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Systems with negative stiffness constituents can have extreme material properties greatly exceeding
those of either constituent. We show that a discrete system with a viscoelastic damping element and
a negative stiffness element can be made with overall viscoelastic damping orders of magnitude
higher than that of any constituent, or of the system with all elements of positive stiffness. The
product of stiffness and damping, important for vibration damping, is also enhanced by orders of
magnitude. We show this system is unconditionally stable in the high damping regime. The
singularity in damping can be made arbitrarily close to the stability boundary. ©2004 American
Institute of Physics.@DOI: 10.1063/1.1759064#

In ordinary heterogeneous solids, stiffnesses of each
phase are positive, and the composite properties cannot ex-
ceed the properties of either constituent. Negative stiffness
constituents can give rise to extreme properties exceeding
those of either constituent as shown theoretically1 and ex-
perimentally in a buckled lumped system2 and in a distrib-
uted composite system3 containing a dilute concentration of
inclusions. In the composite, negative stiffness was achieved
by inclusions in the vicinity of a ferroelastic phase transfor-
mation. In addition to unusual mechanical properties, anoma-
lies in coupled field responses, such as thermal expansion,
piezoelectricity, pyroelectricity, or electric permittivity, have
been analyzed.4 The causal mechanism for the phenomena is
the balance between the contributions from negative stiffness
and positive stiffness phases. This gives rise to amplified
motion at the interface between constituents. Although re-
sponse curves resemble resonance, the causal mechanism
does not entail any inertial terms, in contrast to resonant
effects in which extreme characteristics can be seen with a
dilute concentration of heterogeneities5 and in contrast to
dielectric systems which attain negative permittivity near a
resonance.6

Negative stiffness and negative Poisson’s ratio are dis-
tinct. Negative stiffness entails a reversed directional rela-
tionship between load and deformation so that an imposed
deformation causes an assisting force rather than a restoring
force from the material. Poisson’s ratio, denoted asn, is de-
fined as the negative lateral strain of a stressed body divided
by its longitudinal strain. Positive definiteness of strain en-
ergy, for stable isotropic elastic solids implies21,n,0.5.
Stable foams with negative Poisson’s ratio and positive stiff-
ness withn520.87,8 have been made.9

Negative stiffness can be achieved in prestressed elastic

systems including tubes or structures following buckling, in
preloaded lattices, and in ferroelastic materials just below
their phase transformation temperature. Negative stiffness by
itself usually entails instability. A bulk elastic solid of nega-
tive stiffness is unstable, but if all of its boundaries are fully
constrained in displacement, it can be stable, provided the
shear modulus (G) and Poisson’s ratio~n! satisfyG.0 and
2`,n,0.5 or 1,n,`.10 Since Young’s modulus isE
52G(11n) for isotropic homogeneous elastic materials,
the Young’s modulus can be negative for constrained solids.
The criterion of strong ellipticity11 ~modulus tensorCi jkl

obeysCi jkl aibjakbl.0 for any nonzeroai and bj , which
entails real wave speeds! enforcesG.0 andn,0.5 orn.1,
which allows negative Young’s and bulk moduli. If strong
ellipticity is violated, bands may form in the material, as is
observed in ferroelastic solids below a critical transformation
temperature. Reuss-type~series! elastic composites with
negative stiffness inclusions are unstable.12 A discrete model
containing multiple prestressed elastic elements13 and a vis-
cous element can display extreme overall stiffness; it is dy-
namically metastable~has a long divergence time! in this
regime.

The conditions under which systems with negative stiff-
ness constituents are stable, metastable, or unstable remain to
be determined. The experimental demonstrations of extreme
behavior in the composite3 were done via tuning processes;
therefore, the results are consistent with either metastability
or stability. The lumped buckled tube system2 was externally
constrained and would be unstable as a free element.

Here we show that a discrete system with a viscoelastic
damping element and a negative stiffness element can be
made with overall viscoelastic damping orders of magnitude
higher than that of any constituent or of the system with all
elements of positive stiffness. We show that this system is
unconditionally stable in the high damping regime.

The energy approach to stability analysis is suitable for
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conservative, e.g., elastic problems, but not for viscoelastic
ones. Therefore we make use of the Liapunov indirect theo-
rem, equivalent to the Routh–Hurwitz method.14 If the Jaco-
bian matrix,J5]M21X/]xux5xe

, contains eigenvalues with
no positive real parts, then the dynamical system is stable.
HereM is a matrix which may contain masses or moments
of inertia ~if rotational degrees of freedom present! or vis-
cosity, in the form of a state-space representation,x is the
vector of state-space variables containing generalized coor-
dinates and generalized momenta, andxe is x evaluated at a
specified equilibrium point.X is a column vector function
containing generalized forces and generalized momenta.X
and x are constructed either from the Hamiltonian of the
system, or Newton’s second law and by reducing equations
of motion to a system of first-order differential equations.
This is illustrated in Eq.~4!. The stability of a dynamical
system with all zero real parts in its eigenvalues is weak
albeit stable.15 When all eigenvalues have negative real parts,
the degree of stability can be understood as the distance be-
tween the imaginary axis and the closest eigenvalue to it.16

Furthermore the eigenvalue~l! which has the smallest
uRe~l!u is responsible for the rate of decay@for Re~l!,0# or
growth @for Re~l!.0# of amplitudes of the system’s normal
modes.

Figure 1 shows a linearized discrete system in which
negativek1 is achieved via the snap through effect illustrated
in the inset. That system exhibits geometrical nonlinearity,
however for stability analysis it is expedient to linearize the
system about the salient equilibrium pointu50°. P’s are
force, f is force in thek22h element,u’s are displacement,
h is viscosity, andk’s andk’s are spring constants. A lattice
can be constructed of such elements.

