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The gyroid lattice is a metamaterial which allows chirality that is tunable by geometry. Gyroid lattices
were made in chiral and nonchiral form by 3D printing. The chiral lattices exhibited nonclassical elastic
effects including coupling between compressive stress and torsional deformation. Gyroid lattices can
approach upper bounds on elastic modulus. Effective modulus is increased by distributed moments but is,
for gyroid cylinders of sufficiently small radius, softened by a surface layer of incomplete cells. Such size
dependence is similar to that in foams but is unlike most lattices.
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Spatially periodic surface lattices including gyroid lat-
tices were originally introduced [1–3] for their potential as
lightweight stiff and strong structures. Periodic surfaces
including the gyroid are of interest in crystallography [4].
Periodic shell lattices have been analyzed in the context of
multifunctional capability such as for simultaneous trans-
port of heat and electricity [5]. Gyroid surfaces [6] were
studied in relation to the Landau-Ginzburg Hamiltonian for
microemulsions [7] in which energy is minimized during
phase segregation. Gyroid structures can be formed by self-
assembly [8]; they occur in butterfly wings and give rise to
interesting optical properties [9] and are known as photonic
crystals. It was suggested that butterflies grow these gyroid
structures on the nanoscale via self-organizing processes in
lipid bilayer membranes. Optical properties of gyroids have
been studied in the context of enhanced electrochromism in
vanadium pentoxide [10]. Gyroids of space group Ia3̄d
[11] appear via energy minimization in block copolymers
[12,13]. The gyroid is of particular interest because it
allows chirality.
Physical manifestations of chirality have long been

known in chemistry and in physical properties such as
piezoelectricity, pyroelectricity, and optical activity [14].
Chirality has no effect in classical elasticity because the
elasticity tensor is fourth rank. Elastic chirality is pre-
dicted to cause qualitatively new effects in the context
of generalized elasticity [15]. Chiral elastic solids can
exhibit stretch-twist coupling, size effects in torsion and
compression, and radial dependence of the Poisson
effect. Experimentally, stretch-twist coupling effects were
observed in bone [16] and in tendon fascicles (fiber
bundles) [17]. Chiral cholesteric elastomers [18] were
predicted to twist in response to stretching with a
characteristic length predicted to be on the order of 10 nm.
The gyroid surface can be described [11] by

sin2πycos2πzþsin2πzcos2πxþsin2πxcos2πy¼ t; ð1Þ

with t as a constant, as shown in Fig. 1 for t ¼ 0, t ¼ 0.6,
and t ¼ 1.2.
The gyroid surface allows chirality as a surface or by

dividing space into two connected regions, called laby-
rinths [4], that (for t ¼ 0) are enantiomorphic: they are
mirror images of each other. The surface in Eq. (1) is
invariant to an inversion operator (the negative of a
Kronecker delta), âij ¼ −δij if t ¼ 0 and is not invariant
otherwise. A choice of nonzero t entails a chiral surface so
chirality can be tuned by geometry. One may choose a
value of t and embody the gyroid as a shell lattice with
nonzero thickness. Alternatively one may fill one of the
labyrinths with solid material. In this Letter, nonclassical
elastic effects including those of chirality are experimen-
tally demonstrated for the gyroid.
Gyroid lattices were made with a surface wall thickness

of 0.4 mm and a cell size of 6 mm. Figure 2 shows the
physical lattices. The solid material was a nylon polymer
PA 2200 for which the density was ρs ¼ 0.98 g=cm3,
Young’s modulus Es ¼ 1.6 GPa and Poisson’s ratio 0.4.
The ratio of lattice density to the solid density was ρ=ρs ¼
0.21 for t ¼ 0 and 0.195 for t ¼ 0.6 and −0.6. To make the
gyroid lattices, the surface in Eq. (1) was expressed in
MATLAB. A 3D point cloud associated with the surface was
then obtained and saved as a STL (stereolithography) file.
Thickness was added via BLENDER, as were end caps made

