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Negative incremental bulk modulus in foams
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Negative incremental stiffness is known to occur in structures such as post-
buckled flexible tubes and single-cell models. A single foam cell under uniaxial
loading buckles and exhibits a non-monotonic S-shaped deformation curve,
which is indicative of negative incremental stiffness. Negative stiffness is not
observed in bulk materials. For example, individual foam cells display negative
stiffness but foams tested in uniaxial compression exhibit a plateau in the
stress–strain curve because the buckled cells localize in bands. This behaviour is
consistent with the continuum view in which strong ellipticity and, hence, a
positive shear modulus G and positive C11 modulus are required for stability, even
for a constrained object. It is hypothesized that a solid with negative bulk
modulus can be stabilized by control of the surface displacement. Experimentally,
foams were hydrostatically compressed by controlled injections of small volumes
of water into a plastic chamber, causing volumetric deformation. A negative
incremental bulk modulus was observed in a foam with 0.4-mm cell size beyond
about 20% volumetric strain. A foam with large cells, 2.5–4mm in size, was
anisotropic and did not exhibit the cell buckling required for negative modulus.

1. Introduction

Negative stiffness, or a reversal in the usual assumed direction between a force and
the resulting deformation, is known to occur in buckled structural elements [1]. It is
distinct from a negative Poisson’s ratio [2], which is a reversal of the usual relation
between transverse and longitudinal strains observed in tension or compression.
If the slope of the force–deformation curve is negative at zero force, it represents
a negative stiffness. If the slope becomes negative at a non-zero load, the curve is
non-monotonic and the negative slope represents a negative incremental stiffness.
Negative incremental stiffness is observed experimentally provided the unstable
structural element undergoing buckling is constrained. Stable, negative incremental
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stiffness has been demonstrated for post-buckled rubber tubes constrained in

displacement control [3]. In displacement control, the displacement of the test

machine actuator is prescribed and the load measured, preventing the catastrophic

failure normally observed during buckling as progressively larger loads are applied.

Similarly, Rosakis et al. [4] demonstrated non-monotonic behaviour in load

deformation curves for a constrained model of a single foam cell, indicative of

incremental negative stiffness, as shown in figure 1. The effect is due to buckling of

the cell ribs. Also shown in figure 1 is the monotonic behaviour of foam material

containing many such cells. The buckled cells in the foam are under insufficient

constraint; they localize to form bands transverse to the applied compression.
The negative stiffness concept has also been theoretically analyzed and

experimentally studied in composite materials. Such composites can exhibit material

properties that exceed conventional bounds on composite material behaviour;

formulae describing such behaviour tacitly assume positive moduli in their

derivation [5]. For example, in a lumped system consisting of single post-buckled

rubber tubes in series with elastic elements, an increase over the base material in

viscoelastic damping by orders of magnitude was observed [3].
For the case of distributed systems (i.e. bulk materials), negative moduli can be

achieved through ferroelastic [6], and martensitic [7] transformations. These trans-

formations are rapid, diffusionless crystal structure rearrangements that can be

induced through temperature changes and mechanical stress [8]. Negative moduli

arise in these reactions within the context of Landau theory [9] from the formation

of two local minima in the strain energy function. As the temperature is lowered,

an energy function with a single minimum, representing the equilibrium high-

temperature phase, gradually flattens, then develops two minima. Since the curvature

of this energy profile represents a modulus, the flattening of the curve corresponds to
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Figure 1. Comparison of observed behaviour of a single cell model displaying non-
monotonic, negative stiffness behaviour and of a foam made of such cells, both under
displacement control, adapted from Rosakis et al. [4].
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a softening of the modulus toward zero at the critical temperature Tc. Below Tc,
the relative maximum and, hence, negative curvature between the two potential
wells represents a negative modulus. This condition is unstable, and bands of
material form, visible as the twin structures associated with ferroelastic and
martensitic reactions, with strains of opposite sign corresponding to the new relative
minima.

