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Potential applications of high-damping and high-stiffness composites have
motivated extensive research on the effects of negative-stiffness inclusions on the
overall properties of composites. Recent theoretical advances have been based on
the Hashin–Shtrikman composite models, one-dimensional discrete viscoelastic
systems and a two-dimensional nested triangular viscoelastic network. In this
paper, we further analyze the two-dimensional triangular structure containing
pre-selected negative-stiffness components to study its underlying deformation
mechanisms and stability. Major new findings are structure-deformation evolution
with respect to the magnitude of negative stiffness under shear loading and the
phenomena related to dissipation-induced destabilization and inertia-induced
stabilization, according to Lyapunov stability analysis. The evolution shows strong
correlations between stiffness anomalies and deformation modes. Our stability
results reveal that stable damping peaks, i.e. stably extreme effective damping
properties, are achievable under hydrostatic loading when the inertia is greater
than a critical value. Moreover, destabilization induced by elemental damping is
observed with the critical inertia. Regardless of elemental damping, when the
inertia is less than the critical value, a weaker system instability is identified.

1. Introduction

In recent years, negative-stiffness-induced effective stiffness and damping anomalies
have been quite extensively studied, experimentally [1, 2] and theoretically [3, 4]. In the
realm of mathematical modelling of a physical process, the behavior of the model in
space, time and material (or system-specific) parameter spaces are of particular
interest. Recognition that inclusions have negative stiffness has added another degree
of freedom in the design of composite materials. In structural mechanics, negative
stiffness is obtainable through post-buckling processes. In solid materials, the Landau
phenomenological theory of phase transformations predicts negative curvature in
the system free-energy, i.e. a negative stiffness in the vicinity of phase transitions.
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For discrete viscoelastic systems with negative-stiffness components, our
previous studies have shown that the stability of the most interesting configuration
that corresponds to extreme overall stiffness is metastable, both in one- and two-
dimensional systems [5, 6]. Singularly stable extreme damping has been theoretically
shown in one dimension [7]. In general, metastability entails that an energy
minimizer of a system does not exist. Observation of metastability is possible and has
been reported in other studies, such as liquid droplets on hydrophilic or hydrophobic
surfaces [8]. In the negative-stiffness systems, the degree of metastability for
discrete negative-stiffness composite systems may be tuned via the viscoelastic
properties of each composing element. In contrast, isotropic and homogeneous
negative-Poisson’s ratio (�1< �<0) materials are stable, both in theory and
experimentally [9, 10]. Furthermore, for an isotropic and homogeneous continuum,
it is well known that uniqueness of linear elasticity solutions is ensured if strong
ellipticity criteria are satisfied [11, 12]. Violation of strong ellipticity causes band
formation in deformation processes; hence instability occurs. Stability, in the sense of
energy minimization, of a continuum with negative stiffness under different loading
conditions has been studied and summarized in [13].

The stability of a discrete negative-stiffness composite system is intriguing.
A negative-stiffness system stabilized by follower forces (forces whose direction
changes in accord with the system’s deformation) has been demonstrated by
Thompson [14]. The destabilization paradox [15] states that the stability of certain
non-conservative systems is weaker due to dissipation. Yet, it is well known that
dissipation can help stabilize or destabilize a system. Gyroscopic systems with a
definite-negative stiffness matrix can be stabilized by certain damping mechan-
isms [16]. An unconstrained negative-stiffness object in a conservative system is
unstable. However, to some degree, it can be stabilized in the form of composites
with a positive-stiffness surrounding matrix, as studied in one-dimensional [5, 17, 18]
and two-dimensional [6] systems. The latter is a pre-cursor of our present study. In
[6], the structural evolution of a nested triangular lattice cell with respect to negative
stiffness assigned to pre-selected components under hydrostatic loading is studied in
detail. With pre-chosen inertia in the system, the results of stability analysis in that
work identify a system-related instability with an amount of negative stiffness less
than that required for singularly stable damping peak, contrary to experience from
one-dimensional systems.