FIG. 1. Gyroid lattices. (a) t ¼ 0, (b) t ¼ 0.6, (c) t ¼ 1.2.
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using SOLIDWORKS. The file was postprocessed with
NETFABB for export to a EOS P760 3D printer.
Aluminum end caps were cemented. Specimens were
prepared with length twice the diameter.
As for methods, size dependency of rigidity was mea-

sured in torsion and bending via a laser based method
[19,20] at 1 Hz. Twist deformation in response to com-
pression under dead weights was determined via a laser
beam reflected from a mirror on the specimen to a silicon
position sensitive detector. See Supplemental Material for
details [21]. Further compression tests revealed the com-
pressive elastic modulus; the Poisson’s ratio was deter-
mined from analysis of photographs. All tests were done at
small strain in the linear domain.
The gyroid lattice is stiffer, per unit density, than foams or

rib lattices. The gyroid compressive Young’s modulus was
E ¼ 120 MPa for t ¼ 0. For comparison, the gyroid with
solid volume fraction ρ=ρs ¼ 0.21 is a factor 2.1 stiffer than
an isotropic truss (rib) lattice, via E=Es ¼ 1

6
½ρ=ρs�. The

gyroid modulus approaches the Hashin-Shtrikman upper
bound [22,23] if ρ=ρs is sufficiently small (for which
E=Es ¼ 1

2
½ρ=ρs�) or the solid Poisson’s ratio approaches

its lower bound; see SupplementalMaterial for further details
[21]. For a volume fraction 0.2, the upper bound is about 10%
greater than for low volume fraction, corresponding to
E ¼ 176 MPa. So the present gyroid lattice exceeds the
properties of foams and truss lattices of the same solid phase
and has 68% of the upper bound E.
This gyroid lattice is nearly isotropic in its classical

elastic properties though it has cubic symmetry. The degree
of anisotropy is revealed by the Zener ratio Z¼2Gð1þ
νÞ=E withG as shear modulus and Poisson’s ratio ν ¼ 0.27
in the absence of gradients. For the gyroid with t ¼ 0,
Z ¼ 0.99; for perfect isotropy, Z ¼ 1. Elastic isotropy is
advantageous for many applications.
Chirality is incorporated in elasticity via the following

nonclassical constitutive equations [15] that allow a degree

of nonlocal response. The material is assumed to be
isotropic with respect to direction but is not invariant to
inversions.

σkl ¼ λϵrrδkl þ 2Gϵkl þ κeklmðrm − ϕmÞ
þ C1ϕr;rδkl þ C2ϕk;l þ C3ϕl;k; ð2Þ

mkl ¼ αϕr;rδkl þ βϕk;l þ γϕl;k þ C1ϵrrδkl

þ ðC2 þ C3Þϵkl þ ðC3 − C2Þeklmðrm − ϕmÞ: ð3Þ

The stress σij (force per unit area) can be asymmetric.
Distributed moments mij (a torque per unit area) balance
the asymmetry. ϵij is the strain tensor. The macrorotation is
ri ¼ ðeijkuk;jÞ=2 with u as displacement; ϕk is the rotation
of points or microrotation. Elastic constants λ and G have
the same meaning as in classical elasticity. Elastic constants
α, β, γ are Cosserat elastic constants which govern the
characteristic length scales at which nonclassical effects are
to be observed [24,25]. The characteristic length for torsion
is lt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðβ þ γÞ=2Gp

