Bounds on the complex bulk modulus of a two-phase viscoelastic composite with arbitrary volume fractions of the components

L.V. Gibiansky 1 and R. Lakes 2

The University of Minnesota, USA

Received 23 October 1992; revised manuscript received 15 March 1993

The complex bulk modulus of an isotropic two phase composite material is analyzed in terms of the complex moduli of its phases. Bounds are developed for the complex bulk modulus \(k_c = k'_c + ik''_c \) of the composite with arbitrary volume fractions of phases. These bounds enclose a region in the complex plane \((k'_c, k''_c)\) or in a stiffness loss map \((\eta_c, k''_c/k'_c)\). The frequency range is assumed to be well below frequencies associated with the inertial terms the acoustic wavelength is much larger than the inhomogeneities. The bounds are obtained from the bulk modulus bounds by Gibiansky and Milton (1993, Proc. R. Soc. London A440, 163–188) for the two phase composites with fixed volume fractions of phases. The composite bulk modulus is shown to be constrained to a lens shaped region of the complex \((k'_c, k''_c)\) plane by the outermost pair of several circular arcs, which depend on the component material properties. The bounds are investigated numerically to explore conditions which give rise to high loss combined with high stiffness. Composite microstructures corresponding to various points on the circular arcs are identified.

1. Introduction

Viscoelastic materials are used in the damping of mechanical vibration and in the absorption of sound. The loss tangent \(\tan \delta\), or tangent of the phase angle \(\delta\) between stress and strain in sinusoidal loading, is a useful measure of material damping. Common structural materials such as steel and aluminum, however, have small loss tangents. Conversely, the materials with high loss tangents tend to be compliant, hence not of structural interest. The future development of structural materials with a combination of stiffness and loss is expected to be aided by understanding of the bounds on the behaviour of viscoelastic composite materials.

Such bounds allow to predict the range of the properties of new composite materials without making costly experiments, they show the limits of improving the composite properties by changing the composition and the microstructure. The structures that achieve the bounds are important for optimal design problems.

There exists an extensive literature dealing with the bounds for the elastic composites (see Hashin and Shtrikman (1963), Avellaneda (1987), Cherkaev and Gibiansky (1993a) and references therein). Similar problems for the viscoelastic composites are more difficult to solve and the bounds that have been obtained were rather wide (see Hashin (1965, 1970), Christensen (1969), Roscoe (1969, 1972) and references therein) until the new variational principle for the description of the material with complex moduli has been suggested by Cherkaev and Gibiansky (1993b) (see also Milton (1990)). It was implemented by Gibiansky and Milton (1993) for bounding

Correspondence to L.V. Gibiansky, Courant Institute of Mathematical Sciences, 251 Mercer Street, New York, NY 10012, USA.

1 Supported by ONR, by Sloan Soviet Visitors Program and by Packard Foundation through a fellowship of O.W. Milton.

2 Supported by ONR and University of Iowa Faculty Scholars Program.
of the viscoelastic bulk modulus of the two-phase composites with prescribed proportions of phases. We use these results to bound the bulk modulus of a composite with arbitrary proportions of phases. Bounds on the complex bulk modulus of a material allow to estimate the dissipation in the composite under the action of the hydrostatic strain or stress fields.

It is well known (see, for example, Hashin (1970) and Christensen (1977)) that the behavior of the viscoelastic material as sufficiently low frequencies of oscillation can be described by the equations that formally coincide with the usual equations of elasticity but with complex strain and stress fields and complex moduli. The properties of the elastic isotropic material can be described by a pair of moduli. In engineering literature the Young's modulus E and the Poisson's ratio ν are used to characterize the properties of the material, in mathematical literature the bulk κ and shear μ moduli are used to describe the properties of an isotropic body. Both descriptions are equivalent and the relations between these pairs of moduli are given by the formulas

$$E = \frac{2\kappa\mu}{\kappa + \mu}, \quad \nu = \frac{3\kappa - 2\mu}{2(3\kappa + \mu)}, \quad (1.1)$$

or

$$\kappa = \frac{E}{3(1 - 2\nu)}, \quad \mu = \frac{E}{2(1 + \nu)}, \quad (1.2)$$

(see Christensen (1979), for example). Note also the helpful formula

$$\mu = c\kappa, \quad c = \frac{3(1 - 2\nu)}{2(1 + \nu)}, \quad (1.3)$$

For the viscoelastic material all these moduli may have complex values and depend on the frequency of oscillations. We assume that the frequency is fixed and therefore the properties of the original materials are fixed as well.

In this paper we study the properties of the isotropic composite prepared from two isotropic viscoelastic materials. We are interested to find the range of the moduli which can be achieved by varying the volume fractions of the components and the geometry of the composite, i.e., the disposition of the phases in the composite. Such problem is known as a G_1-closure problem if the proportion of the composite are fixed, or as a G_2-closure problem if these proportions are arbitrary (see, for example, Lurie and Cherkaev (1986), Kohn and Milton (1988), Cherkaev and Gibiansky (1992) and references therein). As we already mentioned, the properties of the isotropic viscoelastic material are characterized by two complex numbers (for example, by the bulk κ and shear μ moduli). To describe the set of the properties of all isotropic composites means to describe such set of pairs (κ_1, μ_1) that each point of this set corresponds to some composite and vice versa, the pair of the moduli (κ_1, μ_1) of any composite lies inside this set. It is a very difficult problem; a similar problem has not been solved even for the purely elastic composite when the properties of the isotropic material are described by only two parameters (real elastic modulus).

Here we restrict our attention only to the bounds for the complex bulk modulus. From this point of view each composite is characterized by only one complex number, namely by its bulk modulus κ. In the complex bulk modulus plane each composite corresponds to a point. If we fix the volume fraction f of the first phase and vary the structure of the composite over all possible microgeometries, this point traverses the region that we call $G_f(k)$. In addition we vary volume fraction f of this set $G_f(k)$ covers the region that we call $G(k)$

$$G(k) = \cup_{f \in [0,1]} G_f(k). \quad (1.4)$$

We are interested to find the estimates on this $G(k)$ set. Namely, we look for the bounds that provide the limit on the maximal extent of this region. They define the set $G(k)$ that contains $G(k)$, i.e., such that $G(k) \subset G(k)$. We also study the attainability of these bounds, i.e., look for the particular composites that possess the external bulk modulus.

