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Systems with negative stiffness constituents can have extreme material properties greatly exceeding
those of either constituent. We show that a discrete system with a viscoelastic damping element and
a negative stiffness element can be made with overall viscoelastic damping orders of magnitude
higher than that of any constituent, or of the system with all elements of positive stiffness. The
product of stiffness and damping, important for vibration damping, is also enhanced by orders of
magnitude. We show this system is unconditionally stable in the high damping regime. The
singularity in damping can be made arbitrarily close to the stability boundary20@ American
Institute of Physics.[DOI: 10.1063/1.1759064

In ordinary heterogeneous solids, stiffnesses of eaclBystems including tubes or structures following buckling, in
phase are positive, and the composite properties cannot egreloaded lattices, and in ferroelastic materials just below
ceed the properties of either constituent. Negative stiffnestheir phase transformation temperature. Negative stiffness by
constituents can give rise to extreme properties exceedinigself usually entails instability. A bulk elastic solid of nega-
those of either constituent as shown theoretidadlpd ex- tive stiffness is unstable, but if all of its boundaries are fully
perimentally in a buckled lumped systémnd in a distrib- constrained in displacement, it can be stable, provided the
uted composite systehtontaining a dilute concentration of shear modulus) and Poisson’s rati¢v) satisfy G>0 and
inclusions. In the composite, negative stiffness was achievedtc<p<0.5 or I<v<«.!? Since Young's modulus i€
by inclusions in the vicinity of a ferroelastic phase transfor-=2G(1+ v) for isotropic homogeneous elastic materials,
mation. In addition to unusual mechanical properties, anomahe Young’s modulus can be negative for constrained solids.
lies in coupled field responses, such as thermal expansioithe criterion of strong ellipticit}* (modulus tensorCij
piezoelectricity, pyroelectricity, or electric permittivity, have obeysC; ajb;ab,>0 for any nonzerca; andb;, which
been analyzefiThe causal mechanism for the phenomena ientails real wave speedsnforcesG>0 and»<0.5 or v>1,
the balance between the contributions from negative stiffnesahich allows negative Young's and bulk moduli. If strong
and positive stiffness phases. This gives rise to amplifiecllipticity is violated, bands may form in the material, as is
motion at the interface between constituents. Although reebserved in ferroelastic solids below a critical transformation
sponse curves resemble resonance, the causal mechanigmperature. Reuss-typ&series elastic composites with
does not entail any inertial terms, in contrast to resonanhegative stiffness inclusions are unstabil& discrete model
effects in which extreme characteristics can be seen with aontaining multiple prestressed elastic elemErasd a vis-
dilute concentration of heterogeneifieand in contrast to cous element can display extreme overall stiffness; it is dy-
dielectric systems which attain negative permittivity near anamically metastabléhas a long divergence timen this
resonancé. regime.

Negative stiffness and negative Poisson’s ratio are dis- The conditions under which systems with negative stiff-
tinct. Negative stiffness entails a reversed directional relaness constituents are stable, metastable, or unstable remain to
tionship between load and deformation so that an imposefe determined. The experimental demonstrations of extreme
deformation causes an assisting force rather than a restorifighavior in the compositavere done via tuning processes:
force from the material. Poisson’s ratio, denotedvais de-  therefore, the results are consistent with either metastability
fined as the negative lateral strain of a stressed body dividegk stability. The lumped buckled tube systewas externally
by its longitudinal strain. Positive definiteness of strain en-constrained and would be unstable as a free element.

ergy, for stableisotropic elastic solids implies-1<»<0.5. Here we show that a discrete system with a viscoelastic
Stable foams with negative Poisson’s ratio and positive stiffdamping element and a negative stiffness element can be
ness withv=—0.8"% have been made. made with overall viscoelastic damping orders of magnitude