, and for bending, lb ¼
ffiffiffiffiffiffiffiffiffiffiffi

γ=4G
p

.
Elastic constant κ governs the coupling between local
rotation and rotation due to displacement gradient. All
six isotropic nonchiral Cosserat elastic constants were
obtained experimentally via size effect measurements in
torsion and bending [26]. In a noncohesive granular
assembly κ was determined via waves [27]; granular flows
have been analyzed via Cosserat theory [28].
Elastic constants C1, C2, and C3 represent the effect of

chirality (noncentrosymmetry). The exact solution for
tension or compression of a round chiral Cosserat cylinder
[15] enables design and interpretation of experiments on
chiral elastic solids. New effects are predicted including
stretch-twist coupling, size effects in tension or compres-
sion effective modulus, and size effects in Poisson’s ratio.
The experiments here allow determination of combinations
of elastic constants but not all nine.
Nonclassical squeeze-twist coupling b0=ϵ of the gyroid

lattice is shown in Fig. 3; b0 is the twist angle per length
and ϵ is the compressive strain. The nonclassical length
parameter A for chirality in Eq. (4) is the product of the
torsion characteristic length lt and a function of various
coupling coefficients that depend on the nine elastic
constants [15] of a chiral material. B is also a function
of the elastic constants. The theory predicts b0=ϵ to vary in
magnitude as 1=r2 for sufficiently large specimen radius r:

b0
ϵ
¼ A

ðr
2
Þ2 þ B

: ð4Þ

Values of chiral length A for chiral lattices were con-
siderably smaller than the 6 mm cell size and smaller
than the characteristic length lt as shown in Table I.
The goodness of fit R was 0.99 or better for nonzero t.

FIG. 2. Polymer gyroid lattices. Bottom: nonchiral, t ¼ 0. Top:
t ¼ 0.6. Right: structure detail. Scale bars 1 cm.
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The nonchiral gyroid exhibited essentially no squeeze-twist
coupling as anticipated.

ffiffiffiffi

B
p ¼ 0.02 mm for t ¼ 0.6 and

0.11 mm for t ¼ −0.6; the fit is insensitive to B because B
is too small to noticeably influence the curve shape. The
maximum ratio of twist to squeeze was b0=ϵj2cell ¼
0.035= mm for gyroid specimens two cells wide.
For comparison with lattices made of the same base

polymer, in a cubic lattice with helical ribs [29] and a cell
size of 8.5 mm, the maximum ratio of twist to squeeze
was b0=ϵj2cell ¼ 0.018/mm. Young’s modulus was E ¼
0.26 MPa and the shear modulus was G ¼ 0.0336 MPa,
implying substantial anisotropy. The relative density was
ρ=ρs ¼ 0.12.
Chiral, elastically isotropic rib lattices [30] exhibited a

larger maximum squeeze-twist coupling b0=ϵj2cell ¼ 0.057/
mm for specimens two cells wide. Physical lattices had
E ≈ 60 MPa and relative density ρ=ρs ¼ 0.37. These lat-
tices had cubical nodules linked by oblique ribs. The chiral
gyroid lattices are considerably stiffer than the other chiral
lattices, with effective Young’s modulus E about 100 MPa.
Elastic chirality of greater magnitude in the gyroid may

be sought by varying t. The gyroid remains connected
provided jtj < ffiffiffi

2
p

. Large t presents practical challenges for
surfaces of nonzero thickness because as t becomes larger,
lattice tubules become thinner, hence more difficult to
fabricate.

Nonclassical size effects in torsion of the gyroid lattice
are shown in Fig. 4. Size effects are expressed as the
rigidity ratio Ω (relative stiffness) versus diameter. Ω is the
ratio of observed structural rigidity to the asymptotic
rigidity for large diameter.
The four largest specimens exhibited a nonclassical

stiffening size effect from which lt was extracted. The
asymptotic shear modulus in the absence of gradients was
G ¼ 34.6 MPa and the characteristic length for torsion was
lt ¼ 2.4 mm for t ¼ 0.6;G ¼ 46.8 MPa and lt ¼ 1.5 mm
for t ¼ 0, and G ¼ 33.7 MPa and lt ¼ 2.9 mm
for t ¼ −0.6. Results are consistent with a coupling number
N ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