The question of the minimal extent of similar to $G(k)$ region has been explored by Chen and Lakes (1993) in the complex Young's modulus plane. They have plotted trajectories in the complex plane of Young's moduli associated with particular composite geometries including those which are extremal in the context of elastic modulus versus volume fraction. We show that some of these microgeometries are extremal in the context of viscoelastic (i.e., complex) bulk modulus bounds.

In the paper by Gibiansky and Milton (1993) the bounds for the $G_f(k)$ set, i.e., the set of the complex bulk modulus of the isotropic viscoelastic two-phase composites with fixed volume fractions of the phases were obtained and some microgeometries which possess the extremal viscoelastic properties were found. We utilize these results in the present work to find the bound on the complex bulk modulus of the composite with arbitrary volume fractions of the phases and to find the microgeometries that achieve these bounds.

Although we found the structures of the composites that correspond to some boundary points of the set of the $G(k)$ (and therefore lie on the boundary of the $G(k)$ set as well) it is not clear whether the set $G(k)$ of all possible bulk moduli of two-phase composites coincides with the set $G(k)$ that we found.

Throughout the paper we use the notations a' and a'' for the real and imaginary parts of the complex variable $a = a' + ia''$, $\alpha = \alpha' + i\alpha''$, $\mu = \mu' + i\mu''$. The star in $a^* = d' - d''$ denotes the complex conjugate to a, and $|a| = \sqrt{(a')^2 + (a'')^2} = \sqrt{a'^2 + a''^2}$, $\arg(a) = \arctan(a'/a'')$ denotes the absolute value and the argument of $a = |a| \exp(i \arg(a))$. Symbols $\kappa_1, \mu_1, \kappa_2, \mu_2$ and $\kappa, \mu, \mu_0, \mu_2$ denote the complex bulk and shear moduli of the first and the second phases and the composite, respectively, and $\lambda_0, \mu_0, \alpha_0$ denote the arc of a circle in the complex plane joining the points α_0 and α_2 that when extended passes through α_0. One can check that such an arc is drawn by the point $a(y)$

$$a(y) = \frac{\alpha_0}{\lambda_0 + (1 - y)\lambda_0} + \frac{1 - y}{(\alpha_0 - \alpha_2)} \frac{\alpha_0 - \alpha_2}{(1 - y)\lambda_0 + \frac{\lambda_0}{\alpha_0 - \alpha_2} + \frac{\lambda_0}{\alpha_0 - \alpha_2}} \quad (1.5)$$

as the parameter y varies along the real axis in the interval $[0,1]$.

2. Bounds on the complex bulk modulus of the composite

To find the bounds we use the following statement that was proved by Gibiansky and Milton (1993):

Statement A: The effective bulk modulus of the two-phase composite with prescribed volume fractions f and $(1 - f)$ of the first and the second phases, respectively is shown to be constrained to a lens-shaped region in the complex bulk modulus plane bounded by the outermost pair of four circular arcs

$$\kappa^{(1)}(f, y) = f\kappa_1 + (1 - f)\kappa_2 - \frac{f(1 - f)\mu_1 - \mu_2}{1 - f\kappa_1 + f\kappa_2 + y^{(1)}(f, y)} \quad n = 1, 2, 3, 4, \quad (2.1)$$

Here $f \in [0,1]$ is fixed, y varies along the real axis in the interval $[0,1]$ and the functions $y^{(1)}(f, y)$ are given by the formulas

$$y^{(1)}(f, y) = \frac{\sqrt{f(1 - f)(\mu_2 - \mu_1)^2}}{f\mu_1 + (1 - f)\mu_2}, \quad (2.2)$$

$$y^{(2)}(f, y) = \frac{\sqrt{f(1 - f)(\mu_2 - \mu_1)^2}}{f\mu_1 + (1 - f)\mu_2}, \quad (2.3)$$

$$y^{(3)}(f, y) = \kappa_2 + \frac{|4\mu_2(3 + \kappa_2)(4\mu_2 + 3 + \kappa_2)|}{7(4\mu_2(3 + \kappa_2))^{1/2} \sqrt{f(1 - f)(\mu_2 - \mu_1)^2}} + (1 - f)(4\mu_2(3 + \kappa_2))^{1/2} \frac{3 + \kappa_2}{\mu_1 + (1 - f)\mu_2}, \quad (2.4)$$

$$y^{(4)}(f, y) = \kappa_2 + \frac{|4\mu_2(3 + \kappa_2)(4\mu_2 + 3 + \kappa_2)|}{7(4\mu_2(3 + \kappa_2))^{1/2} \sqrt{f(1 - f)(\mu_2 - \mu_1)^2}} + (1 - f)(4\mu_2(3 + \kappa_2))^{1/2} \frac{3 + \kappa_2}{\mu_1 + (1 - f)\mu_2}, \quad (2.5)$$
Arc$(k_1, k_2, 4), A_y = \frac{1}{3^2}(\gamma_0)$. It is drawn by the point $B = k^{33}(f, \gamma_0)$ while f goes from zero to one. To find the bounds we sketch the lines $Arc(G_1, G_2, G_3)$ (curve 1), $Arc(G_1, G_2, 0)$ (curve 4), $Arc(G_1, G_2, k_2)$ (curve 2), and $Arc(G_1, G_2, k_3)$ (curve 3). The bounds of $G(k)$ set are given by $Arc(k_1, k_2, C)$ and $Arc(k_1, k_n, G_2)$ of two circles. The first of them contains the set Y, the other one has only one common point G_2 with it.

Note that all four arcs (2.1) intersect at the points

$$k_1 = \frac{f + (1-f)k_2}{1 - (1-f)k_2}$$

and

$$k_2 = \frac{f + (1-f)k_2}{1 - (1-f)k_2}$$

One can check (see Appendix) that the above description is equivalent to the one given in the original paper and that the lines 2.1 (if fixed, $\gamma \in [0, 1]$) are really the arcs in the complex bulk modulus plane. These arcs are plotted in Fig. 1 and are denoted there as arc 5 (arc (2.1) $n = 1$, curve 6 (arc (2.1) $n = 3$, curve 7 (arc (2.1) $n = 4$, and curve 8 (arc (2.1) $n = 2$). For a fixed volume fraction $f = 0.5$ the bulk modulus k_n is confined to the set $G_f(k)$ bounded by the outermost of the arcs (2.1), $n = 1, 2, 3, 4$. While f changes in the interval $[0, 1]$ this set draws the region $G_f(k)$. For this example the bound of the $G_f(k)$ set is drawn by the angular point k_g of the set $G_f(k)$ and by the internal point D of arc 8. For any fixed $\gamma = \gamma_0$, the set of values of the function $k^{33}(f, \gamma_0)$, while $f \in [0, 1]$, is