In this paper, we study in particular the structural evolution of the triangular
system with negative stiffness under shear. Our Lyapunov stability analysis with
different inertia and elemental damping reveals the phenomena of dissipation-
induced destabilization and inertia-induced stabilization in the system under the
influences of negative stiffness. We show that stable extreme effective damping in
two dimensions is achievable.

2. Analysis

To analyze the nested triangular structure, as shown in figure 1, with the components
of the inner triangle containing negative stiffness (i.e. k1<0), and k2¼ 5 and
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k3¼ 10 kN/m being fixed throughout, we adopt the finite-element method (FEM)
for its simplicity and efficiency in handling systems with many degrees of freedom
[19, 20]. Detailed matrices used in the FEM calculations can be found in [6]. Here,
we present the framework of our analysis; particular attention is placed on the
FEM in terms of the state-space presentation. All the numerical calculations here
were performed with the software Mathematica 5.0� (Wolfram Research, Inc.,
Champaign, IL, USA).

2.1. Equations of motion and loading conditions

According to Newton’s second law, the equations of motion at each node along
the x and y directions can be expressed in matrix form as follows:

M � €Uþ F ¼ P ð1Þ

F ¼ KT
� f ð2Þ

Here, U is the displacement vector, M the lumped-mass matrix, P the external force
vector and F the internal force vector, which is computed from the internal force
f in the element’s local coordinates. Uppercase letters are designated to indicate
variables in the global coordinates. The symbol K denotes a transformation matrix
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Figure 1. The nested triangular lattice cell. Solid circles denote the j-th nodal mass, Mj.
We assume that Mj is the same for all j throughout the analysis. The inner triangle consists of
the standard linear solid component with the spring constant k1, the outer triangle with k3
and the linking components between the inner and outer triangle with k2. Viscoelastic time
constants for the components are fixed and given in section 3.1. The spring constant k1 is to be
tuned negative to observe stiffness and damping anomalies along the loading direction for
a given loading condition. The length of the inner triangle is 5mm and that of outer triangle
28mm; both triangles share the same centre. We denote um and Pm for the displacement and
loading, respectively, for the m-th degree of freedom.
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between the global and local coordinates [6]. The symbol . represents the
inner product between matrix and vector, or among matrices. A super dot
indicates differentiation with respect to time, two super dots indicate the second
time derivative, and the superscript T denotes the transpose operation of a
matrix. The relationship between U and f requires a constitutive law, discussed
in section 2.2.

We prescribe pre-chosen loading conditions to study the effective bulk stiffness
(Kb), shear stiffness (Ks) and compressive stiffness (Kc) in a range of k1, including
negative values. Applying hydrostatic compression,

P3 ¼ �p cos
�

6

� �
, P5 ¼ 0, P6 ¼ �p ð3Þ

we calculate the effective bulk stiffness (Kb) through the equation, Kb¼P6/u6.
Assigning

P3 ¼ �
p

2
, P5 ¼ p, P6 ¼ 0 ð4Þ

the shear stiffness is calculated by Ks¼P5/u5. Under the uni-axial compression,

P3 ¼ 0, P5 ¼ 0, P6 ¼ �p ð5Þ

the equation Kc¼P6/u6 gives rise to the effective compressive stiffness. Here, we use
the convention that assumes the loading parameter p>0 is compressive.

