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Abstract

Composite materials of extremely high sti%ness can be produced by employing one phase
of negative sti%ness. Negative sti%ness entails a reversal of the usual codirectional relationship
between force and displacement in deformed objects. Negative sti%ness structures and materials
are possible, but unstable by themselves. We argue here that composites made with a small
volume fraction of negative sti%ness inclusions can be stable and can have overall sti%ness far
higher than that of either constituent. This high composite sti%ness is demonstrated via several
exact solutions within linearized and also fully nonlinear elasticity, and via the overall modulus
tensor estimate of a variational principle valid in this case. We provide an initial discussion of
stability, and adduce experimental results which show extreme composite behavior in selected
viscoelastic systems under sub-resonant sinusoidal load. Viscoelasticity is known to expand the
space of stability in some cases. We have not yet proved that purely elastic composite materials
of the types proposed and analyzed in this paper will be stable under static load. The concept
of negative sti%ness inclusions is buttressed by recent experimental studies illustrating related
phenomena within the elasticity and viscoelasticity contexts. ? 2002 Elsevier Science Ltd. All
rights reserved.
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1. Introduction

How sti% can a composite be? In contrast to homogeneous materials, composite ma-
terials have heterogeneous structures upon which the overall material properties depend.
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Fig. 1. Modulus (sti%ness) vs. volume fraction of the sti%er constituent for several elastic composites. HS
refers to the Hashin–Shtrikman bounds for isotropic composites. The Voigt and Reuss structures (inset) are
anisotropic (direction dependent). The sti% phase has a sti%ness of 100 GPa, the soft phase, 10 GPa.

For an elastic two-phase composite, comprised of isotropic phases, the sti%nesses of
Voigt and Reuss composites described below represent rigorous upper and lower bounds
(Paul, 1960) on the Young’s modulus for a given volume fraction of one phase (Fig. 1).
The Hashin–Shtrikman (1963) equations represent rigorous upper and lower bounds on
the elastic sti%ness of macroscopically isotropic composites. These bounds are tighter
than the Voigt and Reuss bounds. The structure that attains the Voigt bound (Fig. 1)
is aligned in the direction of the load so that each phase experiences the same strain.
The model is one-dimensional, so the Poisson e%ects in compression are neglected;
alternatively, one may consider shear deformation. The Voigt upper bound formula,
also called the rule of mixtures, is

Ec =E1V1 + E2V2; (1.1)

in which Ec; E1 and E2 refer to the Young’s modulus (sti%ness) of the composite,
phases 1 and 2, and V1 and V2 refer to the volume fraction of phases 1 and 2 with
V1+V2 = 1. The structure that attains the Reuss bound (Fig. 1) is aligned perpendicular
to the direction of the load so that each phase experiences the same stress. The Reuss
lower bound formula is

1
Ec
=
V1
E1
+
V2
E2
: (1.2)

The bounding theorems state that no composite can be sti%er than the Voigt bound
(Paul, 1960) and no macroscopically isotropic composite can be sti%er than the Hashin–
Shtrikman (Hashin, 1962; Hashin and Shtrikman, 1963) upper bound. However, posi-
tive deHniteness of the strain energy density was assumed in proving these theorems.
Moreover, based on the Voigt upper bound relation and the corresponding upper curve
in Fig. 1, it would seem that no composite could be sti%er than the sti%est constituent.
That is true if each phase has a positive sti%ness.
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The purpose of this paper is to explore the e%ects of constituents of negative sti%ness
in composite materials. It is shown that if one phase has the appropriate negative
sti%ness, the overall sti%ness of the composite can be made dramatically large. It is
also shown that in the presence of a small nonlinearity, extremely high sti%ness can
be achieved without singularity of the elastic Helds. We remark that small viscoelastic
damping also ameliorates singularities in the strain. Methods of achieving negative
sti%ness are presented. The question of stability of materials and composites is examined
in a preliminary manner, by summarizing what is known and discussing how it applies
in the present context. Further investigation of the stability of such composite materials
under various load situations is needed, and is under way. Finally, the relation between
experimental realization of these concepts and the present analysis is discussed.

