =0
1 ast condition means that mentioned partial de-
rivatives have the same arguments (we recall
that the star in the expression a* denotes the
complex conjugate t0 a). It is clear from the ex-
pression (2.1) that the whole problem degener-
atesif f.=0or f =1 and therefore we should
pot take these points into account.

The argumentation that we use here follows
the work by Milton (1981) where the set of the
values for the complex function depending on
several real parameters were obtained.

The rest are straightforward calculations. First
we define the internal points Gf they exist) on

(A.5)

each of the arcs (2.1 } that may draw the bounds.
Then we draw the lines defined by these points
and add to this lines the arcs drawn by the end
points (2.6) and (2.7) of the arcs (2.1). The
outermost pair of all these lines gives us the de-
sirable bounds, see Fig. 1.

et us examine the condition (A.5) forall the
arcs (2.1). One can check that

St

af
_amm)la t ) ()1l + ¥ ()]
- [Fro+ (1= )k T NN
(A.6)

ax™ - =)
9y  fra+ =k +yOmP
(0@ (A7)
ay

Substituting (A.6) and (A7) into (A.5) we de-
duce that

ar® (k™"

%7 (557 |

=H ([m + 3™ )1k + 7 (v)])”
- Ter — 1) 10y™ (7)/07]
=0, (A8)

where H is real and equals

= fa- f)lxl - K2\4 lay(") (y)/avlz
= Tfie+ (=-m OGP (A.9)

It is clear that H is positive if felo 1L, 7€

[0, 1] and equal to zero only in the trivial cases
=0, f=1K =80 w = M. Therefore

condition (A.5) leads to the equation -

b+ ¥ )1l + (V)])H =0.(A.10
(B e (A0

As we see, this equation depends only on the
parameter Y and on the moduli of the original

— N
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g‘:ﬁ;ﬁ@ alll‘(li-l dges not depend on the volume
: . The dependence on the param
Q1sappears be(_:ause it enters into qu.) (A 5§t(e);if
in ];1 nor{)negatlve real coefficient H ’ Y
y substituting the definition (2 2
) ; .2) of't -
tion y1) (y) into Eq. (A.10) for n =) 1 vt]lee;:?c

(3{x1 + 4l + (L= ml/3)
% {2 + 4Ly + (L= 1)) /3)

x [4(rc; —12) (m —ﬂz)]'l)" =0. (A.11)

The last equation can b
2 e treated as a quadrati
e?uanon A1y® + By + C; = 0 for the paranlﬁ
Z e; y where the coefficients 4, B; and C, are
ag du;}ed b}f tt1111‘e equation (2.9). The solutioxlls 7,
.« Of this equati i )
e oy quation are described by (2.8)
If y. (Or ..} belon i
' Vi gs to the interval i
defines the internal point x 1) (f, y*a) ([2; lzc]“l)t
(f, 7)) on the arc £V (f, y) (f is fixed
7 € [0.1]). The arcs kW (f. 3, f € [0,1]
ei1'ﬂ11ce (tf, Per)s f € [0, 1] which are drawn,by
o er o these points may form the bound for
1thG(K) set. Note (comparing (1.5) and (2.1))
sha each of the;nv passes through the points x
2 iy of the original materials. In addition thel:
first arc passes through the point —y Wy,
it can be described as e

Are(xy, K2, =30 (1))

a(lnd the second one passes through the point —y®
Pux ), €., it can be described as

Arc(xy, 12, =y (7).

By substituting (2.3) in
(2. to (A.10) fc =
we deduce after simple calculations) orn =2

(4[1/x1 + 39/ + 301 = 1)/ (4m)]

x [1/rz + 3p/(4u) + 3(1=7)/(4u2)]
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x [3(1/x; = 1/x2)

" :
x W= 1/u)]") =0 @a12)
éslwe see this_equation is also independent of the
ag dume fraction. Moreover, comparing (A.11)
(A.12) we can see that they coincide if we

replace x;, .
(A.11) b)i %2, 441/3, and 442/3 in expression

1K1, 1/, 3/(4p1), and 3/(4u),

: Fest?ectively. Therefore by changing the variables
t?o I;n(-x:ullzzis _(2.9) 'fmd (2.8) we find that condi-
on € 1 ) is equivalent to the quadratic equa-
tion £ 27 + By + C; = 0 where the coefficients
ti(;),ns% anddCA'z arefdeﬁned by (2.11). The solu

. and Y. of this i y
(21,10) oy equation are defined by
£ 7. (or Ps) belon i
' Pex gs to the
g;en the points @ (f, %.) andm;e(gy ?} [% 1])
K(g;}v the bounds .of the region drawn by ti1e *a*rc
Y(f, ), (fis fixed, y € [0,1]) when f
varies from 0 1o 1. Therefore these arcs k@ (f,
7, f €D ok 5., /€ 0.1 may
orm the bounds for the G(x) set. Note (com-
gzlirr;ﬁl‘f lt.s) anc} (2.1)) that each of them passes
. e points iy and x, of original ma-

:EIeIaIS.' In ad(dzl)ngn the first arc passei throﬁi;

ArCFomt -y (gj)z*l, i.e., it can be described as

hkl, K2, —y'%) (3. )), and the second one pass-

es through the point —3@) (Poa), ie., it can b

de(s)cnbed as Arc(x;, Kz, —JJ“)(’J’7 .)5’ "

ne can also check that b; tituti

] y substitut.

into (A.10) we arrive at the equatiorlll o (24)

{=7 + [(Brr/4 + 1) (k2 +4442/3)]

x [k —Kk)(a — )17 = 0. (A13)
Obviously the last expression does not depend

on y and has no solution. Therefore the only

points on the arc (2.1), n = 3, that we should

take into account when w G

ur e construct the
set, are the points y = Qand y = 1. The; c(f)gce)-
spond to the arcs (2.6) and (2.7). The same is
true for the function x4 (f, 7),see (2.1) n = 4