2.2. Constitutive relations

The standard linear solid model [21] is adopted in our present analysis since it has a
sufficiently general frequency response to represent viscoelastic materials for the
present purposes.

fj þ T"j
_fj ¼ kj �j þ T�j

_�j

� �
, j ¼ 1, 2, . . . , n ð6Þ

Here n is the number of elements. fj and �j represent the internal force and change
of length of the element j, respectively. Note that T"j and T"j are in units of time,
and the loss tangent of the j-th element is tan �j ¼ ðð!ðT�j � T"jÞÞ=ð1þ !2T�jT"jÞÞ

at the frequency !. When T"j¼T�j¼ 0 for all j, this model reduces to Hooke’s law.
We further define

r ¼
T�j

T"j
, for all j ð7Þ

to indicate the relaxation strength for all the components. Here, we assume a
constant r, but different T�j and T"j (given in section 3.1) for different j throughout
analysis. In other words, initially, the k1, k2 and k3 standard linear solid components
have pre-chosen but different viscoelastic time constants. During a numerical scan in
the r parameter space, elemental damping properties of all the components increase
or decrease by the same magnitude, r. A graph delineating the relationship between
r and loss tangent with a given T"j under different frequency is given in [6].
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2.3. State–space representation

Combining the equations of motion and the constitutive relation, equations (1),
and (6), the mechanical system can be modelled in terms of the state–space
variables (X), as follows. Let subscript m be the number of degrees of freedom.

A � _X ¼ B � Xþ C ð8Þ

A ¼

Im 0 0

0 M 0

0 0 T"

2
4

3
5 ð9Þ

B ¼

0 Im 0

0 0 �KT

kele � K kele � T� � K �In

2
4

3
5 ð10Þ

C ¼ ½ 0 PT 0 �
T

ð11Þ

The state–space variables are X ¼ ½U V f �T, where U is the displacement vector,
V the velocity vector and f the vector containing internal force for all the elements.
I is a square identity matrix with the dimension m by m, and kele represents the
stiffness matrix in the local coordinate system. T� and T" are matrices containing the
viscoelastic time constants for each element. The matrices, kele, T� and T", are
diagonal, as is the matrix M. The j-th component of M is denoted by Mj for node j.
In later numerical calculations, we assume Mj is the same for any j. Explicit
expressions of these matrices can be found in [6]. We use the symbol �k for the k-th
mode in the state space to denote the eigenvalue of the matrix A�1 .B in the
Lyapunov stability analysis.

2.4. Linear viscoelastic damping and stability

Effective damping and stability depend on the viscosity of each element and driving
frequency (!). To calculate the damping properties of the system in terms of the loss
tangent, we take a Fourier transformation on the governing equations, equations (1),
(2) and (6), to obtain the dynamic (or complex) stiffness of the system in the
frequency domain, as follows.

K � ¼ �!2Mþ KT
� ðIn þ i!T"Þ

�1
� ðkeleKþ i!keleT�KÞ: ð12Þ

By the generalization of the definition of the loss tangent for a 1-DOF system, the
effective loss tangent of the system can be calculated as follows:

tan �j ¼
Imð�iÞ

Reð�jÞ
, j ¼ 1, 2, . . . , n: ð13Þ

Here �j is the eigenvalue of K�, providing phase information for the deformation
mode j. In other words, each of the loss-tangent components corresponds to the
phase lag information of a specific load-deformation mode. Notice that the
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eigenvalues �j and �k are fundamentally different. The former are the eigenvalues of
the complex stiffness matrix and the latter are the stability eigenvalues used in the
Lyapunov stability analysis.

According to the Lyapunov indirect theorem, the stability of the dynamical
system, equations (8)–(11), may be determined by simply investigating the
eigenvalues (�k) of the matrix A�1 .B. The imaginary part of �k provides the
oscillatory information for the normal mode k in the state space, whereas the real
part of �k determines the stability of the system. If Re(�k)>0, the system is unstable;
otherwise, the system is stable. Here, we look for eigenvalues with their real parts
greater than zero while tuning the amount of negative stiffness in the pre-chosen
elements (i.e. the k1 elements). We remark that Lyapunov’s indirect theorem predicts
only local stability – consistent with our linear analysis.

3. Results and discussion

In the present analysis, the spring constants k2¼ 5 and k3¼ 10 kN/m are unchanged
throughout. The absolute values of k2 and k3 are irrelevant to the search of the
anomalies in the overall viscoelastic responses of the system when tuning k1, since
only the ratios between them are significant.