2. Composite cells and materials with a negative sti�ness phase

2.1. Lumped one-dimensional model

We consider the e%ect of phases of negative sti%ness in several composite microstruc-
tures. For the Voigt structure, governed by Eq. (1.1), a phase of negative sti%ness
simply reduces the overall composite sti%ness, as one might expect.
The situation is di%erent in a Reuss composite (Fig. 1 inset). For purposes of vi-

sualization, write the Reuss equation (1.2) for the composite sti%ness in terms of the
compliance J =1=E rather than the sti%ness E:

Jc = J1V1 + J2V2: (2.1)

Suppose that one phase has a negative sti%ness, hence a negative compliance. This
compliance may be added to a positive compliance of similar magnitude to obtain a
compliance which is very small, tending to zero. The corresponding composite sti%ness
is then very large, tending to inHnity (Fig. 2). Large sti%ness values arise in the
structure when the positive and negative sti%ness phases are nearly balanced because
the interface between the constituents moves much more than the applied load, giving
rise to large strain energy in each phase. This is illustrated later via an explicit elasticity
solution. As we shall see in Section 4, the Reuss model containing one element of each
phase is stable only when constrained. Moreover, negative sti%ness of large magnitude
is possible in a constrained system; however, the region for which Reuss composite
sti%ness tends to positive inHnity is unstable.

2.2. Stress around a spherical inclusion in uniaxial tension

The elastic solution (Goodier, 1933) for a single spherical inclusion provides an un-
derstanding of the physical basis for e%ects of inclusions of negative sti%ness. Consider
a spherical elastic inclusion in an elastic matrix, under tension. The inclusion elongates
the least for a sti% inclusion. It elongates more for an “inclusion” identical to the ma-
trix Gm, more for a cavity of zero sti%ness, and yet more for an inclusion of negative
sti%ness Gi. The deformation within and near the inclusion approaches inHnity as Gi
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Fig. 2. Calculated composite sti%ness E vs. volume fraction and “inclusion” sti%ness (normalized to “matrix”
sti%ness) for a Reuss composite structure. One constituent can have negative sti%ness and one constituent has
a positive sti%ness of +1, in arbitrary units of sti%ness. Diagram is based on Eq. (1.2). Composite sti%ness
can substantially exceed the sti%ness of either phase. Left, positive inclusion sti%ness; right, negative inclusion
sti%ness.

tends to −1:1Gm (for a Poisson’s ratio of 0.3 and small volume fraction). Consider an
inclusion which has a negative shear modulus of smaller magnitude than the positive
modulus of the matrix. The inclusion is e%ectively under displacement constraint, hence
stabilized. As the negative inclusion sti%ness approaches the matrix sti%ness in magni-
tude, the deformation at its surface becomes much greater than the overall asymptotic
deformation of the composite. Since local strain becomes much larger than applied
strain in an elastic composite of this type, a relatively large energy is stored in a small
overall deformation, corresponding to a composite sti%ness of large magnitude.

2.3. An explicit model problem: sphere containing a spherical inclusion

Here we illustrate explicitly precisely what happens to a full, exact elasticity solution
when one phase of a composite has a suLciently negative sti%ness. We analyze a spher-
ically symmetric problem consisting of a spherical matrix of one isotropic material con-
taining a spherical inclusion of another, when the boundary conditions are spherically
symmetric. The problem will be analyzed Hrst within linearized elasticity theory, and to
verify that the conclusions obtained are not artifacts of the inHnitesimal-displacement-
gradient formulation, the problem will be analyzed again within a fully nonlinear
Hnite deformation formulation. The linear version of this problem was treated by Hill
(1963). The analysis presented here shows that assumptions regarding the sign of the
constituent moduli are not needed. We recognize that the problem analyzed here is
not a “representative volume element” for a matrix–inclusion composite when the in-
clusions have negative sti%ness. However, this problem displays very similar features
to the results presented for composite materials in the next sections (Sections 2.4 and
2.5), and it permits a detailed exploration of how negative inclusion sti%ness a%ects
the stress, strain and displacement Helds.
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2.3.1. Solutions within linearized elasticity theory
Consider a sphere of Material 2, having radius b and elastic bulk and shear

moduli B2; G2, containing a concentric spherical inclusion of Material 1, having ra-
dius a and moduli B1; G1. We will analyze two problems, both having spherically
symmetric boundary conditions. The analysis of these problems is straightforward, but
we summarize it here because the explicit solutions obtained are highly informative
and comparisons with the ensuing Hnite deformation solutions are valuable.
For spherically symmetric equilibrium problems, the general three-dimensional equa-

tions of homogeneous, isotropic linearized elasticity have the following general solution
for the nonzero components of the stress and inHnitesimal strain tensors �; U and the
displacement vector u, in terms of spherical coordinates r; �; �:

ur = �r +
�
r2
; (2.2)

�rr = �− 2 �
r3
; ���= ���= �+

�
r3
; (2.3)

