
E L S E V I E R  Mechanics of Materials 25 (1997) 79-95 

MECHANICS 
OF 

MATERIALS 

Bounds on the complex bulk and shear moduli of a 
two-dimensional two-phase viscoelastic composite 

L.V. Gibiansky a,*, R. Lakes b,1 
a Department o f  Civil Engineering and Operations Research, Princeton University, Princeton, NJ 08544, USA 

b University of lowa,  Iowa City, IA 52242, USA 

Received 17 October 1995; revised version received 1 August 1996 

A b s t r a c t  

The effective complex moduli of an isotropic two-phase, two-dimensional viscoelastic composite material are analyzed in 
terms of the complex moduli of its phases. The frequency range is assumed to be well below frequencies associated with the 
inertial terms; the acoustic wavelength is much larger than the inhomogeneities. Bounds are developed for the complex bulk 
modulus K .  = K ' .  + iK" and complex shear modulus /x. ~/z ' .  + i/~'. of the composite with arbi trary  phase volume 
fractions. Shear modulus bounds are obtained subject to one scalar restriction on the phase properties [ (1/K l - 
1 / K 2 ) / ( 1 / I x  J - l / /z2)]" = 0 which is valid, in particular, for the phases with real and equal Poisson's ratios. Each of the 
moduli is shown to be constrained to a lens-shaped region bounded by two circular arcs in the complex bulk or shear 
modulus planes. The bounds are investigated numerically to explore conditions which give rise to high loss combined with 
high stiffness. Composite microstructures corresponding to various points on the circular arcs are identified. Influence of 
anisotropy of the composite on the stiffness-loss map for the bulk and shear type loads are analyzed. 

1. I n t r o d u c t i o n  

For  applications of  viscoelastic composite materi-  
als, one may desire stiff structural materials with 
high dissipation for the purpose of  dumping vibra- 
tion or reducing noise. Most  stiff materials, however,  
are low in dumping and most high-dumping materi-  
als are compliant.  Maximum dumping is l imited by 
the fact that polymers,  though they may exhibit  high 
dumping,  are not very stiff. One may combine stiff 
elastic and compliant,  high-dumping materials in a 
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composite  to achieve the desired combination of  the 
properties. For  example,  a layer of  polymer  can be 
cemented to a metal plate to increase the dumping, 
as is done in many cases to reduce vibration. Com- 
posite materials are in principle capable of  high 
stiffness and high loss, provided there is non-affine 
deformation, in which the strain field is highly inho- 
mogeneous on the scale of micro-structural elements,  
see e.g, Chen and Lakes (1993). 

Alternatively,  a small dissipation at low fre- 
quency, corresponding (via Fourier transformation) 
to minimal creep, may be considered useful for 
dimensional stability and to prevent creep buckling. 
A low value of  dumping or creep can be achieved in 
composi tes  which undergo affine deformation such 
as composites  which approximate the Voigt  model. 
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In attempts to achieve design goals in applica- 
tions, bounds on viscoelastic behavior combined with 
knowledge of microstructures which attain those 
bounds, can be useful in designing composite struc- 
tural elements. Such bounds allow to predict the 
range of the properties of new composite materials 
without making costly experiments. 

In this paper we study effective properties of a 
two-dimensional isotropic composite which is pre- 
pared from two isotropic viscoelastic materials taken 
in arbitrary proportions. Low frequency harmonic 
oscillation in such a medium can be described by the 
elasticity equations but with complex moduli and 
fields. The previous paper by Gibiansky and Lakes 
(1993) presented the complex bulk modulus bounds 
for a three-dimensional viscoelastic composite with 
arbitrary phase volume fractions. Here we obtain 
similar bounds for the two-dimensional problem, and 
also find bounds on the complex shear modulus 
(subject to additional constraint on the phase moduli 
that we will discuss later). These results were an- 
nounced without proof in the paper by Gibiansky et 
al., 1993. 

The method that we use here is identical to one 
used in the preceding paper by Gibiansky and Lakes 
(1993). Therefore, we concentrate on the results and 
omit details of the derivation. We base our analyses 
on the works by Gibiansky and Milton (1993a;b) 
who found bounds on the complex bulk and shear 
moduli of a two-dimensional composite with fixed 
volume fractions of the phases. The bounds on the 
complex bulk and shear moduli of a three dimen- 
sional composite with fixed volume fractions of the 
phases were found by Gibiansky and Milton (1993a) 
and Milton and Berryman (1996), respectively. 

The properties of a two-dimensional isotropic vis- 
coelastic material can be described by either of two 
pairs of moduli: plane Young's modulus E and plane 
Poisson's ratio v or plane bulk modulus K and shear 
modulus /x. These pairs of the moduli are connected 
by the relations 

4Kix 
g ~ -  

K + / . '  

o r  

E 
K =  

2 ( 1  - , , )  ' 

K - ~ .  
~ ,  (1.1) 
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E 
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Note that for an isotropic two-dimensional mate- 
rial the bulk modulus K (in the plane strain prob- 
lem) is connected with the three-dimensional bulk 
modulus K and shear modulus /z by the formula 

1 K = ~: + 3/x, (1.3) 

whereas the shear modulus retains the same value as 
for the three-dimensional problem. 

For the problem under study the bulk and shear 
moduli are complex and depend on frequency of 
oscillation. We assume that the frequency is fixed 
and is sufficiently low to allow the complex moduli 
description of the viscoelastic behavior. For a typical 
composite material with constituent dimensions less 
than 1 mm, this requirement entails frequencies be- 
low the MHz regime. Then the pair (K, /z) or (E, v) 
completely characterizes the properties of an isotropic 
material at a given frequency. We denote KI, K 2 
and /zl, /x 2 the bulk and shear moduli of the first 
and the second phases, respectively, fl  = f  and f2 = 
1 - f  the phase volume fractions, and K , ,  /z. the 
effective complex bulk and shear moduli of a com- 
posite. 

Restrictions on the dynamic viscoelastic functions 
can be derived from various energy principles, see 
Christensen (1972). For example, the requirement of 
a non-negative rate of energy dissipation gives the 
conclusion K" > 0, /ff > 0, and E" _> 0. Consider, 
for example, uniaxial strain field in the viscoelastic 
material. Since the dissipated energy per cycle is 
7rg"E 2 (with E as amplitude of the uniaxial strain), a 
negative value of E" would correspond to a gain of 
mechanical energy per cycle. In passive materials, 
there is no external or internal source of energy 
which could supply this gain. Under these assump- 
tions, we have E">_ 0. Similarly, one can see that 
K" > 0 and ~ '  > 0. Demonstration of the inequali- 
ties K'  > 0, /x' > 0, and E' > 0 requires the assump- 
tion of both non-negative stored energy and non- 
negative rate of energy dissipation. Restrictions on 
the complex Poisson's ratios can be obtained from 
the aforementioned conditions for the bulk and shear 
moduli. As for Poisson's ratio in a two-dimensional 
isotropic elastic material (i.e. material with real 
positive bulk and shear moduli), positiveness of the 
bulk and shear moduli requires that it lies in the 
interval v ~  [ -  1, 1] (in three dimensions, v ~  [ -  1, 
0.5]). 
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We are interested in finding the range of variation 
of the effective moduli K . ,  /z. when the mi- 
crostructure of the composite and the phase volume 
fractions change. We restrict our attention to separate 
bounds on the complex bulk and shear moduli simi- 
lar to the Hashin-Shtrikman-Walpole bounds for 
the elastic moduli. Such bounds can be presented 
either in the complex planes (K ' . ,  K". ) and ( /x ' . ,  
/x".) or in stiffness-loss maps (IK.] ,  tan 6 K) and 
(I/z,  l, tan 6u). Here tan 6 K = K ' / K ' ,  is the loss 
tangent, or tangent of the phase angle 6K between 
stress and strain in sinusoidal hydrostatic loading, 
and tan 3u =/x" , / /z ' ,  is the tangent of the phase 
angle 6~ between stress and strain in sinusoidal 
shear loading. 