$$x(4f^2 + 2f) + (1 - 4f)(4f^3 + 2f) = 1$$

because $\gamma^{(1)}(0) = 4f^3(1) = 4f^3/3$ for every $n = 1, 2, 3, 4$, see (22)–(25). Arc (2.1), $n = 1$ when extended passes also through the point $k_2 = f_1(k_1 + f_2)$ (where $\gamma = \infty$) and can be described as $Arc(k_1, k_2, k_3)$. Similarly, arc (2.1), $n = 3$ when extended passes through the point $k_2 = f_1(k_1 + f_2)$ (where $\gamma = \infty$) and can be described as $Arc(k_1, k_2, k_3)$. Arcs (2.1), $n = 3$ when extended passes through the points k_1 and k_2 respectively (where $\gamma = \infty$). They can be described as $Arc(k_1, k_2, k_3)$, $Arc(k_1, k_2, k_3)$, and $Arc(k_1, k_2, k_3)$.

We denote as $G_f(k)$ the lens-shaped region that is defined by the outermost pair of the arcs (2.1) (see Fig. 1 where the set $G_f(k)$ is drawn and lines 5–8 represent the arcs (2.1)). Statement A means that this set contains the set $G_f(k)$. If we change the parameter f in the interval $[0, 1]$ this set changes its position in the complex bulk modulus plane (see (2.1) and covers the region $G_f(k)$, $G_g(k) = k^{33}(f, \gamma_0)$).

It is clear that $G(k) \subset G_f(k)$, i.e., this union contains the set $G_f(k)$ and gives us the desirable bound on the complex bulk modulus of the composite with arbitrary volume fractions of the phases. The boundary points of the set $G_f(k)$ are formed by the boundary points of the sets $G_f(k)$ for some values of the parameter f, i.e., they can be described by the formula (2.1) for some $n = 1, 2, 3, 4$, $f \in [0, 1]$, and $\gamma \in [0, 1]$. For any fixed $\gamma = \gamma_0$, the set of the values of the function $k^{33}(f, \gamma_0)$, $f \in [0, 1]$ is $Arc(k_1, k_2, \frac{\arctan}{\sqrt{2}})$, compare (1.5) and (2.1). In Fig. 1 see $Arc(k_1, k_2, A)$, $A = \frac{\arctan}{\sqrt{2}}(\gamma_0)$ that is drawn by the point $B = k^{33}(f, \gamma_0)$ while f goes from zero to one. The union over $\gamma_0 \in [0, 1]$ of all such arcs describes the track of the corresponding arc (2.1). By repeating the same procedure for all $n = 1, 2, 3, 4$ we clearly end up with the bounds described above.

In other words, any arc that is described by (2.1), $f \in [0, 1]$, for some n and some γ_0, passes through the points k_1 and k_2 and when extended crosses the Y set. The bounds are given by the outermost pair of all these arcs.

Note the two possible variants how the boundary circle may touch the Y set. It may pass through one of the corner points of this set, say $G_2 = -\arctan(3)$, as in Fig. 1. In this case the corresponding bound of the set $G_f(k)$ is drawn by the corner point k_2, of the set $G_f(k)$. The boundary circle may also touch the set Y in some internal point C of their boundary arc. Then the arc of this circle connecting the points k_1 and k_2 is drawn by the internal point D of the boundary arc of the set $G_f(k)$, see Fig. 1.

Although the description of the results is simple, it is not so easy to find the exact formulas. Here we give the results, the reader can find the details and calculations in the Appendix. To find the bounds on the effective complex bulk modulus we first calculate the value $\gamma_0, \gamma_1, \gamma_2$, and γ_3 by using the formulas

$$\gamma_0 = \frac{-B + \sqrt{B^2 - 4AC}}{2A}$$

and $Arc(k_1, k_2, G_3)$ in Fig. 1). They pass through the points k_1 and k_2 of the original materials and when extended to circles touch the set Y. One of these circles (circle $k_1 = -k_2 = k_3$ in Fig. 1) contains this set, the other one (circle $k_1 = -k_2 = k_3$ in Fig. 1) has only one common point with it. Indeed, as we show, to define the bounds we need to find the union of the sets of the values of the functions $k^{33}(f, \gamma_0), f \in [0, 1], \gamma_0 \in [0, 1]$. For any fixed $\gamma_0 = \gamma_0$, the set of the values of the function $k^{33}(f, \gamma_0)$, $f \in [0, 1]$ is $Arc(k_1, k_2, \frac{\arctan}{\sqrt{2}}(\gamma_0))$, compare (1.5) and (2.1). In Fig. 1 see $Arc(k_1, k_2, A)$, $A = \frac{\arctan}{\sqrt{2}}(\gamma_0)$.
Then on the complex bulk modulus plane we should enclose
\[\gamma = \frac{-B_1 + \sqrt{B_1^2 - 4A_1C_1}}{2A_1}, \]
if \(D_1 = B_1 - 4A_1C_1 \geq 0, \ A_1 \neq 0; \]
\[\gamma = \gamma^* = -C_1/B_1, \text{ if } A_1 = 0; \]
\(\gamma \) and \(\gamma^* \) are undefined
if \(D_1 < 0 \),
(2.8)
where
\[A_1 = \frac{4}{3} \left(\frac{\mu_1 - \mu_2}{\kappa_1 - \kappa_2} \right)^2, \]
\[B_1 = \left(\frac{\kappa_1 + \kappa_2 + 8\mu_2/3}{\kappa_1 - \kappa_2} \right)^2, \]
\[C_1 = \left(\frac{3(\mu_1 - \mu_2)^2(\kappa_1 + 4\mu_2/3)}{(\kappa_1 - \kappa_2)(\mu_1 - \mu_2)} \right)^2, \]
and
\[\gamma = \frac{-B_2 + \sqrt{B_2^2 - 4A_2C_2}}{2A_2}, \]
\[\gamma^* = \frac{-B_2 - \sqrt{B_2^2 - 4A_2C_2}}{2A_2}, \]
if \(D_2 = B_2 - 4A_2C_2 \geq 0, \ A_2 \neq 0; \]
\(\gamma = \gamma^* = -C_2/B_2, \text{ if } A_2 = 0; \]
\(\gamma \) and \(\gamma^* \) are undefined
if \(D_2 < 0 \),
(2.10)
where
\[A_2 = \frac{3(\mu_1 - \mu_2)^2}{4(\kappa_1 - \kappa_2)^2}, \]
\[B_2 = \frac{3(\kappa_1 + \kappa_2 + 3/2\mu_2)}{(\kappa_1 - \kappa_2)^2}, \]
\[C_2 = \frac{(4/3\mu_1 + \mu_2)(\kappa_1 + 3/4\mu_2)}{(\kappa_1 - \kappa_2)^2}, \]
\[\times \left(\frac{1}{1 - \mu_2 \kappa_1 / \kappa_2} - 1 \right)^2. \]
(2.11)