Negative stiffness can be achieved in prestressed elastiigher than that of any constituent or of the system with all
elements of positive stiffness. We show that this system is

aAuthor to whom correspondence should be addressed; electronic mailnconditionally stable in the high_c_iamping reg_ime._
lakes@engr.wisc.edu The energy approach to stability analysis is suitable for
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FIG. 1. Linearized discrete viscoelastic system which exhibits extreme high . . .
damping due to negative,. Negativex, can be achieved from snap- Here the tilde denotes the Fourier transformed variables. At a
through of the elementsc andbd in the inset diagram neat=0°. specific w, the overall dynamic compliance |8,/P,|; we

let =0, to obtain the properties of the system under quasi-

conservative, e.g., elastic problems, but not for viscoelasti@tat'\i_ condlltlotns.d L dint fthe |
ones. Therefore we make use of the Liapunov indirect theot— 'Sf(ier;i;c kirr;gmg*lsfexpre;se ;n erms o | € (:SS
rem, equivalent to the Routh—Hurwitz methiddf the Jaco- ~ ‘@ndent fam= mik* }/Refk’} (1r. a ciscrete spring elemen
bian matrix,JzﬁM*1X/5x|x:xe, contains eigenvalues with with complex force constark®; 4 is the phase angle be-

. . . tween sinusoidal force and displacement in time. For the
no positive real parts, then the dynamical system is stable, L= N

. X . : system in Fig. 1P, /u, takes the role ok* and for a bulk
HereM is a matrix which may contain masses or moments

i * * _
of inertia (if rotational degrees of freedom presenot vis- solid, a complex modulu&™ takes the role ok™. To ana

cosity, in the form of a state-space representatiois the Iytically study behavior of tad, we write tand explicitly in

. L . terms ofxq, «,, 7, andw, assuming as an exampie; =0,
vector of state-space variables containing generalized coof- 1, K2, 7 9

. : : m,=0, k;=10 kN/m, andk,=5 kN/m. These values are cho-
dinates and generalized momenta, agds x evaluated at a . . : : C
. S . . . sen to illustrate the effect of negative stiffness in achieving a
specified equilibrium pointX is a column vector function

containing generalized forces and generalized momefita. high viscoelastic loss tangent. Stability near the singularity is

and x are constructed either from the Hamiltonian of theStUdgda':a':h;ef(:tlgt\;\i/;;g'in the sense of Routh—Hurwitz. Eds
system, or Newton’s second law and by reducing equationfl) and(2) gre rewritte)llﬂ in state space:  EQS-
of motion to a system of first-order differential equations. pace

This is illustrated in Eq(4). The stability of a dynamical . 0
system with all zero real parts in its eigenvalues is weak Y1 ! 0
albeit stable”®> When all eigenvalues have negative real parts, Uz Uz 0
the degree of stability can be understood as the distance be- | V1| =J| V1| + P, | (4)
tween the imaginary axis and the closest eigenvalue 1 it. U2 U2 —
Furthermore the eigenvalu@\) which has the smallest f f m,
|Re(\)| is responsible for the rate of decfipr Re(\)<0] or 0
growth [for Re(\)>0] of amplitudes of the system’s normal with v,=u,, where
modes. _ -
Figure 1 shows a linearized discrete system in which 0 0 10 0
negativex, is achieved via the snap through effect illustrated 0 0 0 1 0
in the inset. That system exhibits geometrical nonlinearity, ki+ky Ky 1
however for stability analysis it is expedient to linearize the - — 0 0 - —
system about the salient equilibrium poi0°. P’s are J= M My M _ (5)
force, f is force in thex,— 7 elementu’s are displacement, ka ko 0 0 0
7 is viscosity, andk’s and «’s are spring constants. A lattice m, m,
can be constructed of such elements. 1K it K
The governing equations of the system are as follows, 172 0 kK, 0 — 12
with P;=0 throughout the analysis, L7 7

From Egs.(1), (2), and (4), we construct thel matrix, by
reducing the order of differential equations of motion. Fol-

my 0 (Ul) kitkz —kp (Ul) (f)_( 0) lowing the Liapunov indirect stability theorem, the eigenval-
0 myllup + —k, k, |\Uz 0/ \Py)’ ues of the] matrix are investigated with respect to the tuning
(1) parametersi, and ».
We analyze the linear discrete viscoelastic model, shown
in Fig. 1, in which negative stiffness is generated by geo-
n - K1K> Ki7m . metrical nonlinearity as shown in the inset. Parameters are
f+ K1t Ky f= K1t Ky U+ Kyt Ky Uz (2) chosen above to illustrate the effect of negative stiffness. For