�rr =3B�− 4G�
r3

; ���= ���=3B�+
2G�
r3

; (2.4)

where � and � are initially undetermined constants. These solutions apply inside the
spherical inclusion, and in the spherical matrix, with appropriate values of the elastic
moduli, and with di%erent values, in general, of the constants �; �.
As shown in Appendix A, the e%ective bulk modulus, i.e., the bulk modulus for

the composite sphere, MB, is therefore (where the subscripts 1, 2 indicate inclusion and
matrix, respectively)

MB=
b3B2�2 − 4G2�2=3

�2b3 + �2
: (2.5)

Problem 1: prescribed uniform radial stress. First, we consider application of a
uniform radial stress of magnitude � on the outer boundary of the spherical matrix,
giving the boundary condition �rr(b)= �. The other conditions to be applied are the
requirement of zero displacement at the center of the spherical inclusion, ur(0)= 0,
and continuity of �rr and ur across the inclusion=matrix boundary r= a. These condi-
tions give four equations for the four unknown constants (�; � in each material, again
employing subscripts 1, 2 to indicate inclusion and matrix, respectively). The solution
is

�1 =
(3B2 + 4G2)b3�

�
; �1 = 0;

�2 =
(3B1 + 4G2)b3�

�
; �2 =− 3(B1 − B2)a3b3�

�
; (2.6)

where

�= 12a3G2(B1 − B2) + 3b3B2(3B1 + 4G2)

= 9b3B2

{[
V1
2(1− 2�2)
1 + �2

+ 1
]
B1 +

2(1− 2�2)
1 + �2

(1− V1)B2

}
: (2.7)
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Here, we employed the relation 2G=3B(1 − 2�)=(1 + �), where � is Poisson’s ratio,
and the fact that the volume fraction of the inclusion is given by V1 = a3=b3. Now, we
employ Eq. (2.6) to Hnd that the composite bulk modulus Eq. (2.5) becomes

MB=
B2(3B1 + 4G2) + 4V1G2(B1 − B2)
3B1 + 4G2 − 3V1(B1 − B2)

=
B1(1 + 2V1) + 2B2(1− V1)(1− 2�2)=(1 + �2)
(1− V1)B1=B2 + 2(1− 2�2)=(1 + �2) + V1

: (2.8)

This shows that the composite sphere bulk modulus becomes in7nite when the inclusion
bulk modulus attains the (negative) value:

B1 =− 1
1− V1

[
2(1− 2�2)
1 + �2

+ V1

]
B2: (2.9)

Eq. (2.8) also shows that the singularity in the composite bulk modulus changes sign
as the ratio of constituent moduli traverses its critical value.
Note that Eq. (2.7) becomes zero when

B1 =− 2(1− V1)(1− 2�2)
2V1(1− 2�2) B2: (2.10)

When the inclusion volume fraction is very small (V1 → 0) and for �2 = 0:3, observe
that both Eqs. (2.9) and (2.10) reduce to B1 = − 0:615B2. The criteria for singular
composite bulk modulus and for singular elastic Helds become di%erent for nonzero
inclusion concentration. In particular, as B1 decreases from zero, Eqs. (2.9) and (2.10)
show that �=0 is attained before MB becomes inHnite, for all nonzero inclusion con-
centrations. This can be seen from the ratio of B1 of Eq. (2.10) to that of Eq. (2.9),
which is always 61 (the equality occurring when V1 → 0):

B1(2:10)
B1(2:9)

=
K(1− V1)2

K + V1(1 + K2 + KV1)
; where K =

2(1− 2�2)
1 + �2

: (2.11)

This fact is also illustrated in Fig. 3, which plots B1=B2 for �2 = 0:3, as a function
of volume concentration. As Eqs. (2.2)–(2.4) with Eqs. (2.6) and (2.7) show, when
� → 0, the stress, strain and displacement Helds become inHnite everywhere in the
composite (according to linearized elasticity theory, about which more later).
Problem 2: prescribed uniform radial displacement. The second problem we consider

involves application of a uniform radial displacement of magnitude u on the outer
boundary of the spherical matrix, giving the boundary condition ur(b)= u. The other
three conditions enforced are identical to those in Problem 1, to give four equations
for the four unknown constants (�; � in each material). The solution is

�1 =
(3B2 + 4G2)b2u

�
; �1 = 0;

�2 =
(3B1 + 4G2)b2u

�
; �2 =− 3(B1 − B2)a3b2u

�
; (2.12)
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Fig. 3. The bulk modulus ratio B1=B2 at which � of Eq. (2.7) vanishes and at which the e%ective bulk
modulus becomes inHnite, as functions of inclusion volume fraction V1.