3. The microstructures that possess the extremal complex bulk modulus

The natural way to check whether the obtained bounds are exact is to try to find the microstructures that possess the extremal properties in the sense that their bulk modulus corresponds to the bounds. In this section, we describe such structures with the bulk modulus that lies on the boundary of the \(\Re(I) \) set. Because any of the arcs (2.1) may form the bound it is interesting to find the structures corresponding to the points on all of these lines. In order to use the results on the effective properties of the elastic structures we recall the correspondence principle, see for example Hashin (1970): "The effective complex moduli of a viscoelastic composite are obtained by replacement of phase elastic moduli by corresponding phase viscoelastic complex moduli in the expressions for effective elastic moduli of an elastic composite with identical phase geometry."

First we note that the expression (2.6) for the \(\text{Arc}(\kappa_1, \kappa_2, -4\mu_2/3) \) for any fixed value of the parameter \(f \) gives the effective bulk modulus of an assembly of the Hashin–Shtrikman coated spheres (see Hashin and Shtrikman (1963)) with the inclusions of the second material into the matrix of the first one. Therefore each point on this arc corresponds to the effective bulk modulus of the Hashin–Shtrikman coated spheres assembled for some volume fraction \(f \) of the first phase. Similarly each point on the arc \(\text{Arc}(\kappa_1, \kappa_2, -4\mu_2/3) \) (see expression (2.7)) corresponds to the Hashin–Shtrikman coated spheres assembled for the inclusions of the first material into the matrix of the second one. Hence if any of these arcs forms the bound this bound is exact because there exists composite material that corresponds to any point on that part of the boundary.

As to the other possible boundary arcs, only several points on these lines correspond to some known structures. As shown by Ghibas and Milton (1993) there exist composites that possess bulk moduli \(\kappa^{(1)}_b, \kappa^{(2)}_b, \kappa^{(3)}_b \), and \(\kappa^{(4)}_b \) such that
\[\kappa^{(n)}_b(f) = \frac{f\kappa_1 + (1-f)\kappa_2}{(1-f)\kappa_1 + f\kappa_2 + \kappa^{(n)}_b(f)}, \]
\[n = 1, 2, 3, 4, \]
(3.1)
where
\[\kappa^{(1)}_b(f) = f \frac{\mu_2}{\mu_1} \left(1 - \frac{1-f}{f} \right)^{-1}, \]
(3.2)
\[\kappa^{(2)}_b(f) = f \frac{\mu_1}{\mu_2} \left(1 - \frac{1-f}{f} \right)^{-1}, \]
(3.3)
\[\kappa^{(3)}_b(f) = \frac{f\mu_1 + (1-f)\mu_2}{3}, \]
\[\kappa^{(4)}_b(f) = \frac{(1-f)\mu_1 + f\mu_2}{3} + \frac{3}{3}, \]
(3.4)

We do not recall the description of these structures here, the reader can find the details in the original paper.

If \(f = \gamma \) or \(f = \gamma^* \) (see (2.8) and (2.9)) belongs to the interval \([0, 1]\) then the structures \(\kappa^{(1)}_b, \kappa^{(2)}_b \) and \(\kappa^{(4)}_b \) lie on the arc \(\text{Arc}(f, \gamma) \) when
\[f = \kappa^{(1)}_b = 1 - \gamma, \]
\[f = \kappa^{(2)}_b = 4(1 - \gamma), \]
\[f = \kappa^{(4)}_b = 1 - 4\gamma, \]
(3.4)
respectively. We should however check whether the volume fractions defined by (3.4) lie in the interval \([0, 1]\). It is always true for the composite \(\kappa^{(2)}_b \) but it gives some restrictions on values \(\gamma \) for the composite \(\kappa^{(3)}_b \) (namely, \(\gamma \in [0, 1] \) when \(\gamma \in [3/4, 1] \)) and for the composite \(\kappa^{(4)}_b \) (\(\gamma \in [0, 1] \) when \(\gamma \in [0, 1/4] \)). In summary, two attainable points \(\kappa^{(1)}_b \) and \(\kappa^{(3)}_b \) are known on the boundary arc \(\text{Arc}(f, \gamma) \) (\(f = \mu_2, \gamma = \mu_2 \) is fixed, \(f \in (0, 1) \) if \(\gamma \in (0, 1/4) \), only one such point \(\kappa^{(4)}_b \) is known if \(\gamma \in (1/4, 1/3) \), and only two such points \(\kappa^{(1)}_b \) and \(\kappa^{(4)}_b \) are known if \(\gamma \in (3/4, 1) \).

If \(\gamma = \mu_1 \) or \(\gamma = \mu_2 \) (see (2.10) and (2.11)) belongs to the interval \([0, 1]\) then the structure with the bulk modulus \(\kappa^{(1)}_b \) lies on the arc \(\text{Arc}(f, \gamma) \) when
\[f = \kappa^{(1)}_b = 1 - \gamma, \]
(3.5)

We can also use the results of the second section to obtain the bounds for the properties of an anisotropic composite. First note, that for every anisotropic viscoelastic material with the viscoelasticity tensor \(C \) there exists an isotropic polycrystal microstructure that possesses the bulk modulus \(\kappa^*(C) \) such that
\[\kappa^*(C) = \frac{1}{3} f \cdot C^f + \frac{1}{3} \sum_{\mu=1}^{3} C_{\mu \mu} \]
(3.6)
and a polycrystal that possesses the bulk modulus (see Avellaneda and Milton (1989), Ruedelsohn (1989), Ghibauns and Milton (1993)).
\[\kappa^*(C) = \frac{3}{f} \cdot C^f \cdot \frac{1}{2} \]
(3.7)
Here f is a unit matrix, double dots denote the scalar product, C_{ijkl} and $(C^{-1})_{ijkl}$ are the elements of the tensors C and C^{-1}, respectively, in the Cartesian basis. Indices V and R refer to the fact that the expressions (3.6) and (3.7) coincide with the Voigt and Reuss bounds on the effective bulk modulus of an isotropic elastic polycrystal prepared from a monocrystal with the elasticity tensor C. Therefore for any anisotropic two-phase viscoelastic composite C the quantities $x^1(C)$ and $x^2(C)$ that measure the reaction of the composite on the bulk type stress or strain field should satisfy the restrictions of the second section for the bulk modulus of the isotropic composite. Indeed, we can always prepare from it two isotropic polycrystals with the bulk moduli $x^1(C)$ and $x^2(C)$ respectively that should lie within the bounds of the second section. The same arguments were used by Gibiansky and Milton (1993) to apply the bounds on bulk modulus to anisotropic composites.