For the shear modulus bounds we restrict our 
attention, following Gibiansky and Milton (1993b), 
to the special case when the ratio 

I l K  I - 1 / K  2 
g =  1 / / x l _  1/ / /1 ,2  , (1.4) 

is real, i.e., 

g" = 0. (1.5) 

Here and throughout the paper a', a", and [a] 

= V/(a') 2 + (a")  2 denote the real, imaginary parts, 
and absolute value of the complex variable a = a '  + 
ia", i = ~ 1.  

Eq. (1.5) is a technical assumption that allowed 
Gibiansky and Milton (1993b) to evaluate explicitly 
the bounds on the effective shear modulus of a 
two-phase composite with fixed phase volume frac- 
tions. Their bounds are valid, and our method is 
applicable to a general situation of complex ratio g, 
but the explicit form of the bounds for this general 
case is still not found. We note that Eq. (1.5) is 
satisfied, for  example, for the phases with equal and 
real Poisson's ratios, i.e. when 111 = /J2 = V ,  /,'# = 0 .  

In this case 

/z~ /~2 1 - v 
g =  

K 1 K 2 1 + v 

obviously is real. When the ratios KI /~2  and K2//x 1 
are equal and real then 

/xl /x2 g =  
K 2 KI 

is also real. 

The structure of the paper is as follows: in Section 
2 we explain the basic idea how to obtain bounds on 
the effective moduli of a composite with arbitrary 
volume fractions and recapitulate the bounds by 
Gibiansky and Milton (1993a) and Gibiansky and 
Milton (1993b) on the effective moduli of a vis- 
coelastic composite with fixed phase volume frac- 
tions. In Section 3 we obtain the bounds for the 
effective moduli of a composite with arbitrary phase 
volume fractions. In Section 4 we describe the struc- 
tures of the composites which possess extremal vis- 
coelastic moduli in a sense that they satisfy the 
bounds exactly. In Section 5 we apply our bounds to 
various situations. In particular, we analyze the 
bounds for the composite with stiff elastic and soft 
dissipative phases, study influence of the phase Pois- 
son's ratios on the bounds, and analyze factors that 
give rise to the dissipation in the composite. In 
Section 6 we summarize results obtained. 

A more detailed physical statement of the prob- 
lem, description of the method and the structures, 
and the references on the earlier works on this 
subject can be found in Gibiansky and Milton (1993a) 
and Gibiansky and Lakes (1993). 

2. Main idea of  the method and known results 

In this section we present a simple idea (Gibian- 
sky and Lakes, 1993) how to bound effective moduli 
of a viscoelastic composite with arbitrary phase 
volume fractions given the bounds on the effective 
moduli of a composite with fixed phase volume 
fractions. Then we present the later bounds (Gibian- 
sky and Milton, 1993a; Gibiansky and Milton, 1993b) 
in the form that is convenient for our use. 

2.1. Bounding effective viscoelastic moduli 

Let us illustrate the method on an example of the 
shear modulus bounds since the bulk modulus was 
discussed in detail in our earlier paper (Gibiansky 
and Lakes, 1993). 



82 L.V. Gibiansky, R. Lakes~Mechanics of Materials 25 (1997) 79-95 

For any fixed phase 1 volume fraction f the 
effective shear modulus At, can be presented in a 
form 

f ( l  - f ) (  ] 3 " 1 -  / ' / '2)  2 

At. =fAtl + (1 - - f ) A t 2 -  (1 - f ) A t ,  +fAt2 + Y . .  ' 

y . .  E Y.. (2.1) 

Here Yu is some set in the complex plane which 
contains so-called Y-transformations yu, (see 
Cherkaev and Gibiansky, 1992 and Milton, 1991) 

Y.. = - f A t 2 -  (1 - f ) A t ,  

f (1  - f ) (  It£ l - -  /,./,2) 2 
+ (2.2) 

(1 - f ) A t2  +fAt, - At, 

of all composites with fixed phase volume fractions 
f l  = f ,  f2 = 1 - f .  There is a one-to-one correspon- 
dence (Eq. (2.1)) between At, and y**.. Therefore, 
Y-transformation Yt,. completely characterizes the 
shear modulus of a composite, given the phase mod- 
uli and volume fractions. For the problem under 
study the set Y~, is formed by the outermost of 
several circular arcs (Gibiansky and Milton, 1993b). 
As we will see in the next section, the formulas for 
these arcs do not depend on the phase volume 
fractions. This is the key point of our analyses. 
Taking the Y~ set as given, we seek to find the set 
G(At) with includes the effective shear moduli of 
two-phase composites of all possible microstructures 
and phase volume fractions. In other words we need 
to find the union of all points At, that can be 
presented in the form of Eq. (2.1) where f E  [0, 1] 
and y , .  ~ Y,. In this section we describe how to 
solve this problem. 

Let us denote Arc(a  I, Og2, O~3) the arc of a circle 
in the complex a-plane that joins the points a~, a 2 
and when extended passes through the point a 3. One 
can check that such an arc is described by the point 

T(1 - T ) ( a , - -  a2) 2 

a = T a l + ( 1 - - y ) a  2 -  ( 1 - - T ) a , + T o ~  2 - o % '  

(2.3) 

as parameter 3' varies along the real axis in the 
interval [0, 1]. Comparing Eq. (2.3) with Eq. (2.1) 
one can see that for any fixed y~. ~ Y, and f ~ [0, 
1] the point At, defined by Eq. (2.1) draws an arc in 

the complex At,-plane that connects the points At~ 
and /*2 of the original constituent materials and 
while extended passes through some point -Yu.  E 
-Yu. Here -Yu is the set of the points - Y r .  such 
that y~. ~ Yg. In what follows we refer to Fig. la  
where the values of the moduli are chosen as K 1 = 
9.5, K 2 = 7.5i (in arbitrary units of stiffness), vl = 
v 2 = 0.3. Such values of the moduli look artificial 
but we chose them for illustration only. To find the 
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Fig. 1. The bounds  for  the shear  (a) and the bulk (b) modul i  o f  an 

isotropic compos i t e  o f  two isotropic phases  o f  bulk modul i  K~ = 

9.5, K 2 = i7.5, and  P o i s s o n ' s  ratios v t = v 2 = 0.3.  Fo r  a fixed 

vo lume fract ion f =  0.5 the modul i  K ,  and /z ,  are conf ined  to 
the sets that  are shaded.  While  f changes  in the interval [0, 1] 

these sets d r aw  the regions  G ( K )  and  G( /z ) ,  respectively.  The 

bounds  o f  each  o f  the sets G(K) and G(/~) are given b y  the arcs  
of  two circles.  One  o f  them conta ins  the set - YK or - Y~,, the 

other  one has  on ly  one c o m m o n  point  with it. 
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desired bounds on the set G(At) of all possible /z, 
defined by Eq. (2.1) we need to find the union of all 
the arcs that connect the points /z I and At2 and while 
extended cross the set -Fg .  Therefore the bounds 
for the G(p,) set are formed by the arcs of two 
circles. These arcs pass through the points At~ and 
/*2 of the original constituent materials and when 
extended to circles touch the set - Yg. One of these 
circles ( A t l -  C - / ~ 2  in Fig. la) contains this set, 
the other one ( At! - ( - Y2) - / *2  in Fig. la) has only 
one common point -Y2 with it. 