κ=ð2Gþ κÞp ¼ 1 and a polar ratio Ψ ¼ ðβ þ γÞ=
ðαþ β þ γÞ ¼ 1.5. The characteristic length lt is consid-
erably smaller (by a factor 4 for t ¼ 0 and by a factor 2 for
t ¼ −0.6) than the cell size 6 mm. For comparison, open cell
foams including negative Poisson’s ratio foams exhibited a
characteristic length larger than the cell size, a factor 4
for normal foams [20], and large size effectsΩ up to a factor
of 8. Designed lattices exhibited a characteristic length
comparable to the cell size and a large magnitude (a factor
30) of size effect [31]. Particulate composites exhibited no
size effects and lt ¼ 0 [32]. Chiral isotropic rib lattices
[30] exhibited size effects Ω of a factor of more than 4 in
torsion with inferred torsion characteristic length 95% of
the cell size. The gyroid Ωwas much smaller, less than 1.4
for t ¼ −0.6 and 1.1 for t ¼ 0.
The range of smaller diameter in the gyroid is associated

with reduction in torsional stiffness due to incomplete cells
at the surface. Such effects are known in foams [33].
Similar effects were observed in bending and compression.
Rib lattices with cells that are structurally complete do not
exhibit such a stiffness reduction [30,31].
In bending, the larger specimens were about 25% stiffer

than anticipated from compression indicating a size effect
hence a nonzero bending characteristic length lb as shown

TABLE I. Gyroid properties.

t E (MPa) G (MPa) lt (mm) lb (mm) A (mm)

0 120 46.8 1.5 4.7 −0.006
0.6 100 34.6 2.4 2.6 0.28
−0.6 98 33.7 2.9 2.7 −0.24

FIG. 4. Nonclassical size effect of gyroid lattices in torsion.
Dependence of rigidity ratio Ω on specimen diameter and on t.
Points are experimental; diamonds, t ¼ 0; circles, t ¼ 0.6;
triangles, t ¼ −0.6. Curves are fits from theory. Classical
elasticity predicts Ω ¼ 1, the horizontal dashed line.

FIG. 3. Nonclassical squeeze-twist coupling in gyroid lattices.
Ratio of twist angle per length b0 to strain ϵ versus specimen
diameter ¼ 2r depends on chirality parameter t. Points are
experimental; diamonds, t ¼ 0; circles, t ¼ 0.6; triangles,
t ¼ −0.6. Curves are fits via Eq. (4). Classical elasticity and
nonchiral Cosserat elasticity predict zero squeeze-twist b0=ϵ,
shown by the horizontal dashed line.
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in Table I. Bending size effect curves revealed more
softening due to incomplete cells than was the case in
torsion; therefore, inference of lb was not as rigorous as
for lt.
Size dependence of the effective elastic modulus E in

compression can occur in chiral elastic materials but not in
classical elasticity or in nonchiral Cosserat elasticity. The
four larger chiral gyroids exhibit a slight stiffening size
effect Ω (about a factor 1.2 over the range studied). The
corresponding nonchiral specimens varied �4% in stiff-
ness, attributed to the printing method. For comparison,
chiral isotropic rib lattices [30] exhibited a factor of about
2.4 size effect in compression.
The gyroid, as an extremal shell lattice, has superior

stiffness and strength compared with truss (rib) lattices. The
communicating porosity is considered advantageous in the
context of scaffolds for tissue ingrowth [23,34]. Shell and
rib lattices can exhibit considerable anisotropy which may
not be desirable. The present nonchiral gyroid lattices
exhibit a Zener ratio near 1, hence isotropy of the classical
elastic behavior. Nonclassical elastic response (squeeze-
twist coupling) occurs in chiral gyroid lattices; such effects
are anticipated in other gyroids such as those in block
copolymers and in biological tissues. Elastic chirality also
gives rise to acoustic activity in which the plane of
polarization of shear waves rotates. Other even rank tensor
properties such as thermal expansion do not reveal chirality,
but corresponding general theories that admit distributed
moments allow nonclassical effects of chirality. Nonclassical
elasticity can offer advantages in reducing concentrations
of stress and strain [35] and can occur at the nanoscale [36].
Chiral squeeze-twist coupling may be beneficial in sensors
and actuators.
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