where

�=− 3a3(B1 − B2) + b3(3B1 + 4G2): (2.13)

Thus, employing Eq. (2.5) with Eqs. (2.12) and (2.13), we conHrm for this problem
that the composite bulk modulus is still given by Eq. (2.8), and this becomes inHnite
when the inclusion bulk modulus attains the (negative) value given in Eq. (2.9).
To explore when � becomes zero, we again employ the relation 2G=3B(1 − 2�)=

(1 + �) to rewrite Eq. (2.13) as

�=− 3a3(B1 − B2) + b3[3B1 + 6B2(1− 2�2)]=(1 + �2): (2.14)

This shows that � becomes zero when

B1 =− 1
1− V1

[
2
1− 2�2
1 + �2

+ V1

]
B2: (2.15)

Observe that this is identical to the value of B1 that causes the composite bulk modulus
to become inHnite, as given in Eq. (2.9). This shows, perhaps not surprisingly, that in
the inherently more stable displacement-controlled boundary-value problem, extremely
large values of the e%ective bulk modulus can be attained without causing the elastic
solution Helds obtained to become singular.
To get a feel of the e%ects under discussion, let us examine a speciHc example

case: a composite having V1 = 0:01; �2 = 0:2. In this case, Eq. (2.9) shows that the
composite bulk modulus becomes (negatively) inHnite when the inclusion bulk mod-
ulus reaches the value B1 = − 1:0202B2. Let us choose B1 = − 1:0165B2; then Eq.
(2.8) shows that MB=− 10B2. For these parameter values, for the case of an imposed
displacement, the solutions obtained above for the displacement and strain Helds in
the composite are plotted in Fig. 4. These illustrate explicitly the qualitative comment
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Fig. 4. Displacement and strain Helds throughout the spherical composite for the case of an imposed radial
displacement u on the outer boundary, for parameter values V1 = 0:01; �2 = 0:2; B1 =− 1:0165B2, for which
MB=− 10B2.
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made earlier that the displacements are very large in the vicinity of the inclusion=matrix
interface, and that the strains are very large in the inclusion and in the matrix near the
inclusion.
We have just shown that for the displacement-controlled boundary-value problem,

one can obtain extremely large negative values of the composite bulk modulus, by
suitable (negative) choices of the inclusion modulus B1, and that the linear elastic
solution is well behaved as B1 decreases to such levels. However, for practical appli-
cations, one will probably desire extremely large positive values of the composite bulk
modulus. To attain these, B1 must be slightly more negative than Eq. (2.9), but the
linearized solution derived here shows that B1 cannot pass through the value given in
Eq. (2.9) without all the elastic Helds becoming inHnite. In the next section, we show
via a full Hnite deformation re-analysis of the same problem that even a small amount
of constitutive nonlinearity will remove this pathology and permit B1 to decrease below
the value in Eq. (2.9), while the full solution remains well behaved; this, legitimizes
in principle the formation of composite materials with extremely large positive bulk
modulus.

2.3.2. Solutions within 7nite elasticity theory
As the results of the previous section show, the presence of an inclusion with a

suLciently negative bulk modulus to produce a large e%ective modulus for the com-
posite has the e%ect of producing strains in the inclusion and in the matrix near the
inclusion that are very large compared to the average strains in the composite. The
linearized elasticity solution also has the feature noted in the previous section that all
elastic Helds become inHnite everywhere in the composite sphere for a certain negative
value of the inclusion bulk modulus. It seems worthwhile to examine whether, and if
so how, these behaviors are modiHed by a full Hnite deformation solution. Thus, in this
section we provide analytical Hnite deformation solutions of the same problems treated
in the previous section. The ability to obtain closed-form analytical solutions within
a Hnite deformation formulation is due to our choice of a special type of constitutive
model, namely the generalization to three dimensions (Ogden, 1984) of the “harmonic
material” constitutive equation originally devised by John (1960). The analysis to fol-
low builds on that presented by Ogden (1984), who solved the spherically symmetric
deformation of a spherical shell.
The constitutive equation we employ is expressed in terms of the Biot stress tensor

T, which is the reference-conHguration stress measure that is work-conjugate to the
right stretch tensor U in the polar decomposition of the deformation gradient tensor,
F=R ·U, where R is the rotation tensor. The strain measure that is work-conjugate to
the Biot stress is the right-stretch strain tensor, E ≡ U− I, where I is the second-rank
identity tensor. The Biot stress T is related to the nominal stress tensor S as