4. Some particular cases and discussion

In this section we implement the obtained results to study the compositional made of particular phases. We plot these bounds and discuss the results of numerical calculations.

4.1. Composite of the stiff purely elastic phase and the soft phase with high damping

Figure 2 shows the numerically obtained bounds for the composite material, prepared from the stiff purely elastic phase with moduli $\kappa_1 = 100$, $\mu_1 = 46$ and the soft phase with high damping in shear with moduli $\kappa_2 = 0.5$, $\mu_2 = 0.5 + i 1.5$. The lower bound (curve 1 that coincide here with the interval of the real axis) is exact and corresponds to the assemblages of Hashin–Shtrikman coated spheres where the stiff elastic phase forms the matrix and the soft dissipative phase is placed into the inclusions. The dissipation rate on this curve is equal to zero. Indeed, in the average hydrostatic strain or stress field the local field in the inclusions is also hydrostatic for these structures. Therefore there is no dissipation because it can occur only in shear deformation of the Hashin–Shtrikman structures where the stiff inclusions of the first phase are surrounded by the soft second phase. The outermost pair of the internal arcs 4, 5, 6, 7 forms the bounds for the bulk modulus of a composite with fixed volume fraction $f = 0.85$ of the first phase. It is interesting to observe that the soft phase can contribute so much into the whole dissipation of the composite. This fact have been known for a long time and may be explained by the high concentration of the field in the soft phase. It is consistent with the results of Chen and Lakes (1993).

4.2. Composite of the phases that possess equal and real Poisson’s ratios

The expressions for the bounds can be greatly simplified if we assume that the original materials possess real and equal Poisson’s ratios $\nu_1 = \nu_2 = \nu$, $\nu^0 = 0$. In this case

$$c = \frac{3(1-2\nu)}{2(1+\nu)} \rho \frac{k}{f},$$

(4.1)

where c is a real number. It immediately follows from (2.8), (2.9) and (4.1) that

$$A_1 = 4\rho \frac{k}{f} = 0,$$

$$B_1 = \frac{2(3 + 4\nu)}{3} \left(\frac{k_2}{k_1 - k_2} \right)^n,$$

(4.2)

$$C_1 = \frac{3 + 4\nu}{4\nu} \frac{k_2^2}{k_1 - k_2^2} \left(\frac{k_2}{k_1 - k_2} \right)^n.$$

(4.3)

$$\gamma = -\frac{C_1}{B_1} = -\frac{3 + 4\nu}{4\nu} \left(\frac{k_2}{k_1 - k_2} \right)^n.$$

(4.4)

To get the last relationship we use the equality $\beta^2 = \beta_0^2$, that is known to be attainable. Curve 3 corresponds to the Hashin–Shtrikman structures where the stiff inclusions of the first phase are surrounded by the soft second phase. The outermost pair of the internal arcs 4, 5, 6, 7 forms the bounds for the bulk modulus of a composite with fixed volume fraction $f = 0.85$ of the first phase. It is interesting to observe that the soft phase can contribute so much into the whole dissipation of the composite. This fact have been known for a long time and may be explained by the high concentration of the field in the soft phase. It is consistent with the results of Chen and Lakes (1993).

Therefore to find the bounds on the effective bulk modulus of the composite of two phases with equal and real Poisson’s ratios we need to calculate two quantities γ_1 and γ_2, by formulas (4.4) and (4.5). In the bulk modulus plane we need to enclose the arcs

$$\text{Arc}(x_1, x_2, -4\mu_1/3),$$

$$\text{Arc}(x_1, x_2, -4\mu_2/3),$$

$$\text{Arc}(x_1, x_2, -y^{(1)}(\gamma_1)), \text{ if } \gamma_1 \in [0, 1],$$

and

$$\text{Arc}(x_1, x_2, -y^{(2)}(\gamma_2)), \text{ if } \gamma_2 \in [0, 1].$$

The outermost pair of these four, three or two arcs forms bounds on $G(x)$ set, i.e., on complex bulk modulus of the composite.

Figures 3 and 4 show the numerical results that describe the dependence of the bounds on the Poisson’s ratio of phases. We use here, instead of the bulk modulus plane, the stiffness loss map, where the absolute value $|x|$ of the bulk modulus is plotted versus the loss tangent \tan°/\tan^0, to present the results. These coordinates are more usual for the applications. First (see Fig. 3) we take the phases with the bulk moduli $x_1 = 100 + 10.1$, $x_2 = 30 + 30$ and the Poisson’s ratio $\nu = 0.25$ (curves 1, 2), $\nu = 0$ (curves 3, 4), $\nu = 0.25$ (curves 5, 6), $\nu = 0.5$ (curves 7, 8). For these values of the parameters all bounds are exact and correspond to the Hashin–Shtrikman coated spheres. Increasing the Poisson’s ratio of the phases results in increasing the dissipation. For the extreme value $\nu = 0.5$ the lower and upper bounds coincide and uniquely define the relation between the real and imaginary parts of the composite bulk modulus. Indeed, the value $\nu = 0.5$ for the fixed bulk moduli leads to zero shear moduli of the phases. For the composite made of such materials the properties are defined by the volume fractions of the phases (namely, $x_1 = f/k_1 + (1 - f)/k_2$) and are independent of the microstructure (see Christensen (1979), for example).
Fig. 3. The bounds for the bulk modulus of a composite of phases with the bulk modulus \(k_1 = 100 + 10.1 \) and \(k_2 = 30 + 130 \). The Poisson's ratio of the phases are real and equal \(\nu = -0.25 \) (curves 1, 2), \(\nu = 0 \) (curves 3, 4), \(\nu = 0.25 \) (curves 5, 6), \(\nu = 0.3 \) (curves 7, 8). All bounds are exact and correspond to the assemblages of the Hashin--Shtrikman coated spheres.