3.1. Effective stiffness and damping anomalies

Figure 2 shows the anomalous peaks and anti-peaks in the effective stiffness for
Kb, Kc and Ks arising from the negative-stiffness effects from the inner triangle.
Between each peak and anti-peak pair for all the loading conditions, the effective
stiffness is negative, which is unstable, according to the energy argument. Elsewhere
the effective stiffness is positive. The system stability boundaries 1 and 2 are
determined via Lyapunov stability analysis with inertia Mj� 10�12 and Mj� 10�6 kg,
respectively, and will be further discussed later in the text associated with
figures 6 and 7. Uni-axial compression excites both the shear and bulk stiffness
peak and anti-peak. However, the width of the compression peak is different from
that of the bulk or shear peak. The physical meaning of the width of a peak is unclear
for the time being. It can be seen that to achieve a shear stiffness peak (or anti-peak)
requires more negative k1, when compared with the bulk stiffness peak. Since, in the
meta-stable regime, the degree of instability increases with the amount of negative
stiffness, the shear peak is more unstable than the bulk peak. These results provide
guidance for experimental investigations. For example, the stiffness peak
corresponding the uniaxial compression occurs at a lesser |k1| in the meta-stable
regime. This indicates that it may be more feasible to observe the uniaxial stiffness
anomaly, compared to the hydrostatic case. Moreover, anomalies in the bulk
properties are observed prior to (at less-negative k1 values during tuning) those in
the shear, indicating that there is the potential for stable systems not subject to a
band instability. This point is also suggested in a recent study from a continuum
approach [13].
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Detailed information concerning the change of structural configuration with the
reduction of k1 under shear is shown in figures 3 and 4. The effective shear stiffness
and area-change ratio versus the tuning parameter, k1, are reported in figure 3.
The area-change ratio for the outer triangle (not shown) is zero owing to simple
shearing. It can be seen that there are two anti-peaks in the area-change ratio for the
inner triangle, indicating minimal area changes at k1��1.31 and �1.42 kN/m.
They are due to change of orientation of the inner triangle. These two anti-peaks
surround an area-change peak that corresponds to a maximum reduction of overall
shear stiffness. This arrangement of peaks is also observed in the study of a
hexagonal lattice structure with negative-stiffness components in [22]. Furthermore,
the area-change anti-peak at k1��1.42 kN/m is located very closely to the shear
stiffness peak with a 0.007 kN/m difference, indicating that the cause of the extreme
stiffness is due to the interplay of deformation modes between the inclusion and
matrix [17]. However, this phenomenon is not observed in the case of hydrostatic
compression [6].

The evolution of the geometrical configuration of the deformed structure with
the order of decreasing k1 is shown in figure 4. The inner triangle is indicated with
thick solid lines, the outer triangle with thin solid lines and the linking elements
dashed lines. The deformed geometry is normalized to the outermost boundary.
Upon increasing the strength of the negative stiffness in the inner triangle, firstly, the
shape of the inner triangle changes drastically from (a) to (b). Then a flip in the inner
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Figure 2. Overall bulk stiffness (Kb, dotted line), compressive stiffness (Kc, dashed line) and
shear stiffness (Ks, solid line) versus k1. When inertia (Mj) is greater than or equal to a critical
value (10�6 kg, see section 3.2), the Lyapunov stability analysis predicts the stability boundary
2 for the system stability boundary, detailed in figures 6 and 7. The stability boundary 1 is
obtained when Mj¼ 10�12 kg or smaller, and the stability boundary 2 when Mj¼ 10–6 kg or
larger. The letters, S and MS, stand for stable and meta-stable, respectively.
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triangle occurs from (b) to (c). After that, the growth of the inner triangle in (d) and
(e) is inevitable to maintain force balance by increasing the length of linking elements
between the inner and outer triangle. A jump in switching orientation of the structure
also occurs from (d) and (e). Continuing the increase of the magnitude of negative
stiffness, the inner triangle shrinks with an orientation shown in (f ). It appears as a
mirror image of (c). Then, the inner triangle flips from (f ) to (g). Finally, as shown
in (h), the inner triangle roughly regains its original shape and size, but a different
stretched orientation to that in (a), for k1<�1.977 kN/m. We remark that the shear
loading condition is unchanged in all the figures. The changes of the geometrical
configurations are due to the effects of negative stiffness. We also remark that the
kinematical boundary conditions are satisfied in all the cases. Owing to the negative
stiffness and equilibrium constraints, the inner triangle may exhibit unusual large
deformation, according to the linear theory, as shown in (d) and (e). For the two-
dimensional structure (as shown in figure 1), it is possible for the components to
cross over one another when they are off-set into different planes. From a structural
point of view, a generalization to the three dimensions is also possible if the
components are made of the shell elements and empty space is provided so that
components do not obstruct movements between them.