T= 1
2(S ·R + RT· ST): (2.16)

The elastic constitutive equation thus takes the form

T=
9W
9U ; (2.17)
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with the strain energy function W (U) that is the three-dimensional generalization of
John’s harmonic materials (Ogden, 1984)

W =F(I1)− c1I2 + c2I3; (2.18)

where I1; I2; I3 are the principal invariants of U, F(I1) is a function to be speciHed
shortly, and c1; c2 are constants. For the spherically symmetric problems to be ana-
lyzed, the reference conHguration spherical coordinates are R;�;�, while the current
conHguration spherical coordinates are r; �; �. We show in Appendix A that the general
spherically symmetric solution of the equilibrium Hnite deformation governing equa-
tions for this material is

uR= �R+
�
R2

(2.19)

ERR= �− 2 �
R3
; E��=E��= �+

�
R3
: (2.20)

We emphasize that the above are the general solutions for arbitrary F(I1).
Within the Hnite deformation formulation, we shall wish to examine both the case

of a linear stress–strain constitutive relation and a nonlinear one, since solutions from
each of these will aid understanding. Thus, for simplicity we choose the strain energy
function (2.18) to be at most cubic in the principal stretches, with F(I1) having the
speciHc form:

F(I1)=d1I 31 + d2I 21 + d3I1 + d4 ⇒ F ′(I1)= 3d1I 21 + 2d2I1 + d3; (2.21)

where d1−d4 are constants. In addition, we apply the requirements of a stress-free ref-
erence conHguration, and we choose the constants in our Hnite deformation constitutive
equation so that the stress–strain equations reduce to the small-displacement-gradient
constitutive equations when strains are inHnitesimal. After a Hnal renaming of con-
stants, we show in Appendix A that the resulting stress–strain expressions are [which
give the stress Held solution upon substitution of Eq. (2.20)]:

TRR=
(
B+

4
3
G
)
ERR + 2

(
B− 2

3
G
)
E�� + P(ERR + 2E��)2 + QE2��;

T��=T�� =
(
B− 2

3
G
)
ERR

+2
(
B+

1
3
G
)
E�� + P(ERR + 2E��)2 + QERRE��: (2.22)

Let us Hrst consider the case of a linear constitutive equation within the Hnite de-
formation formulation; this means that we choose P=Q=0 [which means choosing
c2 =d1 = 0 in the constitutive model Eq. (2.18) with Eq. (2.21)]. One then observes
from Eqs. (2.19), (2.20) and (2.22) that the solution form for the stress, strain and
displacement Helds is identical to those derived within the inHnitesimal-displacement-
gradient formulation, Eqs. (2.2)–(2.4). Thus, the solutions to the two composite sphere
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problems will also be identical. Therefore, accounting for Hnite deformations but still
retaining a linear constitutive relationship, at least for the constitutive class treated,
does not alter the phenomena and conclusions drawn from the inHnitesimal elasticity
solution.
Now let us consider Hnite deformation solutions to the composite sphere problem

when the constitutive equation is also nonlinear, having the special form described in
this section which leads to the stress–strain relations Eq. (2.22). The e%ects that we
wish to illustrate will still be apparent if we continue to assume that the inclusion
material has a linear constitutive equation, so that the only constitutive nonlinearity
is present in the matrix material. This means that P and Q are only nonzero in the
matrix material. Here, we will solve the Hnite deformation counterpart of Problem
2 considered previously, namely that of prescribed uniform radial displacement on
the outer sphere boundary of the composite. The four conditions we apply are the
same as those applied earlier, namely zero displacement at the center of the spherical
inclusion, continuity of displacement and traction across the inclusion=matrix interface,
and a uniform prescribed radial displacement of magnitude u on the outer boundary.
Imposing the above four conditions on the solution Helds Eqs. (2.19), (2.20) and (2.22)
enables one to solve for the four undetermined constants appearing in these Helds; the
results are:

�1 =
−(b3 − a3)[3a3(B1 − B2)− b3(3B1 + 4G2)] + 18a3b2Pu± (b3 − a3)s

D
;

�1 = 0; �2 =
3a6(B1 − B2)− a3b2(3bB1 + 4bG2 + 2Qu) + 2b5Qu∓ a3s

D
;

�2 = a3b2
b3(3bB1 + 4bG2 − 2Qu) + a3(−3bB1 + 3bB2 + 18Pu+ 2Qu)± bs

D
;