Figure 4 describes the results for the bulk moduli of the phases \(k_1 = 100 + 10.1, k_2 = 0.1 + 0.1 \) and the Poisson's ratio \(\nu = -0.25 \) (curves 1, 2), \(\nu = 0.25 \) (curves 3, 4), \(\nu = 0.499 \) (curves 5, 6), \(\nu = 0.5 \) (curves 7, 8). In these examples the upper bounds for all values of Poisson's ratio practically coincide whereas the lower bounds differ only in a very narrow interval around \(\nu = 0.5 \). All these bounds are also exact and correspond to the Hashin--Shtrikman structures.

4.3. Dependence of the bounds on the Poisson's ratios of the phases

If the constituents have real but unequal Poisson's ratios, the bounds are shifted as shown in Fig. 5 for the bulk modulus of the phases \(k_1 = 100 + 10.1, k_2 = 30 + 130 \) and the Poisson's ratios \(\nu_1 = 0.1, \nu_2 = 0.5 \) (curves 1, 8), \(\nu_1 = 0.2, \nu_2 = 0.4 \) (curves 2, 7), \(\nu_1 = 0.3, \nu_2 = 0.3 \) (curves 3, 6), and \(\nu_1 = 0.39, \nu_2 = 0.21 \) (curves 4, 5). The structures corresponding to these curves are the assemblages of the Hashin--Shtrikman coated spheres, in which the spherical inclusions of the second phase are surrounded by the matrix of the first phase (for the curves 1, 2, 3, and 4, that are the lower bounds) or vice versa, the inclusions of the first phase are embedded into the matrix of the second phase (curves 5, 6, 7, and 8, that are the upper bounds). For the Hashin--Shtrikman coated spheres assemblages the bulk modulus of the composite does not depend on the shear modulus of the inclusions, i.e., in our case it does not depend on the Poisson's ratio \(\nu_2 \) for the lower bounds 1, 2, 3, and 4 and on the Poisson's ratio \(\nu_1 \) for the upper bounds 5, 6, 7, and 8. An increase in the Poisson's ratio of the matrix material leads to the increase of the dissipation rate of the composite, as can be seen on both upper and lower bounds.

We also consider the compositions made of the phases with the complex values of the Poisson's ratios. The complex Poisson's ratios of the phases influence the bounds as shown in Fig. 6 for the bulk modulus of phases \(k_1 = 100 + 10.1, k_2 = 30 + 130 \), and \(k_1 = 0.1 + 0.1 \) and equal Poisson's ratios \(\nu_1 = \nu_2 = \nu \) and \(\nu = 0.3 \) (curves 1, 4), \(\nu = 0.3 \exp(-0.12\pi) \) (curves 2, 5), and \(\nu = 0.3 \exp(-0.225\pi) \) (curves 3, 6). A negative argument of the complex Poisson's ratio corresponds to higher dissipation on the shear deformations comparing with the hydrostatic deformation of the material. The bounds 1, 2, 3, and 4 correspond to the Hashin--Shtrikman structures and therefore are exact, the points 5 (on curve 5) and 6 (on curve 6) also are attainable and correspond to the composite \(k_1 \), see (3.3), (2.3). Curves 7 and 8 correspond to the Hashin--Shtrikman structures for

\[
\nu = 0.3 \exp(-0.12\pi) = 0.3 \exp(-0.225\pi),
\]

respectively.

One can see that the loss tangent \(k'_n/k_n \) of the composite can be greater than the loss tangent of either phase. However, there are two independent moduli (e.g., bulk and shear) and one can prove that the loss tangent associated with the bulk modulus of the composite can be no larger than the maximal and no smaller than the minimal tangent (for almost shear deformations) of either phase, i.e.,

\[
\min\left\{ \frac{k'_n}{k_n}, \frac{k'_2}{k_2}, \frac{\mu'_1}{\mu_1}, \frac{\mu'_2}{\mu_2} \right\} \leq \frac{k'_n}{k_n} \leq \max\left\{ \frac{k'_n}{k_n}, \frac{k'_2}{k_2}, \frac{\mu'_1}{\mu_1}, \frac{\mu'_2}{\mu_2} \right\}.
\]

It is clear because the average dissipation rate of the composite cannot be smaller than minimal or larger than maximal dissipation rate of the phases. The upper bound 5 that allows the composites with a high dissipation rate is similar to the one described by Fig. 3. Indeed, such choice of the Poisson's ratio leads to a very small real part of the shear modulus of the second material. Together with the choice of the bulk modulus it guarantees the opportunity of the high dissipation.

4.4. Conclusions

In summary, in this paper we obtained the visual geometric description and the explicit formulas for the bounds on the complex bulk
modulus of the viscoelastic two-phase composite with arbitrary volume fractions of the phases. The bounds have a particularly simple form when the phases have equal and real Poisson's ratios. The bounds were analyzed in order to find the conditions that give rise to the dissipation rate of the composite. In particular, the known experimental fact that small amounts of dissipative inclusions in a stiff matrix may dramatically increase the whole dissipation rate of the composite agrees with our bounds, as can be seen in Fig. 2. The dependence of the bounds on the Poisson's ratio of the phases was analyzed numerically, the results are summarized in Figs. 3-6. The structures that correspond to the various parts of the bounds were identified. Therefore at least some parts of the obtained bounds are exact, they are attainable by the assemblies of Hashin-Shtrikman coated spheres. The rest of the bounds are rather restrictive although it is not known whether they can be improved or not.

Acknowledgements

We are pleased to thank A.V. Cherkaev and G.W. Milton for helpful discussions and suggestions that improved the manuscript.

References

Avdel'iantsa, M. (1987). Optimal bounds and microgeom-
eteries for elastic two-phase composites, SIAM J. Appl.
Math. 47, 1216.

on the effective bulk modulus of polycrystals, SIAM J.
Appl. Math. 49, 824.

coupled bounds for effective tensors of electrical and
magnetic properties of two component two-dimensional

estimates for the bulk and shear moduli of two-
dimensional isotropic elastic composite, J. Mech.

principles for complex conductivity, viscoelasticity and
similar problems for media with complex moduli, J.

Christensen, R.M. (1969). Viscoelastic properties of het-

Christensen, R.M. (1971). Theory of Viscoelasticity. Aca-
demic Press, New York.

Christensen, R.M. (1979). Mechanics of Composite Mat-

Gibiansky, L.V. and G.W. Milton (1993). On the effec-
tive viscoelastic moduli of two-phase media: I. Boun-
daries on the complex bulk modulus, Proc. R. Soc.

Hashin, Z. (1970). Complex modulus of an elastic visco-
elastic composite. A General theory and application to particular
composites, Int J. Solids Struct. 6, 339.