The governing equations of the system are as follows,
with P150 throughout the analysis,
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Equation ~1! is the equation of motion and Eq.~2! is the
constitutive equation for the damped system. The viscoelas-
tic properties are computed in the frequency domain with the
aid of the Fourier transformation. The transformed Eqs.~1!
and ~2! become
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Here the tilde denotes the Fourier transformed variables. At a
specificv, the overall dynamic compliance isuũ2 / P̃2u; we
let v50, to obtain the properties of the system under quasi-
static conditions.

Viscoelastic damping is expressed in terms of the loss
tangent tand[Im$k* %/Re$k* % for a discrete spring element
with complex force constantk* ; d is the phase angle be-
tween sinusoidal force and displacement in time. For the
system in Fig. 1,P̃2 /ũ2 takes the role ofk* and for a bulk
solid, a complex modulusG* takes the role ofk* . To ana-
lytically study behavior of tand, we write tand explicitly in
terms ofk1 , k2 , h, andv, assuming as an examplem150,
m250, k1510 kN/m, andk255 kN/m. These values are cho-
sen to illustrate the effect of negative stiffness in achieving a
high viscoelastic loss tangent. Stability near the singularity is
studied in the following.

To analyze stability in the sense of Routh–Hurwitz, Eqs.
~1! and ~2! are rewritten in state space:
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with v15u̇1 , where
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From Eqs.~1!, ~2!, and ~4!, we construct theJ matrix, by
reducing the order of differential equations of motion. Fol-
lowing the Liapunov indirect stability theorem, the eigenval-
ues of theJ matrix are investigated with respect to the tuning
parameters,k1 andh.

We analyze the linear discrete viscoelastic model, shown
in Fig. 1, in which negative stiffness is generated by geo-
metrical nonlinearity as shown in the inset. Parameters are
chosen above to illustrate the effect of negative stiffness. For
Fig. 2 h50.1 kN s/m, and for Fig. 3,h50.01 to 0.3 kN s/m
andk1 is tuned. The driving frequency is 1 rad/s~0.16 Hz! at
node 2. Small massesm15m2510212 kg at the nodes facili-
tate computation by avoiding a singular matrix. It was veri-
fied that the masses were sufficiently small that no inertial
effects were seen; all results are well in the quasistatic re-
gime.

FIG. 1. Linearized discrete viscoelastic system which exhibits extreme high
damping due to negativek1 . Negativek1 can be achieved from snap-
through of the elementsbc andbd in the inset diagram nearu50°.
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Figure 2 shows the overall damping tand and compli-
ance, versus the value ofk1 , which can be negative. The
stability boundary is drawn based on the criterion that the
real parts of all eigenvalues must be less than zero for sta-
bility. The damping tand exhibits singularities atk1'23.34
and at23.7. Also tand→0 whenk1→0 due to the decou-
pling of the damper element. The extremely high and low
damping are located in the stable regime. Tand becomes
negative and then positive ask1 decreases in the unstable
regime. As seen in Fig. 2 the high damping tand combined
with sufficiently high stiffnessk8 can be achieved so that the
productk8 tand is enhanced by a factor of more than 528
~about 0.407 kN m atk1523.34, compared to about
0.000 77 atk152!. This product is a figure of merit for vi-
bration damping applications.

Stability is governed by eigenvalues ofJ, with dimen-
sions of inverse time, representing the rate at which a normal

mode amplitude tends to equilibrium in the stable case, or
diverges from equilibrium in the unstable case. The eigen-
values, the least stable of which is shown in Fig. 3, therefore
provide a measure of the degree of stability or instability. In
the stable regime close to the stability boundary, the overall
tand ~about 400 atk1523.34! is about a million times
greater than that with all positive stiffness elements~about
0.0002 atk152!. Near the boundary on the unstable side, the
system may be viewed as dynamically metastable due to the
long time constant for divergence in which mass pointsm1

andm2 ~Fig. 1! move in the same direction. This time con-
stant can be substantially larger than the viscoelastic time
constanth/k250.02 s.

The stability boundary is aligned with the peak of the
effective compliance, as seen in Fig. 3, and the boundary is
independent of subresonant~quasistatic! frequency. The peak
of the compliance is broader for large viscosityh. Viscosity
does not change the stability boundary, but it does change the
degree of instability~stability! in the unstable~stable! re-
gime. When viscosity is sufficiently small, there are singu-
larities in the effective tand. When viscosity approaches
zero, one of the singularities approaches the stability bound-
ary.

In summary, the viscoelastic damping of a discrete sys-
tem can be greatly magnified by use of a negative stiffness
element in the system. Such a system can be stable in the
Routh–Hurwitz sense with no external constraint. The
present results indicate extreme behavior may be expected in
the case of unit cells of sufficient complexity. Examples may
include superlattices, molecular crystals, or complex inter-
metallics, as well as composites with nano-structure such as
buckled nanotubes or composites with inclusions which un-
dergo phase transformation. Also, the product of stiffness
and damping, a figure of merit for vibration absorption, is
orders of magnitude greater in the presence of negative stiff-
ness elements.
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FIG. 2. Stable high damping in a discrete system with preload. Damping
tand ~triangles! and compliance~diamonds! vs k1 . k1510, k255, k255
kN/m. Quasistatic behavior; no inertial terms.k8 tand ~circles! is a figure of
merit for vibration absorption.

FIG. 3. Effect of viscosityh ~in units of kN s/m! on the compliance and on
the least stable eigenvalue ask1 is varied near the stability boundary~ver-
tical line!. Quasistatic behavior; no inertial terms.
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