The same arguments are valid for the bulk modu- 
lus bounds, see Fig. lb. The only difference is in the 
definitions of the Y~ set and corresponding YK set for 
the bulk modulus bounds. Moreover, bounds of this 
type are always formed by two arcs of the circles 
that pass through two points that corresponds to the 
phases, independently of the complexity of the Y-set 
shape. The only restriction is that the Y-set descrip- 
tion should be independent of the phase volume 
fractions. Both the classical Hashin-Shtrikman vari- 
ational method and the newer so-called translation 
method give the Y-set bounds that are independent of 
the phase volume fractions; see Gibiansky and Mil- 
ton (1993a) for details and references. Variational 
principles that are a precondition for the use of 
variational methods were discovered for media with 
complex moduli by Cherkaev and Gibiansky (1994), 
see also Milton (1990). 

2.2. Complex bulk modulus of  a composite with f ixed 
phase volume fractions 

Bounds on the complex bulk modulus of a two-di- 
mensional two-phase composite with fixed phase 
volume fractions can be described by the following 
statement: 

Statement 1. (Gibiansky and Milton, 1993a): The 
Y-transformation Yr. of the effective bulk modulus 
K ,  of any two-phase viscoelastic composite belongs 
to the set YK bounded by the outermost pair of three 
circular arcs 

y(K2)(3") = 

- K  l + 

= 

- -K 2 + 

(/Xl + K , ) (  At2 + K l )  

3"( At2 + & )  + (1 - 3 ' ) (  ' 

( 2 . 5 )  

( +K2)( At2 + & )  
3'( +K2)  + (1 - 3')( m + K s ) '  

(2.6) 

where y varies in the interval 3" ~ [0, 1]. 
Eqs. (2.4), (2.5) and (2.6) define three arcs that 

pass through the points y(xn)(0)= At2 and y(rn)(1)= 
/.t~, n = 1, 2, 3, and while extended to circles pass 
the origin of the complex plane (the arc of Eq. (2.4)), 
the point - K I  (the arc of Eq. (2.5)), and the point 
- K  2 (the arc of Eq. (2.6)), respectively. Comparing 
Eqs. (2.4), (2.5) and (2.6) with Eqs. (2.8), (2.9), 
(2.10) and (2.11) in the paper by Gibiansky and 
Lakes (1993) we see that the only difference with the 
three-dimensional bulk modulus bounds is that for 
the two-dimensional problem we need not take into 
account one of the arcs of Eq. (2.8) in Gibiansky and 
Lakes (1993) and the coefficient 4 / 3  is absent in 
front of /x l  and/*2 in Eqs. (2.4), (2.5) and (2.6). We 
will use this analogy to simplify the derivation. 

In a recent paper Li and Weng (1994a) have 
observed that the bulk modulus bounds of statement 
1 are nearly optimal: the complex bulk modulus of 
the two-phase composite with randomly oriented el- 
liptical inclusions literally follows the bound when 
the aspect ratio of the inclusions changes from zero 
to one. Li and Weng (1994b) have found that the 
aforementioned three-dimensional bulk modulus 
bounds give sharp estimates on the complex bulk 
modulus of three-dimensional composites with 
spheroidal inclusions. They have used a Mori-  
Tanaka scheme to approximate the complex effective 
moduli. 

2.3. Complex shear modulus of  a composite with 
f ixed phase volume fractions 

7 1-3")' 3' 
y~Kl)(3") = + , (2.4) 

/z2 

Bounds on the complex shear modulus of a two- 
dimensional two-phase composite were found by 
Gibiansky and Milton (1993b) by using the transla- 



84 L.V. Gibiansky, R. Lakes / Mechanics of  Materials 25 (1997) 79-95 

tion method. Unfortunately, the above mentioned 
paper is still unpublished. The idea of the method 
and its application to the complex moduli bounds is 
explained by Gibiansky and Milton (1993a) using an 
example of the complex bulk modulus bounds. How- 
ever, generalization for the shear modulus case is not 
trivial. We will not comment on the proof and will 
discuss only their results. 

The bounds by Gibiansky and Milton (1993b) on 
the complex shear modulus of a composite with 
fixed phase volume fractions are presented as a 
system of inequalities on the effective complex shear 
modulus of a composite. The inequalities contain six 
free parameters that need to be optimized in order to 
get the best bounds. The nonlinear optimization 
problem for the bounds was solved in a particular 
case when the moduli of the initial material satisfy 
Eq. (1.5). We restrict our attention to this special but 
yet quite general case. The form of the shear modu- 
lus bounds differ depending on the sign of the real 
parameter g defined by Eq. (1.5). We will call the 
pair of the materials 'well-ordered' if this parameter 
is positive, i.e. 

g, [1/K' - I/K2 l' 
= _ > 0 ,  g"  = O, ( 2 . 7 )  

1//~1 I / ~  2 

and we will call this pair 'badly-ordered' if the 
parameter g is negative, i.e. 

g, [1/K~ - I/K2 ] ' g,, 
= < O, = O. (2.8) 

1//*1 1///-2 

A pair of materials is called well-ordered in the 
context of elasticity theory if both the bulk and shear 
moduli of one material are greater than bulk and 
shear moduli of the other one, respectively, i.e. if 
( K I - K 2 X / z l - / x 2 ) > 0 .  They are called badly- 
ordered in the opposite case when ( K , -  K2)(/-~l - 
/ , 2 )<  0 (see, e.g., Hashin, 1965; Walpole, 1966). 
Our definitions (Eqs. (2.7) and (2.8)) do not contra- 
dict the elastic theory definitions. Indeed, for the 
purely elastic phases (with real moduli) they coin- 
cide with the definitions of well- and badly-ordered 
material for the elastic theory. The only difference is 
that for an elastic material, the parameter g has a 
real value by definition whereas here we need to 
assume this condition in order to fix some ordering 
of the materials in a complex plane. 

w)(3') = 

2.3.1. Composite with well-ordered phases 
Statement 2 (Gibiansky and Milton, 1993b): The 

Y-transformation 

y . .  = - f * * 2 -  (1 -f) l 

f ( 1  - f ) (  t.£1 -- j[~2) 2 
-) (2.9) 

(1 - f ) i t 2  + f i t ,  - t*, 

of the effective shear modulus I t , ,  of a two-dimen- 
sional two-phase viscoelastic composite with well- 
ordered phases subjected to the restriction (Eq. (1.5)), 
belongs to the set Y~ which is bounded by the 
outermost pair of three circular arcs 

1 - 3" ( 2 . 1 0 )  

+ Y2 

(YI +/'( 'I)(Y2 + /~I )  

3"(r2 + (1 - 3 ' ) ( r ,  ' 

w>(3") = 

--/x2 + 
(Y, +~2)(Y2 + ~2) 

3"(r2 + ( I  - 3 " ) ( r ,  

(2.11) 

(2.12) 

Here 3' varies in the interval 3' ~ [0, 1] and 

KI txl K 2 t/,2 
YI -- KI + 2t*1 ' Yz K2 + 2t*2 . (2.13) 

Eqs. (2.10), (2.11) and (2.12) define three arcs 
that pass through the points y(~"w)(0)= Y2 and 
Y(fw)(1) = Yi, n = 1, 2, 3, and while extended to 
circles pass the origin of the complex plane (the arc 
of Eq. (2.10)), the point - / * l  (the arc of Eq. (2.11)), 
and the point (the arc of Eq. (2.12)), respectively. 
Comparing Eqs. (2.4), (2.5) and (2.6) and Eqs. (2.10), 
(2.11) and (2.12), one can see that they coincide up 
to the replacement of the symbols K l, K2, /~1 and 
jt£ 2 in Eqs. (2.4), (2.5) and (2.6) by the symbols /Xl, 
/*2, Y1, and Y2, respectively, in Eqs. (2.10), (2.11) 
and (2.12). 