Hashin, Z. and S. Shtrikman (1963), A variational ap-
proach to the theory of the elastic behavior of multi-

Kohn, R.V. and G.W. Milton (1984), Variational bounds
on the effective moduli of anisotropic composites, J.

Lurie, K.A. and A.V. Cherkaev (1986). The effective char-
acteristics of composite materials and optimal design of

of a two-component composite material, J. Appl.
Phys. 52(8), 5286.

effective tensors of composition: The variational method
Eusk. 3, 61.

Roeder, R. (1969). Bounds for real and imaginary parts
of the dynamic moduli of composite viscoelastic system.

Roeder, R. (1972). Improved bounds for real and imagi-
ary parts of complex moduli of isotropic viscoelastic

Ruddelson, M. (1989). Phase transitions in solids, Mas-

Appendix

(1) To obtain the bounds for the complex bulk
modulus of the special fraction linear transforma-
tion were used by Gibiansky and Milton (1993). This transformation \(y(x) \) is defined through the formula

\[
\kappa = f \kappa_1 + (1 - f) \kappa_2 + \frac{f (1 - f) \kappa_1 - \kappa_2}{1 - f} + \frac{(1 - f) \kappa_1 - \kappa_2}{f} \quad \text{(A.1)}
\]

or explicitly

\[
y(x) = f y_1 + (1 - f) y_2 = \left(1 - f \right) \kappa_1 - f \kappa_2 + f \left(1-f \right) \kappa_1 - \kappa_2^2 \frac{1}{\kappa_1 + f \kappa_2 - y(x)}.
\]

(design details and references in the original pa-
paper). Due to the one-to-one correspondence be-
tween \(\kappa \) and \(y(x) \), the bounds can be formu-
lated in terms of \(y(x) \). As was proved by Gib-
iansky and Milton (1993), to find the bounds for
the quantity \(y(x) \) one should in the \(y(x) \)-plane
insert a straight line \(Arc(4\mu_1/3, 4\mu_2/3, \infty) \)
drawn between the points \(4\mu_1/3 = 4\mu_1/3 \) and
\(4\mu_2/3 = 4\mu_2/3 \) and three arcs

\[
\text{Arc}(4\mu_1/3, 4\mu_2/3, 0),
\]

\[
\text{Arc}(4\mu_1/3, 4\mu_2/3, -\kappa_1),
\]

\[
\text{Arc}(4\mu_1/3, 4\mu_2/3, -\kappa_2).
\]

The outermost pair of these lines gives us the bounds
on \(y(x) \). One can check (comparing (1.5) and (2.2))
that

\[
\text{Arc}(4\mu_1/3, 4\mu_2/3, \infty)
\]

is described by formula (2.2). Indeed, \(y(1) = 4\mu_1/3 \),
\(y(0) = 4\mu_2/3 \), and

\[
y(\infty) = \infty.
\]

Similarly, \(\text{Arc}(4\mu_1/3, 4\mu_2/3, 0) \) is described by
the formula (2.3), \(\text{Arc}(4\mu_1/3, 4\mu_2/3, \kappa_1) \) is
described by formula (2.4), and \(\text{Arc}(4\mu_1/3, 4\mu_2/3, \kappa_2) \) is
described by the formula (2.5).

Inverse \(Y \)-transformation (defined by (A.1))
maps these arcs into the complex bulk modulus plane.
Clearly, images of the arcs (2.2)-(2.5) are given by lines (2.1), \(n = 1, 2, 3, 4 \), respectively.

The \(Y \)-transformation is a fractional linear one.
Therefore, it maps circles into circles and arcs into
arcs. It means that the lines described by (2.1) are
really the arcs on the complex bulk modulus plane.
Therefore the bounds on the bulk modulus are
given by the outermost pair of four arcs (2.1).

As we mentioned before, the boundary
points of the set \(G(x) \) are formed by the bound-
ary points of the sets \(G(x) \) for some values of the
parameter \(f \). To find the desirable bounds we
find the track that each of the arcs (2.1) draws while \(f \) varies from zero to one. The union of all
these tracks gives us the set \(G(x) \), see Fig. 1.

There are two possible variants how any of the
arcs (2.1) may form the bounds of its track.
First, it may be drawn by one of the end points
\(\kappa_1, \kappa_2 \) of the arc (2.1) (like for the arcs \(n =
1, n = 3 \) and \(n = 4 \) on Fig. 1). It is easy to see
from (1.5), (2.6) and (2.7) that lines drawn by
these points are \(\text{Arc}(\kappa_1, \kappa_2, -4\mu_1/3) \),

Secondly, it may be also drawn by the internal
point of the arc (as for the arc (2.1) n = 2
in Fig. 1). Note that in this particular case the
position of the internal point \(D \) is described by
the formula (2.1), n = 2 for some \(f \in [0, 1] \),
\(y \in [0, 1] \), or in general by one of the formulas
(2.1).

The outermost pair of all these lines gives us the
bound for \(G(x) \) set (see Fig. 1).

Let us find the conditions that define the in-
ternal points that may draw the boundary lines
for the tracks of the arcs (2.1).

Let us study some point \(x^0(f_1, \gamma) \). The small
variation \(\delta x^0(f_1, \gamma) \) of the position of this point is given by

\[
\delta x^0(f_1, \gamma) = \kappa^0(f_1, \gamma, \delta f, \delta \gamma) \delta f + \delta \gamma.
\]

\[
\kappa^0(f_1, \gamma) = x_1(f_1, \gamma, \delta f, \delta \gamma).
\]
when the parameters f and γ vary on δf and
$\delta \gamma$, respectively. If the arguments of the partial
derivatives of the function $\psi_{\mathfrak{R}}(f, \gamma)$ in respect
to the variable f and γ at the point $f = f_{0}$,
$\gamma = \gamma_{0}$, are not equal

$$\arg \left(\frac{\partial \psi_{\mathfrak{R}}}{\partial f} \right) = \arg \left(\frac{\partial \psi_{\mathfrak{R}}}{\partial \gamma} \right).$$

and if the values f and γ are strictly inside the
interval $[0, 1]$ (and therefore the variations δf and $\delta \gamma$ are arbitrary), then by choosing these
variations we can give arbitrary direction to the
variation $\partial \psi_{\mathfrak{R}}(f, \gamma)$ of the position of the
point $\psi_{\mathfrak{R}}(f, \gamma)$. Therefore this point cannot
be the boundary point of the track of the corre-
sponding arc. It means that the necessary condi-
tions for the point $\psi_{\mathfrak{R}}(f, \gamma)$ to be on the bound-
ary of the track of the arc is $\gamma = 0$, or $\gamma = 1$
in these cases the bounds are drawn by the end
points (2.6) and (2.7) of the arcs (2.1) or

$$\left[\partial \psi_{\mathfrak{R}} / \partial f \right] \left[\partial \psi_{\mathfrak{R}} / \partial \gamma \right]^{\ast} = 0. \tag{A.5}$$

Last condition means that mentioned partial de-
rivatives have the same arguments (we recall that
the star in the expression \ast denotes the com-
plex conjugate to it). It is clear from the ex-
pression (2.7.1) that this is the whole problem degener-
asate if $f = 0$, or $f = 1$, and therefore we should
not take these points into account.