(2.23)

where

D=18a6P + 2(a3 − b3)2Q;

s=

√√√√ [b3(3B1 + 4G2)− 3a3(B1 − B2)]2 + 36a3b2(3B1 + 4G2)Pu

−4b2(b3 − a3)(3B2 + 4G2)Qu− 36b4PQu2:

Notice that these solutions have a denominator, D, that is independent of the elastic
coeLcients of the linear terms in the stress–strain equations. Therefore, these results
show that, unlike the solutions for the linear constitutive equation, the solution Helds
will remain Hnite everywhere in the composite even when B1 passes through the critical
negative value that causes the e%ective bulk modulus to switch from very large negative
values to very large positive ones. This implies that in an actual elastic material, in
which one might expect some nonlinearity in the stress–strain equations, one should be
able to lower B1 below the critical negative value predicted by the linearized analysis
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without pathological behavior of the composite. The resulting composite will then have
extremely large positive bulk modulus for inHnitesimal deformations.
Let us illustrate the results of the above solution for a speciHc choice of the compos-

ite parameters. We choose parameter values to be the same as those of the linearized
solution illustrated in Fig. 4, namely V1 = 0:01, �2 = 0:2, but we now choose the in-
clusion bulk modulus to equal the value that causes the linearized solution to become
singular, namely B1 = − 1:0202B2. In addition, we choose rather small values for the
nonlinear coeLcients, namely P=B2=30 and Q=− 3B2=20, and consider an imposed
displacement u= b=1000. In this case, the solution set Eq. (2.23) reduces to

{�1; �1; �2; �2}= {−0:1998; 0; 0:003016;−0:002016b3};
{0:2022; 0;−0:001020; 0:002020b3}: (2.24)

Note that with these values of the constants, the solutions for the displacement, strain
and stress Helds, given by Eqs. (2.19), (2.20) and (2.22) are all well behaved and
have Hnite values everywhere in the composite, in contrast to the linearized elasticity
solution which would predict that the Helds are inHnite everywhere in the composite.
The displacement and strain Helds for the present solution have the same forms as
those shown in Fig. 4. Since the present problem is constitutively nonlinear, the com-
posite bulk modulus will change with the applied load or applied displacement level.
For the example parameter values used above, the composite secant bulk modulus for
the solution resembling the linear elastic solution is MB=5:08B2. The Hnite deformation
solution of Problem 1 considered previously also has Helds that are well behaved every-
where and also permits large bulk modulus values; it is omitted here for space reasons.
Although not within the scope of the present work, we remark that incorporation of
a small amount of linearly viscoelastic dissipation also has the e%ect of eliminating
the singularities while retaining the possibility of extreme material properties (Lakes,
2001b).

2.4. Distributed three-dimensional composites

We now consider the e%ect of phases of negative sti%ness in several three-dimensional
composites for which elasticity solutions are known. First, in this section we discuss
composite materials obeying the following Hashin–Shtrikman (1963) formulae, which
are attainable via known microstructures for which there are exact analytical solutions
within the theory of elasticity:

Gc =G2 +
V1

1=(G1 − G2) + 6(B2 + 2G2)V2=[5(3B2 + 4G2)G2]
; (2.25)

Bc =B2 +
V1(B1 − B2)(3B2 + 4G2)

(3B2 + 4G2) + 3(B1 − B2)V2
: (2.26)

Here, B1, G1, V1 and B2, G2, V2 are the bulk modulus, shear modulus and volume
fraction of phases 1 and 2, respectively. The bulk modulus formula Eq. (2.26) was
shown by Hashin (1962) to be the exact solution for a hierarchical microstructure
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Fig. 5. Sti%ness of Hashin–Shtrikman composite. Inclusion and composite shear modulus normalized to
matrix shear modulus G0. Left, positive inclusion sti%ness; right, negative inclusion sti%ness.

of coated spheres of di%erent sizes in which the outer layer (phase 2) radius and
core (phase 1) radius have a speciHed ratio for all inclusions. The construction is
based on a solution for spherical symmetry due to Love (1944). The coated sphere
is a neutral inclusion in that it does not disturb the assumed hydrostatic stress state
in the surrounding medium, assumed to have a bulk modulus equal to that of the
coated inclusion. The composite is made by adding inclusions of progressively smaller
size until the space is Hlled. As elucidated by Milton and Serkov (2001) and Milton
(2001), since the stress and strain Helds are undisturbed in the process, the loads
and displacements at the boundary are undisturbed; hence, the e%ective bulk modulus
of the medium remains unchanged by the progressive addition of inclusions. Exact
attainment of Eq. (2.25) is possible via a hierarchical laminate morphology (Francfort
and Murat, 1986; Milton, 1986). We remark that these formulae are familiar to many
in the context of bounds: they are bounds if both constituents have positive sti%ness.
For present purposes, we are not concerned with bounds, but with the fact that Eqs.
(2.25) and (2.26) are exact elasticity solutions for known microstructures and the fact
that these exact solutions remain valid for negative sti%ness constituents.
Calculated sti%ness of a Hashin–Shtrikman composite governed by Eq. (2.25) as a