Negative stiffness or the modulus of an unconstrained object entails instability
and is not normally observed or measured. However, if the displacement is
constrained, an object with negative structural stiffness (or spring constant) can be
stable. From a continuum standpoint, to achieve a negative elastic modulus surface
constraint is necessary but is not sufficient for stability. For example, an isotropic
solid under rigid constraint is stable provided it is strongly elliptic, which allows
a range of from �1 to 1 for Young’s modulus E and �4G/3 to 1 for the bulk
modulus B, with the shear modulus G>0 [10]. For ferroelastic and martensitic
materials in the vicinity of a phase transformation, the shear modulus G can soften to
zero. Below the transformation temperature, the material develops bands or domains
due to the instability and the stiffness remains positive. For example, in single
crystals of indium–thallium alloys, which undergo a martensitic transformation,
a shear modulus tends to zero, but does not go negative [11, 12]. This is not
surprising since these crystals are not constrained on all surfaces.

To achieve a negative modulus, the banding instability associated with failure of
strong ellipticity may be suppressed by surface effects. In particular, sufficiently
small single crystals can be single domain. The reason is that the energy required
to form domain boundaries is dominated by crystal surface energy. Single-domain
crystals are predicted to exhibit negative shear modulus under constraint.
Composites with spherical negative stiffness inclusions [5] may be stable provided
the stiffness of the inclusion is not too negative. Metal matrix composites [13],
with ferroelastic vanadium dioxide as the phase-transforming negative-stiffness
inclusions, were fabricated and studied; they exhibited gigantic peaks in mechanical
damping and anomalies in the modulus, in harmony with theoretical predictions [14].
In these results, a negative inclusion shear modulus was inferred but not measured
directly.

Stable, negative elastic moduli have not been measured directly on any
material. The effects of negative incremental structural stiffness in foam cells are
illustrated in figure 1. In this experiment, the negative structural stiffness, indicated
by the negative slope in the load–deformation plot of the single cell, was stabilized
by a constraint on the displacement. By contrast, a material made of many of
such cells exhibits a monotonic load–deformation plot with positive stiffness
throughout. Buckling of the individual cells gives rise to bands of localized
heterogeneous deformation in the foam resulting in the plateau region beyond
about 5% deformation strain in compression. In the continuum view, loss of local
stability corresponds to the destabilizing effect of a negative value of the
compression modulus C11. The continuum view described above suggests that a
material possessing a negative bulk modulus B could be stabilized by a surface
constraint. In the present work, a negative incremental bulk modulus is
demonstrated experimentally in pre-strained foam under control of the volumetric
deformation.
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2. Experiment

2.1. Materials

Open cell foams were obtained from Foamade Industries (Auburn Hills, MI, USA)
and from Foamex International (Eddystone, PA, USA). These foams had pore sizes
of 2.5mm (10 pores per inch (ppi)) and 0.4mm (60 ppi). Cubes, cylinders and spheres
were cut from the bulk foam via an iterative sectioning process; portions of foam
were sectioned and the specimen measured. Any irregularities were further sectioned.
Specimens included cubes with side lengths of about 2.5 cm, cylinders that were
about 3 cm in diameter and 4.5 cm long, and spheres about 3.5 cm in diameter.

2.2. Uniaxial compression

Specimens were tested in uniaxial compression to obtain Young’s modulus, to
determine the degree of anisotropy and obtain a uniaxial deformation curve
to compare with that of volumetric deformation. A MTS screw-driven test machine
with a 45-N (10 lb) load cell was used. Specimens were tested at various deformation
rates.

2.3. Volumetric compression

Foam specimens were sealed inside a cylindrical natural latex rubber membrane
0.076mm thick (Trojan, Church & Dwight Co., Princeton, NJ, USA). Initial trials
were conducted with cubic specimens enclosed in flat latex membranes 0.15mm thick
(McMaster-Carr, Chicago, IL, USA) cemented together in segments. However,
an adequate seal under water compression was difficult to maintain, so cylindrical
membranes were used. After first inserting the specimen all the way to the end of the
membrane, a 3-mm diameter air relief tube was then placed into the membrane
(figure 2). The membrane was then twisted around the tube to take up the slack and
remove as much air as possible without placing a pre-compression on the specimen.
Several windings of electrical tape were then tightly wrapped around the tube and
membrane. After sealing, the excess latex was trimmed and removed.