The results of overall damping calculations are shown in figure 5 with the
following parameters fixed in the analysis. !¼ 10Hz, T�1¼ 10�2 s, T"1¼ 10�4 s,
T�2¼ 5� 10�2 s, T"2¼ 5� 10�4 s, T�3¼ 2� 10�2 s, T"3¼ 2� 10�4 s. The subscripts
1, 2 and 3 are in the same sense as those for the spring constants. We define r the
ratio of T� to T" for each of the components in the structure, as in equation (7).
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Figure 3. Overall shear stiffness (Ks) and area-change ratio versus k1. The shear stiffness peak
and anti-peak are located at k1��1.42 and k1��1.37 kN/m, respectively. The geometrical
configurations of the structure around each of the peaks or anti-peaks for the area change
ratio are shown in figure 4.
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Figure 4. Evolution of structural geometry of the triangular structure with various k1 under
shear loading: (a) k1¼ 0.205, (b) k1¼�1.28, (c) k1¼�1.301, (d) k1¼�1.367, (e) k1¼�1.371,
(f ) k1¼�1.437, (g) k1¼�1.462 and (h) k1¼�1.977. Stiffness is in units of kN/m. The inner
triangle is composed of thick solid lines and the outer triangle of thin solid lines. Linking
elements are denoted by dashed lines. Owing to the negative-stiffness and equilibrium
constraints, the inner triangle may exhibit unusual large deformation, according to the linear
theory, as shown in (d) and (e). Kinematical boundary conditions are satisfied in all the cases.
The crossing over between components can be made possible when they are off set into
different two-dimensional planes.
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When r¼ 1, the corresponding component is purely elastic. Our intention is to
capture the low-frequency responses of the system with reasonable viscoelastic
properties for the components. There are nine tan �’s from equation (13), and we plot
only those exhibiting anomalies in terms of peaks or anti-peaks in the k1 range of
interest. We remark that our method of calculation gives all tan �’s for all
deformation modes. The one-to-one correlation between a deformation mode and
loss tangent can be sorted out by either performing eigenvector analysis, as in [17]
for the 1-D cases, or identifying the simultaneous occurrence of a damping peak
and stiffness anti-peak. Here, we adopt the latter. From figures 2 and 5, it can be seen
that the damping peak around k1��0.3 kN/m coincides with bulk stiffness anti-
peak. Although a stiffness anti-peak indicates reduction in effective stiffness,
the figure of merit, defined as the product of stiffness and damping, for the
viscoelastic system may be high, owing to the higher magnitude of the damping peak.
This has been shown for the 1-D cases [7]. The bulk damping anti-peak (at
k1��1.37 kN/m) is very close to the shear stiffness anti-peak, but pure shear loading
will not excite it. The shear stiffness anti-peak is in relation to the damping peak at
k1��1.395 kN/m. The other damping peak at k1��1.43 kN/m is related to other
deformation mode. Comparing figures 3 and 5, it can be seen that the shear stiffness
peak (at k1��1.42 kN/m) is located between the two damping peaks. This implies
that for certain loading conditions perfect alignment between stiffness and damping
peaks, as observed in the 1-D systems, may not exist for systems with many degrees
of freedom. The base-line magnitude of the overall damping varies with r, since it
follows the damping of individual components.
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3.2. Results of stability analysis