function of volume fraction and the sti%ness of one constituent is shown in Fig. 5. If
the inclusions are sti%, a small concentration of them does not sti%en the composite
very much, as is well known. If, however, the inclusions have the correct value of
negative sti%ness, the composite sti%ness becomes arbitrarily large, tending to inHnity.
For example, the composite shear modulus given by Eq. (2.25) becomes inHnite for
inclusions of (negative) shear modulus Gi ≈ −1:1Gm for a matrix Poisson’s ratio of
0.3 and an inclusion volume fraction of 0.01. Rationale for the possibility of particles
of negative shear modulus is presented in Section 4.3 and experimental justiHcation is
adduced in Section 5. Observe the di%erence in scale of the vertical axes in Fig. 5a
and b. Such a composite is not governed by the bounding theorems, since nonnegative
internal energy is not assumed here, in contrast to the bounding calculation. The present
analysis does not depend on any assumptions related to bounds. Rather, it makes use
of attainable closed-form expressions for composite properties. The plots have similar
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Fig. 6. Sti%ness of Hashin–Shtrikman composite. Inclusion and composite bulk modulus normalized to matrix
bulk modulus B0.

shape to those for resonance phenomena. They are not resonances since there are no
inertial terms. As with a resonance, there are terms of opposite sign in the denominator,
but in the present case they have a quasistatic origin. The negative sti%ness approach
is distinct from the use of structural resonance to achieve high dielectric properties
(Nicorovici et al., 1994), since there are no inertial terms in the continuum elasticity
equations used in the present work.
The composite bulk modulus given by Eq. (2.26) becomes singular for inclusions of

negative bulk modulus Bi ≈ −1:35Bm. The behavior is shown in Fig. 6. The location
of the singularity depends on the Poisson’s ratio of the matrix.

2.5. Variational principle estimates for the e:ective modulus tensor of
three-dimensional random composites having a negative sti:ness phase

In this section, we show that an existing variational principle that provides estimates
for the overall elastic modulus for random composite materials remains valid when
one of the composite’s phases has negative sti%nesses, and we further show that the
estimates from this variational principle also exhibit the feature that the composite
sti%nesses can be made extremely large by suitable choice of the moduli of the negative
sti%ness phase.
For simplicity, let us consider here an inHnite linear elastic composite body consisting

of Hrmly bonded phases that is loaded only by a body force distribution f (x). Following
Hashin and Shtrikman (1962a, b), Willis (1977) showed that the governing equations
of linear elasticity for the stress and inHnitesimal strain tensor Helds �; U, and the
displacement vector Held u, can be recast in the following way: One introduces a
homogeneous “comparison” body with moduli (independent of position x) L0 [and
having solutions �0(x); U0(x), to the same applied f (x)], so that

�(x)=L0U(x) + �(x); �(x) ≡ [L(x)− L0]U(x); (2.27)

where the second equation deHnes the “stress polarization” tensor Held �(x). The so-
lution to the elasticity Held equations can then be shown to involve solution of the
following integral equation for �(x):

(L(x)− L0)−1�(x) +
∫
#0(x− x′)�(x′) dx′= U0(x); (2.28)
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where #0(x) is a fourth-rank tensor Held that is two spatial derivatives of the inHnite-
homogeneous-body (i.e., comparison body) Green’s function.
The important fact for our present purposes is that Willis (1977) proved that self-

adjointness of Eq. (2.28) arises solely from the usual index symmetries of the actual
elastic modulus tensor L(x) and the comparison modulus tensor L0, and that this
self-adjointness immediately implies from Eq. (2.28) the Hashin–Shtrikman (stationary)
variational principle

�
{∫ [

�(x)(L(x)− L0)−1�(x)

+�(x)
∫
#0(x− x′)�(x′) dx′ − 2�(x)U0(x)

]
dx

}
=0: (2.29)

Therefore, this variational principle is valid even when one of the phases of the com-
posite has negative sti%nesses, so long as the actual and comparison elastic modulus
tensors have the usual index symmetries, and provided that the comparison modulus
tensor is chosen such that a Green’s function exists for the body.
Willis (1982) has shown how to apply Eq. (2.29) to random composite materials.