The argumentations that we use here follows the
work by Milon (1981) where the set of the
values for the complex function depending on
several real parameters were obtained.

The rest are straightforward calculations. First
we define the internal points (if they exist) on
each of the arcs (2.1) that may draw the bounds.

Then we draw the lines defined by these points
and add to this lines the arcs drawn by the end
points (2.6) and (2.7) of the arc (2.1). The
outmost pair of all these lines gives us the de-
sirable bounds, see Fig. 1.

Let us examine the condition (A.5) for all the
arcs (2.1). One can check that

$$\frac{\partial \psi_{\mathfrak{R}}}{\partial f} = \frac{(f_{1} - f_{2})(k_{1} - f_{2})(y_{1}(\gamma_{2}))}{\sqrt{f_{2}^{2} + (1 - f_{1})(k_{1} + y_{1}(\gamma_{1}))^{2}}}, \tag{A.6}$$

$$\frac{\partial \psi_{\mathfrak{R}}}{\partial \gamma} = \frac{(1 - f)(k_{1} - f_{2})^{2}}{\sqrt{f_{2}^{2} + (1 - f_{1})(k_{1} + y_{1}(\gamma_{1}))^{2}}} \times y_{1}(\gamma_{1}), \tag{A.7}$$

Substituting (A.6) and (A.7) into (A.5) we de-
duce that

$$\left[\frac{\partial \psi_{\mathfrak{R}}}{\partial f} \right] \left[\frac{\partial \psi_{\mathfrak{R}}}{\partial \gamma} \right]^{\ast} = H \left[\frac{(f_{1} - f_{2})(k_{1} - f_{2})(y_{1}(\gamma_{2}))}{\sqrt{f_{2}^{2} + (1 - f_{1})(k_{1} + y_{1}(\gamma_{1}))^{2}}} \right]^{*^{*}} = 0. \tag{A.8}$$

where H is real and equals

$$H = \left(1 - f \right)(f_{1} - f_{2}) \left(f_{2} + (1 - f_{1})(k_{1} + y_{1}(\gamma_{1}))^{2} \right)^{1/2}. \tag{A.9}$$

It is clear that H is positive if $f \in [0, 1], \gamma \in
[0, 1]$ and equal to zero only in the trivial cases $f = 0$, $f = 1$, $k_{1} = k_{2}$ or $\mu_{1} = \mu_{2}$. Therefore
condition (A.5) leads to the equation

$$\left[\frac{(f_{1} + y_{1}(\gamma_{2}))}{(f_{1} - k_{1})^{2} + y_{1}(\gamma_{2})^{2}} \right]^{*} = 0. \tag{A.10}$$

As we see, this equation depends only on the
parameter γ and on the moduli of the original
materials and does not depend on the volume
fraction ψ. The dependence on the parameter f
does not disappear because it enters into Eq. (A.5) only
in a nonnegative real coefficient H.

By substituting the definition (2.2.1) of the function
$y_{1}(\gamma)$ into Eq. (A.10) for $n = 1$ we get

$$\frac{3}{4} \left(k_{1} + 4 \psi_{1} (1 - \gamma) \psi_{1} / 3 \right) \times \left(k_{2} + 4 \psi_{2} (1 - \gamma) \psi_{2} / 3 \right) \times \left(k_{3} - k_{2} \right)^{\gamma} = 0. \tag{A.11}$$

The last equation can be treated as a quartic equation
$A_{1}y^{4} + B_{1}y^{3} + C_{1}y^{2} = 0$ for the param-
eter γ where the coefficients A_{1}, B_{1} and C_{1} are
defined by the equation (2.9). The solutions γ_{1} and γ_{∞} of this equation are described by (2.9) and (2.9).

If γ_{1} (or γ_{∞}) belongs to the interval $[0, 1]$ it
defines the internal point $x(1)(f, \gamma_{1})$ (or $x(1)$
(f, γ_{∞})) on the arc $x(1)(f, \gamma)$ (f is fixed, $\gamma \in [0, 1]$). The arcs $x(1)(f, \gamma)$, $f \in [0, 1]$ or $x(1)(f, \gamma_{1})$, $f \in [0, 1]$ which are drawn by
either of these points may form the bound for the
$G(x)$ set. Note (comparing (1.5) and (2.11)) that
each of them passes through the points k_{1}
and k_{2} of the original materials. In addition the
first arc passes through the point $-y^{(1)}(\gamma_{1})$, i.e., it can be described as

$$\text{Arc}(k_{1}, -y^{(1)}(\gamma_{1})), \tag{A.11}$$

and the second one passes through the point $-y^{(1)}(\gamma_{\infty})$, i.e., it can be described as

$$\text{Arc}(k_{2}, -y^{(1)}(\gamma_{\infty})). \tag{A.12}$$

By substituting (2.3) into (A.10) for $n = 2$ we
deduce after simple calculations

$$\left[\frac{3}{4} \left(k_{1} + 3 \psi_{1} (1 - \gamma) \psi_{1} / 3 \right) \times \left(k_{2} + 3 \psi_{2} (1 - \gamma) \psi_{2} / 3 \right) \times \left(k_{3} - k_{2} \right)^{\gamma} = 0. \tag{A.13}$$

One can also check that by substituting (2.4)
into (A.10) we arrive at the equation

$$\left[-y^{(1)} (3k_{3}) + k_{1} \gamma_{3} + k_{2} \gamma_{2} + 3k_{1} \gamma_{1} \right]^{*} = 0. \tag{A.13}$$

Obviously the last expression does not depend
on γ and has no solution. Therefore the orig-
inal points on the arc (2.1), $n = 3$, that we should
take into account when we construct the $G(x)$
set, are the points $\gamma = 0$ and $\gamma = 1$. They
are determined by the arcs (2.6) and (2.7). The same
test is true for the function $x(1)(f, \gamma)$, see (2.1) $n = 4$.