A volumetric test chamber was fabricated from a 1–l polycarbonate bottle
(Nalgene, Rochester, NY, USA). The screw top was modified by first drilling a hole
through the cap and adding a bulkhead joint to allow the air relief tube to feed
through and supply a water injection port (figure 2). Known volumes of water were
injected by a calibrated screw piston. Gauge pressure was measured using a digital
HHP-2021 manometer (Omega) with a 13-kPa operating range; the manometer
requires an input tube of 4mm inner diameter and 1mm wall thickness.
The manometer is only capable of reading air pressure so the last section of the
manometer tube, roughly 10 cm, was left unfilled with water. Owing to the high bulk
modulus of the water (about 2GPa), in comparison to the foam (�50 kPa), and the
high structural stiffness and small volume of the bottle, this experimental setup
corresponds to a nearly perfect, displacement-controlled test machine.
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Tests were set up by first filling the chamber with tap water and placing the lid
tightly onto the chamber. The thermocouple feed through was unscrewed and the
chamber was topped off with water through this opening. Once the water level
reached the thermocouple feed-through hole, the fitting was replaced and the
chamber turned upside down and slightly agitated to release any remaining air
bubbles. The chamber was then returned upright, the thermocouple feed-through
removed and water was added as needed. This process was repeated until all the
visible air bubbles were bled from the system. Once the system was free of bubbles,
the manometer was attached and the initial pressure reading recorded.

Volumetric compression was initiated by incrementally backing off on the
volume until the membrane was observed visually to be inflated beyond the diameter
of the sample. Water was then displaced into the system in small increments of about
0.14ml. After each displacement increment, the manometer was allowed to settle to
a constant pressure. A typical compression test to 40% strain took typically up to
5 h. A zero strain point was inferred based on the slope change during the ballooning
of the latex rubber.

After compression testing, each specimen was completely removed from the
pressure chamber, unwrapped and allowed to recover for at least 10 times the
duration of the test. For consecutive tests the specimen was wrapped in a new
membrane for each test.

Screw piston

Manometer

Polycarbonate
bottle

Brass tee

Relief tube
(to specimen)

Thermocouple
feed through

BulkheadOriginal cap

Plastic
tee

Manometer
tube

Latex rubber membrane

Air relief tube Electrical tape

Trimmed edgesFoam sample

(a) (b) (c)

Figure 2. Top view of the test chamber, a manometer to measure pressure and a piston
plunger to impose a volume change. The detail below shows the specimen set-up procedure.
(a) Insertion of specimen membrane with air escape tube, (b) twisting of membrane around
relief tube until slack is taken up, and (c) sealing of specimen with several windings of
electrical tape.
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3. Results

Uniaxial compression of the various foams (figure 3) was indicative of classic foam

behaviour, showing an initial seating effect, then a linearly elastic region of 5–10%

strain, a plateau region and finally densification after about 70% strain (figure 4).

Strains were calculated simply from the actuator motion. For foams of small pore

size, Young’s modulus was of the order of 50 kPa and was sensitive to direction.

In figure 4, the Young’s moduli of the 25.4-mm Foamade cube were 47, 34 and

37 kPa for directions 1, 2 and 3, respectively, thus yielding anisotropy ratios of

1.0:1.1:1.4. Similarly, the 25.4-mm Foamex cube returned moduli of 31, 31 and

47.5 kPa, or ratios of 1.0:1.0:1.5. The larger cell foams showed a more pronounced

directional dependence owing to the elongated pore shape, and moduli of 9, 9 and

  

(a) (b)

Figure 3. Foam structure. (a) Foamade and Foamex foams, cell size 0.4mm; scale bar is
1mm. (b) Foamex foam of 0.8mm cell size showing elongated pore shape in one direction
(left); scale bar is 10mm.
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Figure 4. Uniaxial compression stress–strain curves from a Foamex 25.4mm cube (0.4mm
cell size) displaying classic foam behaviour. Some directional dependence is evident, with
Young’s moduli of 34, 37 and 47 kPa for directions 1, 2 and 3, respectively.
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20 kPa with the 25.4-mm sample, or ratios of 1.0:1.0:2.2. In contrast, a 50.8-mm cube
of the same foam had moduli of 15, 15 and 37.5 kPa, or 1.0:1.0:2.5.