2.3.2. Composite with badly-ordered phases 
Statement 3 (Gibiansky and Milton, 1993b): The 

Y-transformation y~,. of the effective shear modulus 
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y 2  = 

y(f.b)(T) = 

/z. of a two-dimensional two-phase viscoelastic 
composite with badly-ordered phases subjected to 
Eq. (1.5), belongs to the set Y~ which is bounded by 
the outermost pair of three circular arcs 

__l--T) -I 
+ Y4 (2.14) 

(r3 + + 
- - / z l +  

T(Y4 + /x , )  + (1 - Y)(Y3 + / z , )  ' 

(2.15) 

y(3.u)(,y) = 

+ + 

--/£2 + 
T(Y4 +/z2)  + (1 -- T)(Y3 +/z2)  " 

(2.16) 

Here parameter y varies in the interval y ~ [0, 1] 
and 

Ki/x2 K2 ~1 
Y3 K1 + 2/z2, Y4 = K2 + 2/z~ (2.17) 

Eqs. (2.14), (2.15) and (2.16) define three arcs 
that pass through the points Y(fb)(0) = Y4 and 
Y(f b)(1)= Y3, n =  1, 2, 3 and while extended to 
circles pass the origin of the complex plane (the arc 
of Eq. (2.14)), the point - ~l (the arc of Eq. (2.15)), 
and the point (the arc of Eq. (2.16)), respectively. 
Again, replacement of the symbols K~, K z, I~, and 
/x 2 in (Eqs. (2.4), (2.5) and (2.6)) by the symbols 
/~1, ~2, Y3, and Y4, respectively, leads to Eqs. (2.14), 
(2.15) and (2.16). 

of these three arcs forms the - YK set. The set -- YK 
is a set of the points --YK. such that YK. ~ YK 
where YK is defined by statement 1. The set - YK is 
bounded by two solid arcs in the lower left part of 
the Fig. lb. These arcs and the --YK set have no 
immediate physical meaning although they play an 
important role in the procedure that we describe. 
Now it is clear that the bounds on the complex bulk 
modulus of the composite with arbitrary volume 
fractions of the phases are given by two arcs (Arc(K l, 
K 2, C) and Arc(K l, K 2, - / z  2) in Fig. lb). They 
pass through the points K l and K 2 of the original 
constituent materials and when extended to circles 
touch the set - YK" The smaller shaded region inside 
the set G(K) in Fig. lb presents the bounds of 
statement 1 on the bulk moduli of the composite 
with fixed phase volume fractions f~ =f2 = 0.5. It 
consists of the points K ,  (yK,) where the function 
K ,  ( YK, ) is defined by Eq. (2.1), YK, e YK, and YK is 
described by statement 1. 

Note two possible variants how the boundary 
circle may touch the --YK set. It may pass through 
one of the comer points of this set, say - / x  2 as in 
Fig. lb or may touch the set - Y r  in some internal 
point C of one of its boundary arcs. 

Now we need only to solve a simple algebraic 
problem and define the formulas for these two cir- 
cles as it was done in Gibiansky and Lakes (1993) 
for the three-dimensional problem. In fact we can 
use the solution given there, make obvious changes 
in notation (that were mentioned in Section 2.2), and 
get the following results: 

Statement 4: To find the bounds on the effective 
complex bulk modulus of a two-dimensional two- 
phase viscoelastic composite one should calculate 
the values y , ,  and y, , ,  

3. Bounds on the complex moduli of a composite 
with arbitrary phase volume fractions 

3.1. Bulk modulus bounds 

Here we follow the idea presented in the Introduc- 
tion. First, we put on the complex bulk modulus 
plane the points K l, K 2, --/x I and - / z  2 and denote 
as O the origin of this plane, see Fig. lb. Then we 
draw the arcs Arc ( - / x  l, - ~ 2 ,  O), A r c ( -  ~ l, - / x  2, 
K I) and Ar c ( - / x  1, - /~2,  K2). The outermost pair 

( - B  + l / D ) / ( 2  A),  

Y, = - C/B,  

2, 

y, , 
( ( - B -  v ~ ) / ( 2  A),  

=]-cle, 
1,2, 

if D_> 0, A ¢ 0  

if A = 0 ,  

if D < 0 ,  

(3.1) 

if D>_0, A ¢ 0  

if A = 0 ,  

if D ~ 0 ,  
(3.2) 
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where 

( 1 / I X 1 -  l / IX2)  l", 
A =  ( l / K ,  l / K 2 )  1 

[ ( 1 / K I + I / I X 2 ) ( I l K 2 + I / I X 2 ) ]  ', 

C =  ~ 1 - ~ i - - 1 / K 2 ) ( 1 / I X  , - l / I x 2 )  

O = B 2 - 4AC. (3.4)  

Then one should draw the arcs 

A r c ( K , ,  K 2, - I X , ) ,  A r c ( K , ,  K 2, - IX2) ,  

( ( ) )  y.  1 - 3 ' .  
Arc K, ,  K 2, - - -  + - -  

Ixi IX2 

if 3'. ~ [0, 11, 

( ( ) )  3"** 1 - -3 '**  
Arc KI, K2, - - -  + - -  

t x, IX2 

if 3'** E [0, l ] .  

The outermost pair of  these arcs gives the desired 
bounds for the G(K)  set, see Fig. lb. 

The expressions for the bounds can be simplified 
for the original materials that satisfy Eq. (1.5). It 
immediately follows from Eqs. (3.1), (3.2), (3.3) and 
(3.4) that in this case 

g(1  + 2 R K )  
3". = 3". • 2 

[ I /K2  + l/IX21 '. (3.5)  
R K = ILK1--  l / K 2  

One can also check that for this case 

[ 1 1 2 + g  
3", ~ [ 0 , 1 ] i f a n d o n l y i f R  K ~ 2" 2g " 

Therefore, we proved the following result: 
Statement 5: To find the bounds on the effective 

bulk modulus of  a composite of  two phases with 
phase moduli that satisfy Eq. (1.5) one should calcu- 
late parameter 3', by using Eq. (3.5). Then one 
should enscribe the arcs 

Arc( K , ,  K 2 , - IX, ) ,  

A r c ( K , ,  K2, --IX2), 

Arc KI ,  K2, - - -  
Ixl 

if 3", ~ [0, 1]. 

1 -- y ,  " ~]- ' [  
+ - -  )) IX2 

in the bulk modulus plane. The outermost pair of 
these arcs forms the desired bound for the G(K) set, 
i.e. the bound for the complex bulk modulus of a 
viscoelastic composite with arbitrary phase volume 
fractions. 

3.2. Shear modulus bound 

Derivation of the shear modulus bounds is liter- 
ally the same as we described in the previous subsec- 
tion. Let us distinguish cases of  well and badly 
ordered materials. 

3.2.1. Composite with well-ordered phases 
We define the set - Y w(IX) as bounded by outer- 

most pair of  the circular arcs A r c ( - Y , ,  -112, O), 
A r c ( -  Yl, - Y2, IX2) and A r c ( -  Y,, - Y2, IX2); see 
Fig. la. These arcs are described by the functions 
-y(f"~),  n = 1, 2, 3, respectively, while 3' ~ [0, 1]. 
The bounds on the complex shear modulus of  the 
composite with arbitrary volume fractions of  two 
well-ordered phases satisfying Eq. (1.5) are given by 
two arcs that pass through the points IX, and IX2 of 
the original materials and when extended to circles 
touch the set - Y w(IX). One of  these circles contains 
this set, the other one has only one common point 
with it, see Fig. l a. 

Literally following the calculations for the bulk 
modulus bounds we obtain the following statement: 

Statement 6: To find the bounds on effective 
shear modulus of  a two-dimensional two-phase com- 
posite with well-ordered phases satisfying Eq. (1.5) 
one should calculate y~,  

l+4Ru [ 1//K2 + 1//IX21' ' 
3'*~-- 2 ( 1 + 2 g ) '  R u =  1 / I X 1 - 1 / I X 2  

(3.6)  

and enscribe the arcs 

Arc( Ixl, IX2, - Y,),  

Arc( IX,, IX2, - Y 2 ) ,  
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( m w)) 
Arc 

if T w ~ [0, 1] 

in the complex shear modulus plane. The outermost 
pair of these arcs forms the desired bounds. 

