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Abstract

Lattices of controlled thermal expansion are presented based on planar chiral lattice structure
with Poisson’s ratio approaching -1. Thermal expansion values can be arbitrarily large positive
or negative. A lattice was fabricated from bimetallic strips and the properties analyzed and
studied experimentally. The effective thermal expansion coefficient of the lattice is about α =
−3.5×10−4K−1. This is much larger in magnitude than that of constituent metals. Nodes were
observed to rotate as temperature was changed corresponding to a Cosserat thermoelastic solid.

1 Introduction

Materials with large thermal expansions have many potential applications as thermal actuators.
Available materials such as common metals, alloys, and polymers have a limited range of expansion
that may not suffice for some applications. Composite materials may be considered, but until
recently were not thought to be promising, because thermal expansion of a two phase composite
has been constrained by analytical bounds [1]. The expansion of the composite cannot be larger
than the maximum expansion of the constituents. These bounds were derived assuming that the
two phases are perfectly bonded, also that there is no porosity, and that each phase has a positive
definite strain energy. If one relaxes any of these assumptions, one can achieve arbitrarily large
or small values of expansion. For example if the composite contains void space, lattices may be
envisaged with controllable expansion of large or small magnitude, or even negative expansion [2]
[3]. The ribs in the lattice can be made of a sandwich of two materials of different thermal expansion,
giving rise to bending [4]. In a related vein, lattices with bi-material piezoelectric elements have
been developed and analyzed [5] and studied experimentally [6]; these lattices give rise to large
values of piezoelectric sensitivity.

The concept used in the present research is based on a planar chiral lattice with Poisson’s ratio
-1 [7]. The Poisson’s ratio was determined experimentally and analytically. Experiments revealed
that the Poisson’s ratio is approximately constant for axial compressive strains up to 25%. This
is in contrast to the nonlinearity observed in the Poisson’s ratio of negative Poisson’s ratio foams
[8] and of honeycombs [9] with inverted hexagonal cells of bow-tie shape. Negative Poisson’s ratio

1



materials are commonly referred to as “auxetic”. Chiral lattices have been analyzed [10] in the
context of Cosserat (micropolar) elasticity [11] in which rotation of points has physical significance.
Analysis shows this lattice has the largest Cosserat characteristic length scale of all known lattice
topologies [12].

Chiral lattices have been considered for use as chiral honeycomb [13] [14] in sandwich panels
for airplane wings that change shape, and they have been analyzed for buckling [15] and other
characteristics such as stop bands in wave propagation [16]; they have also been fitted with sensors
and actuators for possible use as smart structures [17].

2 Procedure

Figure 1: Chiral lattice structure with bi-material ribs with alternating orientation. Two materials
indicated as light and dark, differ in their thermal expansion.

The lattice structure is chiral in plane and gives rise to a Poisson’s ratio approaching -1. To
achieve control of the thermal expansion, the lattice structure makes use of bi-material rib elements
as shown in Figure 1. These ribs bend upon a temperature change, giving rise to node rotation
and to strain of the lattice.

As for materials, the most active bimetallic strip material available was used: Engineered
Materials Solutions “P675R” strip [18]. Its high expansion alloy is 52.8% by weight and is composed
of 72% manganese, 18% copper, and 10% nickel. Its low expansion alloy is 36% nickel and 64%
iron [18]. The thermal expansion coefficient for constituent metals is from about 10 × 10−6 K−1

(for iron) to 22 × 10−6 K−1 (for manganese). The low expansion alloy appears to be Invar, with
α = 1.3 × 10−6 K−1 and the high expansion alloy [19], α = 27.2 × 10−6 K−1.

The strips were first cut from a large roll of bimetallic sheet. The strips were cut to a length of
Lrib = 75 mm, and a width of 10 ± 0.2 mm. The thickness of the strips is h = 0.25 ± 0.05 mm. The
high and low expansion sides were determined by heating a strip on a hot plate and observing the
curvature. The circular nodes used for the chiral cells were cut from a chlorinated PVC plastic pipe
with outer diameter d = 16 mm and wall thickness 2 mm. In an initial trial, a lattice was made by
bonding constituents with conventional cyanoacrylate cement, but the glue joints did not survive
repeated excursions to 70◦C. Constituents were bonded with Loctite type 491 cement, intended for
use at elevated temperature up to 400◦C. The lattice cells were constructed following the design in
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Figure 1 except that some overlap of rib segments was provided to facilitate bonding, rather than
cementing end to end. The same type 491 cement was used to make the mid-rib joints. The lattice
consisted of six triangular cells arranged in a hexagonal pattern.