Volumetric compression experiments disclosed non-monotonic behaviour
provided the foam specimen had small cells (0.4mm) and was spherical in shape
(figure 5). Beyond about 20% strain, the incremental bulk modulus became
negative. Cycle dependence was observed in which the initial foam modulus
decreased and the large-strain behaviour changed character. Figure 5 shows
behaviour of 0.4mm cell size Scott Industrial foam [15] cut from a previously
tested foam cylinder, and figure 6 shows similar non-monotonic behaviour of
a spherical specimen having a similar 0.4-mm cell size, recently obtained from
Foamex Industries.

In contrast, cylinders made from the 2.5-mm cell (10 ppi) foams, subjected to
hydrostatic compression, displayed behaviour that was dominated by anisotropy.
Specimen deformation was heterogeneous; the cylinders deformed into an hourglass
shape at high strains. Cylinders made from the smaller cell size foams also displayed
heterogeneous deformation, most likely due to the intrinsic shape of the rubber
membrane. Non-monotonic behaviour was not observed in these tests.
Typical response curves are shown in figure 7.

4. Discussion

Negative bulk modulus was observed in the hydrostatic compression of small cell
(0.4mm) foam under control of volumetric displacement, for deformations of
20–35%. This is, therefore, an incremental bulk modulus. The effect is attributed
to buckling of the cell ribs. In the continuum view, a material with a negative
bulk modulus can be stabilized by a constraint, but a negative shear modulus or

0

0.5

1

1.5

2

2.5

3

−0.2 0 0.2 0.4 0.6 0.8

C
om

pr
es

si
on

al
 s

tr
es

s 
(k

Pa
)

Volumetric compressional strain (∆V/V)

start

Specimen
60 ppi Green Foam
Sphere, dia = 3.5 cm

0

0.5

1

1.5

2

2.5

3

−0.2 0 0.2 0.4 0.6 0.8

C
om

pr
es

si
on

al
 s

tr
es

s 
(k

Pa
)

Volumetric compressional strain (∆V/V)

1

2

3

4

Specimen
60 ppi Green Foam
Sphere, dia = 3.5 cm

Figure 5. (a) Hydrostatic compression hysteresis and non-monotonic behaviour in a
load–unload cycle of a 60-ppi, 3.5-cm diameter sphere in displacement (volumetric) control.
(b) Cycle dependence in repeated tests 1, 2, 3 and 4.
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C11 modulus is unstable even under constraint. The large cell (2.5mm) foam
exhibited monotonic load–deformation curves with positive bulk modulus through-
out. For these foams, both anisotropic cells and substantial anisotropic deformation
were observed. Non-monotonic behaviour was suppressed through cell flattening,
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Figure 6. Non-monotonic behaviour in a sphere of 0.4mm cell size Foamex foam.
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which gave rise to bending rather than buckling of the ribs. Symmetric buckling of

the cell ribs appears to be necessary for negative bulk modulus.
The hysteresis observed in load–unload cycles was larger in small cell (0.4mm)

foam than in large cell (2.5mm) foam. It is likely that the more symmetric

compression of the small cell foam gave rise to higher local strain in the cell ribs and,

hence, more hysteresis. This could account for the cycle dependence observed

in these materials.

5. Conclusions

Negative incremental bulk modulus was directly observed in foam with 0.4mm cell

size beyond about 20% volumetric strain. It is believed that this is the first report of

a stable negative modulus (in contrast to a structural stiffness). Large cell (2.5mm)

foam exhibited anisotropic deformation under hydrostatic loading and did not

exhibit a negative modulus.
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