Note that 

[, ] y,w ~ [0, 1 ] if and only if R~, ~ 
4 '  

3.2.2. Composite with badly-ordered phases 
Literally following the calculations for the well- 

ordered materials we obtain the following statement. 
Statement 7: To find the bounds on effective 

shear modulus of a two-dimensional two-phase com- 
posite with badly-ordered phases satisfying Eq. (1.5) 
one should calculate T, b 

3 + 4Rg 
y b =  2(1 -- 2g )  ' (3.7) 

(R~, is defined by Eq. (3.6)) and enscribe the arcs 

Arc(/J.,¿ , ]J'2, - -Y3) ,  

Arc (  ~ l  , ~ 2 ,  - Y,*), 

Arc 

if ~,2 e [0, l] 

in the complex shear modulus plane. The outermost 
pair of these arcs forms the desired bounds. 

Note that 

T b ~ [0, 1 ] if and only if 

[ 3 1 4 4 g  ] R~, ~ . (3.8) 
4 '  

4.  S t r u c t u r e s  w i t h  e x t r e m a l  v i s c o e l a s t i c  m o d u l i  

In this section we describe the structures that 
possess extremal viscoelastic properties, i.e lie on the 
boundary of sets defined by statements 3-7.  Note 
that any of the arcs referred to in those statements 
may form the bound. Therefore, it is of interest to 

find the structures corresponding to the points on all 
of these curves to guide in the synthesis of materials 
with extremal properties. We will call a bound 'opti- 
mal' if there exists at least one composite that corre- 
sponds to any given point on this bound. Indeed, in 
this situation the bound cannot be improved without 
additional assumptions about the composite mi- 
crostructure. 

4.1. Structures with extremal bulk modulus 

First we note that each point K .  on the Arc(KI, 
K2, - t*~) can be presented in the form 

K .  =3 ,K I + ( 1 - T ) K  2 

T(1 - T) (  KI - K2) 2 
- , ( 4 . 1 )  

( 1 -- T) K~ + TK2 + / z  I 

where 7 ~  [0, 1]. Therefore, it corresponds to the 
effective bulk modulus of Hashin (1965) coated cir- 
cles construction for some phase volume fractions 
f l  = "Y and f2 = 1 - y. In these structures the inclu- 
sions of the second phase are surrounded by the first 
phase. Similarly each point on the Arc(Kl, K2, 
-/-*2) corresponds to the coated circles assemblages 
with the inclusions of the phase 1 in the matrix of 

Fig. 2. Schematic picture of the optimal microstructures: (a) 
Hashin-type composite, (b) matrix laminate composite. 
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the phase 2. Therefore, two out of four arcs that are 
mentioned in statement 1 as candidates to form the 
bounds correspond to some known composites. If 
any of these arcs forms the bound this bound is 
optimal because there exist the composite materials 
that correspond to any point on that part of the 
boundary. The other microstructures that possess 
exactly the same bulk modulus are those of so-called 
matrix laminate composites. These microstmctures 
were found to attain Hashin (1965) bulk and shear 
moduli bounds; see Francfort and Murat (1986). 
Therefore, the boundary Arc(K l, K 2, - I x ) )  and 
Arc(K1, K2, - / x  2) also correspond to known 
isotropic matrix laminate composites. Fig. 2 presents 
schematic pictures of both types of the extremal 
microstmctures. 

As to the other possible boundary arc 

( Arc K I , K  2 , -  + - -  i f T  = T .  
/x2 

o r y  = Y. • and y ~  [0, i ] ,  

only one point on this arc is known that corresponds 
to some composite. Namely, there exists a composite 
that possesses bulk modulus K .  such that 

- r ( 1 - ' r ) ( g , -  2 

( 1 - T ) / X ,  + Ttx2 + Kl  t x , / (  K,  + 2/z,)  ' 

yE  [0, 1]. (4.4) 

This coincides with the expression for the Hashin 
(1965) bound on the effective shear modulus of an 
elastic material if f l  = T and f2 = 1 - % Francfort 
and Murat (1986) have found an isotropic matrix 
laminate composite that possesses such a shear mod- 
ulus. This composite has the second phase as an 
inclusion phase and the first phase as a matrix one. 
Therefore, any point on the Arc(/x l, /z 2, -Y~) 
corresponds to a matrix laminate composite; see Fig. 
2b for the schematic view of such a structure. 
Isotropic matrix laminate composites with the matrix 
of the second phase and inclusions of the first phase 
correspond to the points on the Arc(/z 1, /x 2, -} '2).  
Therefore, two out of three arcs that are mentioned 
in statement 3 as candidates to form the bounds 
correspond to some composites. If any of these arcs 
forms the bound this bound is optimal and corre- 
sponds to the matrix laminate composites. At the 
moment we do not know any other structures that 
may lie on the boundary of the G(/z)  sets. 

[1. 
Yx = - -  + (4.2) 

• P'I 

(see Gibiansky and Milton (1993a) for details). 
Therefore, if T ~ [0, 1] then the point 

K ,  = ( 1 - T ) K  I + T K  2 

T ( 1  - -  T ) ( K I  + K 2 )  2 

(1 - T ) K  2 + T K ,  + [ T / g ,  + (1 - ' y ) / / x 2 ] - '  
(4.3) 

corresponds to the composite described by Eq. (4.2) 
when f =  1 - T. 

4.2. Structures with extremal shear modulus 

One can check that any point /x, on the Arc(/z l, 
/x2, - Y1) can be presented in a form 

30.0 

K1=100, Kz=0.35+i0.35, vl--v==0.3 [ 

20.0 

~ 10.0 
.~_ 

g 

0.0 . . . .  
0.0 20.0 40.0 60.0 80. 0 100.0 

Real part of bulk modulus, K;  

Fig. 3. The bounds for the bulk modulus of a composite of the 
stiff elastic phase and the soft viscoelastic phase. The lower bound 
corresponds to the assemblages of the Hashin coated circles. The 
upper bound nearly coincides with the curve that corresponds to 
the complementary Hashin coated circles. The internal smaller set 
shows the bulk modulus bounds for a composite with fixed 
volume fraction f = 0.8 of the first phase. 
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5. Part icular  cases  and discussion 

In this section we apply our results to composites 
with specific phase moduli. Except for the example 
in Section 5.3 we restrict our attention to phases with 
real and equal Poisson's ratios. We evaluate the 
bounds and discuss results of numerical calculations. 

5.1. Composite of stiff purely elastic phase and soft 
phase with high damping 

Fig. 3 shows bulk modulus bounds of statement 5 
for a composite material prepared from a stiff purely 
elastic phase with a bulk modulus K = 100 and a soft 
phase with high damping with a bulk modulus K 2 = 
0.35 + i0.35 (in arbitrary units of stiffness). We as- 
sume that u l = u  2=0 .3 .  In Fig. 3 we draw the 
G(K) set that contains the effective complex bulk 
moduli K ,  of all composites, and a smaller set that 
contains the bulk moduli K ,  of composites with 
fixed volume fraction of the first phase f =  0.8. The 
lower bound is optimal and corresponds to the as- 
semblages of Hashin (1965) coated circles where the 
stiff elastic phase 1 forms the matrix and the soft 
dissipative phase 2 is placed into the inclusions; the 
bulk modulus of such a composite with f =  0.8 is 

20.0 

-5 

E 

-~ loo 
"6 

_E 

I Kt=100, K2=0.35+i0.35, vt=vz=0.31 • 

0.0 
0.0 60.0 

~ 
p.~ 

20.0 40.0 
Real part of shear modulus, tz: 

Fig. 4. The bounds for the shear modulus of a composi tes  of a 
stiff elastic phase and a soft viscoelastic phase. The lower  bound 
corresponds to assemblages of  the matrix laminate composites.  
The upper bound nearly coincides with the curve that corresponds 
to the complementary matrix laminate composites.  The internal 
smaller  set shows the shear modulus bounds for a composi te  with 
fixed volume fraction f = 0.8 of  the first phase. 