Temperature control was achieved using a Fisher model 126 muffle furnace. The lattice was
placed in the furnace behind a calibrated length scale. Digital photographs were taken from the
same height and angle for all measurements. Isolation from ambient temperature was achieved
by taping a transparent plastic film over the furnace. A thermocouple lead was placed in the
middle of the lattice for temperature measurements. Output indicated that the plastic film was a
sufficient insulator from ambient temperature outside the furnace. With this configuration, digital
photographs of the lattice in room temperature air were taken (25◦C), followed by photographs
at temperatures up to 120◦C. Specifically the lattice was photographed in the furnace at ambient
temperature, then the temperature was progressively increased. Further digital photographs of the
lattice were taken at elevated temperature, then more photographs were taken during slow cooling.
Some further experiments were conducted below ambient temperature by using the uniform low
temperature outdoors in winter. Dimensions of the lattice in the vertical and horizontal directions
were measured from the digital images using Photoshop software. The scale in the digital images
was about 150 pixels/cm.

3 Analysis

Figure 2: Bending of a rib in a chiral lattice structure.

Ribs are assumed to be sufficiently slender that deformation from axial strain is negligible in
comparison with deformation due to bending of the ribs. Nodes are assumed to be rigid. Also,
thermal expansion is assumed to occur freely without constraint. In the chiral lattice, strain is
geometrically linked to rotation φ, node outer radius r and the spacing R of nodes between centers
[7]:

ε =
rφ

R
(1)

A temperature change causes bending of the bi-material rib segments which produces curvature
with radius ρ in which the included angle is 2φ as shown in Figure 2. So

φ =
Lrib
4ρ

(2)
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where the rib length Lrib is such that, from the diagram,

R =
√
L2
rib + (2r)2 (3)

Each half of the rib has a uniform curvature but in the opposite direction because the bi-material
strips have opposite orientation. Hence, the deformed rib has an S shape. Combining Eq. 1 - Eq.
3 yields

ε =
r

4ρ

1√
1 + (2r/Lrib)2

(4)

The thermal expansion α is expressed in terms of specific curvature ρs
−1 = ρ−1/δT so

α =
r

4ρs

1√
1 + (2r/Lrib)2

. (5)

But the curvature is provided by the manufacturer [18] as a specific curvature parameter κ
= 37 - 41 ×10−6mm

mm
◦C−1 that incorporates the change of curvature with temperature change; in

the following a value of 40 is used. ρs
−1 = κ

h , so with h = 0.25 mm, substituting the dimensions
and specification of κ in Eq. 5, the lattice has expansion of magnitude α = 320 ×10−6 K−1. The
analysis does not provide the sign because orientation was not considered.

If one is provided with the elastic modulus and thermal expansion of each constituent, E1 and
α1 for phase 1 and E2 and α2 for phase 2 respectively, and with the corresponding thickness a1
and a2 of each layer in the bi-material strip, then the curvature is [4],

ρ−1 =
(α2 − α1)δT

h
2 + 2(E1I1+E2I2)

h [ 1
E1a1

+ 1
E2a2

]
(6)

in which δT is temperature change, and I1 =
a31
12 and I2 =

a32
12 are the section moments of inertia of

the layers. The total thickness is h = a1 + a2.
This lattice structure allows one to design the thermal expansion. Larger nodes give rise to a

larger magnitude of thermal expansion. The sign of the expansion depends on the orientation of
the bimetallic rib elements. Also, the specific curvature, hence the thermal expansion, will increase
as the ribs become more slender (smaller h).
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4 Results and discussion

Figure 3: Experimentally determined thermal expansion coefficient α of the lattice vs. temperature.
The lattice has no thermal strain at the reference temperature of 25◦C

Experimentally determined thermal expansion vs. temperature is shown in Figure 3. The thermal
expansion is negative, there is no systematic difference between expansion in the vertical and hori-
zontal directions, and there is no systematic difference between heating and cooling. Measurements
at small temperature deviations were limited by image resolution and are not shown. The straight
line is a guide for the eye. Negative thermal expansion is uncommon in homogeneous materi-
als; it entails contraction with increasing temperature and expansion with decreasing temperature.
The lattice underwent substantial deformation at elevated temperature, sufficient to observe rib
curvature, as shown in Figure 4. The maximum global strain, however, did not exceed 0.05.