Fig. 2 »=0.1 kN s/m, and for Fig. 37=0.01 to 0.3 kN s/m

and«x is tuned. The driving frequency is 1 rad16 H2 at
Equation (1) is the equation of motion and Eq2) is the  node 2. Small masses; =m,= 10" '?kg at the nodes facili-
constitutive equation for the damped system. The viscoelagate computation by avoiding a singular matrix. It was veri-
tic properties are computed in the frequency domain with thdied that the masses were sufficiently small that no inertial
aid of the Fourier transformation. The transformed H4$. effects were seen; all results are well in the quasistatic re-

and(2) become gime.
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10t —— | e 10* mode amplitude tends to equilibrium in the stable case, or
DAY S a0 ] diverges from equilibrium in the unstable case. The eigen-
102 Mtandle 210 values, the least stable of which is shown in Fig. 3, therefore
i ] provide a measure of the degree of stability or instability. In
—'g 10° Compliance Ik, !l 1100 _ the stable regime close to the stability boundary, thg overall
Z £ tané (about 400 atk,;=-—3.34) is about a million times
= ; @ greater than that with all positive stiffness elemefabout
;10 E 0.0002 atx;=2). Near the boundary on the unstable side, the
e i system may be viewed as dynamically metastable due to the
5 107 long time constant for divergence in which mass poimgs
= andm, (Fig. 1) move in the same direction. This time con-
10° Unstabie | Stable stant can be substantially larger than the viscoelastic time
3 | constanty/ k,=0.02 s.
10'8_5 2 5 5 The stability boundary is aligned with the peak of the

K. kN/m effective compliance, as seen in Fig. 3, and the boundary is
independent of subresonauasistatif frequency. The peak
tgr?é ?t}iasr:alt:se) ZLgdh cdoar;n ﬁfgﬁcgd?aﬂiﬁgiss )fter;? V—Vifc]) ?(relos d,'( D_%mpin%f the compliance is broader for large viscosiyViscosity
kN/m. QuaZistatic behavi%r; no inertial ternbé.tarlus (éircle.';) ié af{guzre of does not change the Stab!l!ty b'oundary, but it does change the
merit for vibration absorption. degree of instability(stability) in the unstable(stablg re-
gime. When viscosity is sufficiently small, there are singu-
larities in the effective tad. When viscosity approaches
Figure 2 shows the overall damping t&rand compli-  zero, one of the singularities approaches the stability bound-
ance, versus the value af;, which can be negative. The ary.
stability boundary is drawn based on the criterion that the  In summary, the viscoelastic damping of a discrete sys-
real parts of all eigenvalues must be less than zero for staem can be greatly magnified by use of a negative stiffness
bility. The damping tad exhibits singularities ak,~—3.34  element in the system. Such a system can be stable in the
and at—3.7. Also tan5—0 when k;—0 due to the decou- Routh—Hurwitz sense with no external constraint. The
pling of the damper element. The extremely high and lowpresent results indicate extreme behavior may be expected in
damping are located in the stable regime. damecomes the case of unit cells of sufficient complexity. Examples may
negative and then positive as decreases in the unstable include superlattices, molecular crystals, or complex inter-
regime. As seen in Fig. 2 the high damping tacombined  metallics, as well as composites with nano-structure such as
with sufficiently high stiffnes&’ can be achieved so that the buckled nanotubes or composites with inclusions which un-
productk’ tané is enhanced by a factor of more than 528 dergo phase transformation. Also, the product of stiffness
(about 0.407 kNm atx;=-—3.34, compared to about and damping, a figure of merit for vibration absorption, is
0.000 77 atx,=2). This product is a figure of merit for vi- orders of magnitude greater in the presence of negative stiff-
bration damping applications. ness elements.

Stability is governed by eigenvalues &f with dimen-
sions of inverse time, representing the rate at which a normal __The authors are grateful for a grant, CMS-0136986, from
NSF. We thank W. J. Drugan and R. Carpick for discussions

and encouragement.
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