100.0 , , , • , 

I Gl0O;i0Ol/ o3 i30. 
~ - R X ~  V,=Vz=-I - lower dotted . . . .  

9o0 v. v =-05-d.,.odeorves. 
% ~ \  ~ , ~  [ Vl=V2=0.0 - bold solid curves, 

80.0 " - ;~ \ .  \ \ " ~ .  I ~ l -  upper  dotted eurve.  
%\ \x \ \ N _  

i ..:, " .~ . \" , .  \ \ '%  

600 ...,..,.,, 
"":.'v-.. 50.0 "•  ;-,,~ 

40"00.0 0.2 014 016 0'.8 1.0 
Bulk modulus loss tangent, K :'/K: 

Fig. 5. The bulk modulus hounds for composites of phases with 
real and equal Poisson 's  ratios, v~ = ~'2 = v. The bounds are 

optimal and correspond to the assemblages  of  Hashin coated 
circles or to the matrix laminate composites.  

denoted as K,  1. The upper bound nearly coincides 
with the curve that corresponds to the Hashin struc- 
tures where the stiff inclusions of the phase 1 are 
surrounded by the soft phase 2; the bulk modulus of 
such a composite with f =  0.8 is denoted as K 2 , .  
Although it cannot be seen in Fig. 3, the actual 
bound lies slightly above the curve that corresponds 
to the Hashin structures. 

Fig. 4 shows the shear modulus bounds of state- 
ment 6 for a composite of the same phases. Here the 
lower bound is optimal and corresponds to the ma- 
trix laminate composites (see Francfort and Murat, 
1986) where the stiff elastic phase 1 forms the 
matrix and the soft phase 2 is placed into the inclu- 
sions; the shear modulus of such a composite with 
f =  0.8 is denoted as /.~1 * "  The upper bound nearly 
coincides with the curve that corresponds to the 
matrix laminate composites where the stiff inclusions 
of the phase 1 are surrounded by the soft dissipative 
phase 2; the shear modulus of such a composite with 
f =  0.8 is denoted as /z 2 , .  The actual bound lies 
slightly above the curve that corresponds to these 
structures. 

It is interesting to observe that a compliant phase 
with high damping can give rise to high damping in 
the composite in spite of the fact that the moduli of 
this phase are much smaller in absolute value than 
the moduli of the stiff elastic phase. This fact has 
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been known for a long time; it may be explained by 
the high concentration of the strain field in the 
compliant phase under conditions in which much of  
the applied stress passes through the compliant phase. 
It is consistent with the results of  Chen and Lakes 
(1993). 

5.2. Composite o f  phases with equal and real Pois- 
son's ratios 

Figs. 5 and 6 show numerical results that describe 
dependence of  the bulk and shear moduli bounds on 
the Poisson's ratio ~,=/ '1  = ~'2. To present the re- 
sults in a form most helpful in evaluating practical 
usefulness of  materials, we use stiffness loss maps in 
which the absolute value I K'~ I K', (or I /z,  I) of  the 
bulk (or shear) modulus is plotted versus the loss 
tangent K' , /K" ,  (o r /£ ' , / /x ' ,  ). 

In the Fig. 5 example we take the phases with the 
bulk moduli K~ = 100 + i0.01, K 2 = 30 + i30, and 
the Poisson's ratios v =  - 1  (lower dotted curve), 
~, = - 0.5 (dashed curves), u = 0 (bold solid curves), 
~,= 0.9 (light solid curves) v =  1 (upper dotted 
curves). For these values of  the parameters both the 
upper and the lower bounds are optimal and corre- 
spond to the Hashin assemblages of  the coated cir- 
cles. 

It is interesting to observe that for the critical 
value of  the Poisson's ratio v = - 1, the shear mod- 

65.0 ~ IIJ'~ :7~+i0'00-7, l'q =-20+i2(5, 

. . .  \ ~ . ~ ,  ]vl:v2=-I - d o t t e d  . . . . . .  

= t v,=v, o o - , o , , d  . . . . . . .  
\ ° . ~  

55.0 \ \  • . 
'~ \ \  " ,  

N. °.° 
\ \ \  " , ° °  =~ 45.0 

~.%. *°% 
"~ "~,~. °°°° 

35.0 "~'-- " '~..~. °°°°° 

i _1 i i 
25"%.0 0.2 0.4 0.6 0.8 1.0 

Shear modulus loss tangent, p."/p.: 

Fig. 6. The shear modulus bounds for composites of phases with 
equal and real Poisson's ratios, z,~ = u 2 = ~,. The bounds are 
optimal and correspond to the matrix laminate composites. 

uli of the phases are equal to infinity, because in our 
example K is not equal to zero and 

= K ( 5 . 1 )  
l + u  

for the plane elasticity problem. For the composite 
made of such materials the complex bulk modulus 
upper and lower bounds coincide, the effective prop- 
erties are defined uniquely by the volume fractions 
of  the phases and are independent of the microstruc- 
ture. Namely, such a composite is isotropic with the 
shear modulus /** = ~ and the bulk modulus equals 
the arithmetic mean of  the phase bulk moduli K ,  = 
fK 1 + ( 1 - f ) K  2. This can be 
using the Hashin (1965) bounds 
lus of  an elastic composite, and 
correspondence principle (see 
Christensen, 1971). 

easily obtained by 
on the shear modu- 
elastic-viscoelastic 
Hashin, 1970 and 

It is interesting to observe that the arithmetic 
mean of the bulk moduli gives the lower bound in 
the stiffness-loss map, unlike the customary situation 
when the arithmetic mean provides an upper bound 
on the composite stiffness for given volume fraction. 
This concept was used by Brodt and Lakes (1995) in 
experiments to create composite laminates with high 
stiffness and high tan 6. It can be explained by the 
fact that a bound on stiffness corresponds to affine 
local deformation in the composite periodic cell, 
whereas the most efficient way to increase dissipa- 
tion is to concentrate the strain field in the area 
occupied by the dissipative phase 2. As we will see, 
the upper bound on the dissipation is given by the 
harmonic mean averaging, that correspond to a ho- 
mogeneous trial stress, or equivalently, to strain field 
which is concentrated in the soft dissipative phase 2. 

Increasing of  the phase Poisson's ratios v while 
keeping bulk moduli fixed results in increasing the 
dissipation. If ~, = 1 then the shear moduli of  both 
phases are equal to zero. Again, a composite of such 
phases is isotropic with the effective bulk modulus 
equal to the harmonic mean of the phase bulk moduli 
K ,  = ( f / K  l + (1 -- f ) / K 2 )  - I ,  and the shear modu- 
lus /** = 0. The upper and lower bulk moduli bounds 
coincide in this case, the effective properties are 
independent of  the microstructure; they are shown by 
the upper dotted curve in Fig. 5. Note again the 
unusual property that the harmonic mean of  the bulk 
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moduli gives the upper bound in the stiffness-loss 
map, that is in agreement with the observation by 
Brodt and Lakes (1995), and in contrast to the 
situation for the dependence of  elastic properties 
upon volume fraction. 

In the example in Fig. 6 we consider similar 
bounds for the shear modulus. We assume that /2~ = 
70 + i0.007, /22 = 20 + i20, the Poisson's  ratios are 
equal u I = v 2 = u, where v = -  1 (dotted curve), 
u = 0.0 (solid curves), and v = 1 (dashed curve). For 
these values of  the parameters both the upper and the 
lower bounds are optimal and correspond to the 
matrix laminate composites. 