The stability losing eigenvalues (�) are plotted against the tuning parameter k1 in
figures 6 and 7 for the cases of dissipation-induced destabilization (constant Mj) and
inertia-induced stabilization (constant r), respectively. From the previous studies in
the one-dimensional system [5, 7, 17], stability boundaries are independent of
elemental damping and nodal masses. In the two-dimensional study [6], three
stability boundaries are identified, corresponding to a system-related, bulk and shear
mode. Moreover, stability boundaries are not influenced by damping inside
components with Mj¼ 10�12 kg for all j. It is worth noting that such small masses
are used to ensure that the system is in quasi-static mode; consistent with our
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coincide. The letters, S and MS, stand for stable and meta-stable, respectively.
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interests in the low frequency dynamics of the system. In the present analysis, four
cases are studied, corresponding to a chosen mass Mj¼ 10�3, 10�6, 10�12 or 10�24 kg
for all j. In the case of Mj¼ 10�6 kg, we observe that the structure is destabilized by
the amount of damping inside its components in figure 6. For small elemental
damping, r� 1, the structure stability depends on the bulk mode at k1��0.3 kN/m
(black circles). When r¼ 1000, stability-losing eigenvalues at k1��0.09 kN/m
(orange downward triangles) determine the overall stability of the whole system.
For 103< r<106, the system stability boundary stays with k1��0.09 kN/m. The
elemental damping also affects the magnitude of the eigenvalues, which determines
the rate of divergence; eigenvalues with large real part indicate high divergent rates.
To further discuss this issue, figure 7 shows the influences of inertia with a fixed
r¼ 10. Following the trends of the curves of eigenvalues, it can be seen that when
Mj� 10�6 kg for all j, the system stability, coincident with the stability boundary for
the bulk mode, is at k1��0.3 kN/m. We determine that Mj¼ 10�6 kg for all j is the
critical inertia to maintain stability for the bulk damping peak. When Mj� 10�12 kg
for all j, the system is stable at k1>�0.09 kN/m. In the 1-D cases, the two
parameters, mass and relaxation strength, do not affect the system stability, and the
anomalous stiffness anti-peak coincides with the damping peak, the same as the
system studied here for the bulk mode when Mj� 10�6 kg. To the authors’
knowledge, this is the first time that inertia-dependent stability is observed with such
clarity in a dynamical system with or without the negative-stiffness influences.
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To clarify, the critical inertia (10�6 kg) is determined by scanning the mass
parameter in the inertia space, and observing changes in the stability eigenvalues
versus the tuning parameter, k1. This method can be readily applied to other
dynamical systems, when one is interested in investigating the effect of a parameter
on stability, in addition to the tuning parameter. An alternative way is to analytically
perform stability analyses with respect to two or more tuning parameters in the
framework of energy methods [23].

4. Conclusions

Anomalies in the effective stiffness and damping under hydrostatic, shear and uni-
axial compression are observed for the two-dimensional nested triangular structure.
Tracing the evolution of deformed geometry under shear loading, we observe that
changes of the orientation of the inner triangle are responsible for the stiffness peaks
and anti-peaks and, consequently, the effective damping peaks. The results of the
Lyapunov stability analysis lead us to conclude that the system stability depends
on inertia at the nodes and damping inside each of the standard linear solid
components. When inertia is larger than or equal to a critical value (10�6 kg in the
present case study), a stable loss-tangent peak can be achieved for the bulk mode in
the two-dimensional system.
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