Figure 4: Deformation of lattice at 115◦C in which ribs were initially straight at ambient temper-
ature of 25◦C. Horizontal and vertical refer to directions in which lattice expansion was measured.
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The determination of thermal expansion α obtained via analysis and experiment are in rea-
sonable agreement, in view of limits associated with resolution and the range of quoted specific
curvature values. Also, the overlap of rib segments was not incorporated in the analysis. Too, the
expansion of the polymer nodes is on the order 10−4 K−1 but the node diameter is only 1/5 the rib
length. This contributes a reduction of about 5% in the total negative expansion of the lattice. The
magnitude of α for the lattice is more than 30 times larger in magnitude than the α value for iron.
Higher values could be obtained by using larger nodes, more slender ribs, or both. Positive thermal
expansion can be achieved by reversing the orientation of the constituents of the rib elements.

Expansion can be made small by reducing the node radius r. Zero expansion is possible if
the positive axial expansion of each rib element (not considered in the present analysis due to its
relative smallness) is balanced by negative expansion due to rib bending. If the ribs have layers
of equal thickness, their axial expansion could be balanced by contraction due to rib bending if
r < 0.5 mm. This is comparable to the rib thickness and the thermal expansion is likely to be
sensitive to variations in dimensions. So design for zero expansion by this approach would require
high precision in the geometrical parameters. Zero expansion is also possible in other lattices [3]
[20].

Node rotation for a single node was φ= 0.15 rad for a temperature change of 33◦C. Node rotation
is consistent with the notion of homogenizing the lattice as a continuum via Cosserat elasticity.
Cosserat solids incorporate rotational degrees of freedom in the microstructure in addition to the
usual translation. There are additional elastic constants associated with sensitivity to gradients of
rotation; in three dimensions there are six elastic constants for an isotropic, non-chiral Cosserat
solid; nine constants if it is chiral. Cosserat solids exhibit an internal length scale in contrast to
classically elastic solids; characteristic lengths are expressed in terms of ratios of tensorial elastic
constants. Cosserat elastic constants were obtained via analysis of chiral lattices [10]. Cosserat
elastic constants have been determined experimentally in several non-chiral foam materials from
size effect experiments [21] [22]. Specifically, slender rods in torsion or bending are observed to be
more rigid than anticipated based on classical elasticity. In these foams, the characteristic length
is comparable to the cell size; for these materials, 0.3-3 mm. Rotations have been studied in the
context of rotational waves [23] in designed granular materials. In Cosserat solids, concentrations
of stress around holes and cracks is ameliorated, so there is a link to the toughness of the material.
A continuum view is more appropriate to thermoelastic lattices such as the present ones than
for piezoelectric lattices. Temperature changes can be imposed globally as with a homogeneous
material; by contrast piezoelectric lattices thus far entail an electrical connectivity between layers
that must be provided for the piezoelectric effect to be manifest. Local rotations in isotropic
Cosserat elastic materials are driven by gradients in deformation. If the material is chiral, a
uniform stretch gives rise, in three dimensions, to a twisting deformation, hence rotations [24].
Stretch-twist coupling of this kind has been analyzed for cholesteric elastomers [25]. In thermo-
elastic chiral materials or lattices such as the present lattice, a uniform temperature change gives
rise to local rotations.

The sign of the thermal expansion and the sign of Poisson’s ratio are independent. For example,
the present lattice with Poisson’s ratio -1 can be made with positive thermal expansion by reversing
the rib orientation or by using homogeneous ribs. As for the freedom associated with Cosserat
elasticity, the characteristic length can be made large or small by choice of the size of the cells in
the lattice; small cells are possible via 3-D printing methods.

As for chiral lattices, such structures have been envisaged for chiral honeycomb [14] in sandwich
panels for airplane wings that change shape. Chiral honeycombs of various type have also been
optimized for buckling strength [26]. Related structures containing rotating hexamers and trimers
[27] and stochastic distributions of circular node sizes can have negative Poisson’s ratio of large
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magnitude. Such structures do not have tunable thermal expansion but variants may be envisaged
with such a capability. Indeed, bi-material elements in anti-tetrachiral honeycombs [28] have been
analyzed via finite elements; negative properties can be obtained. In view of the additional freedom
associated with thermal expansion, the present lattices may be considered further in this context or
other lattices developed. The large thermal expansion of the lattice in comparison to its constituent
metals can be useful in devices where a large response is desired from a small temperature change.

5 Conclusion

The effective thermal expansion coefficient of the chiral lattice is about α = −3.5× 10−4K−1. This
is much larger in absolute magnitude than the value for known homogeneous materials. The ther-
mal expansion can be controlled by varying the geometrical parameters of the lattice.
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