For the critical value of  the Poisson's ratio u = 
- 1, the bulk moduli of  the phases are equal to zero, 
because in this example /2 is finite and 

l + v  
K = - - / 2 .  ( 5 . 2 )  

1 - - v  

One can see that for the composite made of  such 
materials the effective moduli of  an isotropic com- 
posite are defined uniquely by the volume fractions 
of  the phases and are independent of  the microstruc- 
ture. Namely, such a composite possesses the shear 
modulus equal to the harmonic mean of  the phase 
shear moduli, /2. = (f / ' /2j  + (1 --f)//22 )-1 the 
bulk modulus K .  = 0. Harmonic averaging again 
provides the upper bound on the effective shear 
modulus in the stiffness-loss map. Unlike the bulk 
modulus case, increasing of the phase Poisson's  
ratios while keeping shear moduli fixed results in 
decreasing the dissipation. In the opposite extreme 
case v = 1 the phase bulk moduli and the effective 
bulk modulus are equal to infinity. Nevertheless, the 
upper and lower bounds on the effective shear modu- 
lus do not coincide. They are given by the dashed 
curves in Fig. 6. 

5.3. Composite of phases with complex Poisson's 
rat io  

In this section we consider composites containing 
phases with complex values of  the Poisson's  ratios. 
Complex Poisson's ratios in constituent phases could 
be achieved by using appropriate materials, although 
the literature is sparse. Moreover, any experimental 
errors are magnified in calculating the Poisson's 
ratio from the complex bulk and shear moduli that 

100.0 

[ K,=100+i 0.1, K2=0.1+I 0. l ] 

80.0 
~/ vt_-0.3 , v2=0,3 

~> 
.~ 60.0 v~---0.3, v2--0.3 e "~°°5~ 

ao.o "5 

20.0 

o o \ ': 
0.0 0.5 1.0 1.5 2.0 2.5 

Bulk modulus loss tangent, K.'TK: 

Fig. 7. The bulk modulus bounds for composites containing a stiff 
elastic phase and a soft dissipative phase with different complex 
Poisson ' s  ratios. The light solid line is the optimal lower bound 
for all these cases, the bold solid curves are the upper bounds,  the 
dashed curves correspond to the Hashin coated circles assem- 
blages. 

are more easily measured. The sign of  the imaginary 
part v" can be positive or negative; correspondingly, 
in the time domain, the viscoelastic Poisson's ratio 
can increase or decrease, as shown by Lakes (1992). 

We numerically evaluate the bulk modulus bounds 
for a composite containing phases with bulk moduli 
K~ = 100 + i0.1 and K 2 = 0.I + i0.1. Three cases are 
considered, all of  which have u~ = 0.3. The three 
values of  Poisson's  ratio of  the second phase are 
v 2 = 0.3, u 1 = 0.3 e x p ( - i 0 . 0 5 ~ ) ,  and v 2 = 
0.3 exp(- i0 .1~r) .  The results are presented in Fig. 7. 

The light solid curve is the lower shear modulus 
bound for all these three cases. It corresponds to the 
Hashin-Shtr ikman structures (assemblages of  coated 
circles with the first phase forming the coating and 
the second phase forming the inclusions) and there- 
fore is optimal. Note that in such structures the 
deformation field in the inclusions (i.e., in the phase 
2 in this example) is hydrostatic if the applied field 
is hydrostatic. Therefore, effective bulk modulus is 
independent of  the shear modulus (and therefore, on 
the Poisson's ratio) of  the second phase, as we see in 
Fig. 7. 

The bold solid curves show the upper bounds on 
the complex bulk modulus of  these composites. For 
P2 = 0 . 3  the curve corresponds to the Hashin-  
Shtrikman assemblages of  coated circles with the 
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second phase forming the coating and the first phase 
forming the inclusions. For the other two cases the 
upper bound has only one point that is known to be 
attainable; it is defined by Eq. (4.2). Two dashed 
curves correspond to the Hashin-Shtrikman struc- 
tures with the inclusions of the first phase. 

One can see that the loss tangent K " / K ' .  of the 
composite can be greater than that of either phase. 
However there are two independent moduli (e.g. 
bulk and shear) and one can prove that the loss 
tangent associated with the bulk modulus of the 
composite can be no larger than the maximal and no 
smaller than minimal loss tangent (for the bulk or 
shear deformations) of either phase, i.e. 

I K . . . . . . . .  ] [ " 
mini ~ K2 ~l P'2 K" K 1 

,-77, , , , < < m a x  , , 
[ K ,  K 2 /x' l ~ 2 - ' ~ - *  - Kl 

] 
(5.3) / 

K ; '  /x' 1 /x' 2] 

It is clear t~ecause the average dissipation rate of the 
composite cannot be smaller than the minimal or 
larger than the maximal dissipation rate of the phases. 
The upper bound for e = 0.3 exp(- i0 .1~-) ,  that al- 
lows the composites with a high dissipation rate is 
similar to the one described by Fig. 3. Indeed, such a 
choice of the Poisson's ratio leads to a small real 
part of the shear modulus of the second material. 
Together with the choice of the bulk moduli it 
guarantees the opportunity for high dissipation. 

Observe that the upper bound varies little with the 
Poisson's ratio of the stiff phase. We do not show 
the figure that illustrates this because the upper 
bounds that correspond to different values of v l 
cannot be distinguished in the scale of the figure. 

We examine only bulk modulus bounds because 
the restriction g " =  0 makes it difficult to change 
freely the Poisson's ratios and prevent us from isolat- 
ing the effect of complex value of the Poisson's ratio 
in shear. 

gt=70+10.007, v~=v2=0.3, I~1=1, 
1~=0.995+i0.0995 - bold solid curve, 60.0 

--~ \ \  ~ g2=0.958+i0.287 - dashed curve, 
\ \  ~ l.q---0.819+i0.573 - light solid curve~ 

t", / ,,, \ 

~E 20.0 " ,  

O.0 r 
0.0 0.2 0.4 0.6 

Shear modulus loss tangent, la~'/l.t: 

Fig. 8. The shear modulus bounds for composites containing a 
stiff elastic phase and a soft phase with different loss tangent but 
the same absolute value of the shear modulus. The bounds are 
optimal and correspond to the matrix laminate composites. 

dissipation on the overall dissipation in the compos- 
ite. We consider phases with the shear modulus of 
the first phase/z~ = 70 + i0.007, with tan 6~, = 10 -4, 
and Poisson's ratios u~ = v 2 = 0.3. The second phase 
has shear modulus with absolute value 1 and differ- 
ent phase angles, i.e., /x 2 = 0.995 + i0.0995, with 
tan 6t, = 0.1, (the bounds for this case are shown by 
the bold solid curves), ~2 = 0.958 + i0.287, with 
tan3~, = 0.3, (the dashed curves), /x 2 = 0.819 + 
i0.573, with tan 6~, = 0.7, (the light solid curves). 
One can see that an increase of the dissipation of the 
soft phase leads to a dramatic increase of the overall 
dissipation. 

It is evident from Fig. 8 that increasing the stiff- 
ness of the stiff phase would lead to an increase of 
the overall dissipation, whereas small changes in the 
imaginary part of the stiff phase would not influence 
overall dissipation. These facts were also noted by 
Brodt and Lakes (1995). 

5.4. Factors that give rise to the loss tangent of the 
composite 

In this section we analyze the conditions that give 
rise to the loss tangent of the composite. Fig. 8 
shows our analyses of influence of the soft phase 

5.5. Influence of anisotropy on the stiffness-loss map 

In this section we examine how anisotropy influ- 
ences the stiffness-loss map for the hydrostatic and 
shear deformations. To compare isotropic and 
anisotropic materials we note that the bulk and shear 
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moduli of an isotropic composite can be expressed 
as follows 

1 . 

K ,  = ~ a l . C .  : a  I , 

1 . ~ .  l . (5.4) / z ,  = ~ a  2 . C ,  : a  2 ~a3.C , : a  3. 

Here 

o) 1(1 o) 
a l =  0 ' a 2 = ' ~  - 0 - - 1  ' 

o = (10 
are the hydrostatic deformation and two orthogonal 
shear deformations, respectively, C, is the fourth 
order complex stiffness tensor of an isotropic vis- 
coelastic composite. The symbol (:) denotes contrac- 
tion over two indices, i.e. 

2 

a : C : a =  E Cjik/aijalk • (5.6) 
i,Lk,l= 1 

We will compare our bounds for the complex 
bulk and shear moduli with similar expressions 

= I ]£(L 1) 1 . K L -~al:CL:al, = ~a2.CL:a2,  

q/z(~ ) = '  " " (5.7) -~a3.CL.a3, 

for the most anisotropic laminates composite with 

100.0 . . . . . . . .  

I K,=,0o+,o,. ~=,+~,. I 

30.0 ,,,x,, I I 

1 

0~ 40.0 / / / /  "5 

g~ 2o.o 

0"%.0 011 012 013 014 0.5 
Bulk modulus loss tangent, K ~'/K: 

Fig. 9. The bulk modulus bounds (the solid curves) and the bulk 
modulus-type coefficient for the laminate composites (the dashed 
curve). The bounds are optimal and correspond to the Hashin 
structures. 

7010 
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Shear modulus loss tangent, p.,"/la; 

Fig. 10. The shear modulus bounds (the solid curves) and two 
shear modulus-type coefficients for the laminate composite (the 
dashed curves). The bounds are optimal and correspond to the 
matrix laminate composites. 

stiffness tensor C L. One can check (see e.g. Franc- 
fort and Murat, 1986) that 

K L = f l K l  +f 2K2  

f t f 2 (  K,  - K2) 2 

--  f 2 ( K l  + / J ' l )  + f l ( K 2  + / z 2 )  ' ( 5 . 8 )  

/'t~ ) = f l  gl  +f2 g2 

f l f 2 (  g ,  - g2)~ 
(5.9) 

fE(Kl + ~ 1 )  +fz (K2 + ~ 2 ) '  

= - -  , ( 5 . 1 0 )  
/x2 

where the eigenvectors of the tensor a 2 are directed 
along the laminates. Note that /*(L 2) is equal to the 
harmonic average of the phase shear moduli. The 
complex constants K L, and /Z(L 0 and /Z(L 2) describe 
the behavior of the laminate composite subjected to 
harmonic oscillation in the strain field proportional 
to the tensors a l, a 2 and a3,  respectively. These 
formulas give us an opportunity to compare 
anisotropic and isotropic materials. 

Indeed, our complex bulk and shear moduli 
bounds restrict the values of the expressions (Eq. 
(5.4)) for isotropic composites. Eqs. (5.8), (5.9) and 
(5.10) present the complex values of similar expres- 
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sions (Eq. (5.7)) for laminate composites. Compari- 
son of the data for the most anisotropic composite 
and the bounds that are valid for all isotropic com- 
posites illustrates the influence of anisotropy of the 
composite on the value of Eq. (5.4) of the coeffi- 
cients of the complex effective stiffness tensor. We 
emphasize, however, that our bounds are applicable 
only to isotropic composites. As we will see, the 
values p,~) and /z ¢l) will violate our bounds. 

Figs. 9 and 10 present the comparison results. In 
Fig. 9 the solid curves show our volume-fraction 
independent bulk modulus bounds and the dashed 
curve shows the values K L for the laminated com- 
posites containing phases with KI = 100 + i0.1, K 2 

= 1 + i0.5, vl = v 2 = 0.3 and the volume fractions 
which vary in the admissible interval fl = 1 - f 2  E 
[0, 1]. Note that the bounds are optimal in this case 
and corresponds to the Hashin (1965) coated circles 
assemblages with the inclusions of the stiff phase 1 
(the upper bound) or the soft dissipative phase 2 (the 
lower bound). One can see that a laminate composite 
possesses intermediate dissipation under hydrostatic 
load. Indeed, such a load is isotropic and anisotropy 
of the composite cannot help to achieve better dissi- 
pation. 

In Fig. 10 the solid curves show the isotropic 
shear modulus bounds and two dashed curves show 
the values /x~ ) (the lower dashed curve) and /z~ ) 
(the upper dashed curve) for the anisotropic laminate 
composite of the phases with p~ = 70 + i0.07, /z 2 = 
1 + i0.5, v~ = v 2 = 0.3. Note that the shear modulus 
bounds are also optimal for a composite of such 
phases and correspond to the matrix laminate com- 
posites with the inclusions of the stiff phase 1 (the 
lower bound) or the soft dissipative phase 2 (the 
upper bound). One can see that the laminate compos- 
ite possesses extremal dissipation for the shear load 
of the a 3 type, but the difference with the realizable 
upper bound is very small; the two curves nearly 
coincide in Fig. 10. Dissipation in the laminates is 
minimal for the shear load of the a 2 type. Again, the 
laminate curve is pretty close to the lower bound for 
isotropic composites. 

One can see that for isotropic or random load 
isotropic composites give better results, and even for 
the specific highly anisotropic load they nearly match 
the behavior of the most anisotropic laminates, at 
least for the phases that we examined. 

6. Conclusions 

In summary, in this paper we obtained the visual 
geometrical description and the explicit formulas for 
the bounds on the complex bulk and shear modulus 
of viscoelastic two dimensional two-phase compos- 
ites with arbitrary volume fractions of the phases. 
The bounds have particularly simple form when the 
phases have equal and real Poisson's ratios. The 
bounds were analyzed in order to find the conditions 
that give rise to the dissipation rate of the composite. 
In particular, the known experimental fact that a 
small amount of soft dissipative inclusions in a stiff 
matrix may dramatically increase the overall dissipa- 
tion rate of the composite, agrees with our bounds as 
can be seen in Figs. 3 and 4. 

The results show that the lower and the upper 
bounds on the composite moduli differ significantly. 
Therefore, the microstructure of the composite mate- 
rial is of a great importance for the damping proper- 
ties of the viscoelastic composites. The overall dissi- 
pation in the composite greatly depends on the dissi- 
pation in the soft phase, as illustrated in the figures; 
moreover the microstructure of the composite is of 
crucial importance, in harmony with Chen and Lakes 
(1993). Increasing the soft phase dissipative proper- 
ties gives rise to a substantial increase in the overall 
dissipation. By contrast, a small dissipation in the 
stiff phase has little effect on the composite proper- 
ties. Overall dissipation also increases with the stiff- 
ness of the stiff phase. 

The dependence of the bounds on the Poisson's 
ratios of the phases was analyzed numerically; the 
results are summarized in Figs. 5 and 6 for the phase 
with real and equal Poisson's ratios, and in Fig. 7 for 
complex values of the soft phase Poisson's ratio. 

The role of anisotropy in viscoelastic composites 
with arbitrary volume fraction differs from its role in 
elastic composites with fixed volume fraction. Intro- 
duction of anisotropy does not significantly expand 
the stiffness loss map, even for the favorable case of 
a single shear type load with prescribed axis. This is 
in contrast to the usual plots of stiffness versus 
volume fraction for elastic composites in which a 
substantial gain in stiffness for a given volume frac- 
tion can be achieved by introducing anisotropy. 

The structures that correspond to the various parts 
of the bounds were identified. For most presented 
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examples the bulk and shear moduli bounds are 
optimal and are attainable by the assemblages of 
Hashin coated circles (bulk modulus bounds) or by 
the matrix laminate composites (bulk and shear mod- 
uli bounds). The remaining bounds that are not 
shown to be optimal are rather restrictive although it 
is not known whether they can be improved or not. 
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