Retaining up through two-point statistical information, and assuming statistical unifor-
mity and ergodicity of the composite, he deduced the stochastic form of Eq. (2.29).
Making, for simplicity, the further assumption of isotropic distribution of the phases,
Willis (1982) showed that the stochastic form of Eq. (2.29) gives the following es-
timate for the e%ective modulus tensor of the random composite material having n
phases each with modulus tensor Lr:

ML=

{
n∑

r=1

Vr[I + (Lr − L0)P]−1
}−1 n∑

s=1

Vs[I + (Ls − L0)P]−1Ls: (2.30)

Here, I is the fourth-rank identity tensor and the constant fourth-rank tensor P is given
in terms of the Fourier transform of #0(x) as

P ≡ 1
4'

∫
|^|=1

#̃0(^) dS: (2.31)

Result (2.30) is thus a variational estimate valid for composites having a negative
sti%ness phase. To be completely explicit, we now consider two-phase composites con-
sisting of an isotropic matrix containing a random distribution of isotropic inclusions
(of arbitrary shape). In this case, Eq. (2.30) simpliHes to give the following variational
estimates for the overall bulk and shear modulus of the composite:

MB=
4G(V1B1 + V2B2) + 3B1B2
4G + 3(V1B2 + V2B1)

;

MG=
G(9B+ 8G)(V1G1 + V2G2) + 6(B+ 2G)G1G2
G(9B+ 8G) + 6(B+ 2G)(V1G2 + V2G1)

; (2.32)

where subscripts 1, 2 indicate inclusion and matrix, respectively, and the unsubscripted
quantities are the comparison moduli. [Incidentally, for composites whose phases are
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all positive deHnite, the standard Hashin–Shtrikman lower (upper) bounds follow from
Eq. (2.32) by choosing the comparison moduli to equal the smallest (largest) of the
constituent moduli.]
Let us consider speciHcally a composite consisting of a positive deHnite matrix phase

containing inclusions of negative sti%ness. One permissible and sensible choice for the
comparison moduli is that they equal the matrix moduli. Then Eqs. (2.32) show that
the variational estimates of the bulk and shear moduli can be made to be arbitrarily
large by suitable (negative) choice of the inclusion moduli; the variational estimates
of the bulk and shear moduli become inHnite when the inclusion moduli take on the
(negative) values:

B1 =− 4G2 + 3V1B2
3V2

; G1 =− G2
3(3 + 2V1)B2 + 4(2 + 3V1)G2

6V2(B2 + 2G2)
: (2.33)

Note from these results that if a composite having only an extremely high bulk modulus
were sought, this could be accomplished with inclusions of strongly elliptic material:
the inclusion bulk modulus would need to have a value close to that given by the Hrst
equation of Eq. (2.33), but its shear modulus could be chosen positive and suLciently
large that the strong ellipticity requirement (B1¿−4G1=3) were met (see the discussion
in Section 4.3).

2.6. Discussion

It is interesting to note that all three of the formulae we have derived and presented
for the e%ective bulk modulus in the present Section 2, namely, Eqs. (2.8), (2.26) and
(2.32) [if the comparison moduli are chosen equal to the matrix moduli in Eq. (2.32),
as we have suggested is sensible] are identical. This is also true of the two formulae
presented for the e%ective shear modulus, namely, Eqs. (2.25) and (2.32) [again with
comparison moduli equal to matrix moduli in the latter]. Thus, these formulae describe
the e%ective modulus behavior in a variety of di%erent situations: for example, we
have shown that the e%ective bulk modulus arises from the exact elasticity solutions
of a single composite sphere and of Hashin’s (1962) composite material comprised of
a hierarchical microstructure of coated spheres, as well as from a variational estimate
for a random two-phase composite material having arbitrary inclusion shape under the
assumptions explained in Section 2.5. Our conclusions on the production of a high
composite sti%ness by having a phase of appropriate negative sti%ness are therefore
applicable to this full range of situations, with in fact quantitatively identical choices
of the negative moduli because of the just-mentioned concurrence of the formulae.

3. Negative sti�ness constituents

3.1. Physical concept. Distinction between negative sti:ness and negative Poisson’s
ratio

Negative sti%ness entails a reversal of the usual directional relationship between
force and displacement in deformed objects. Ordinarily (positive sti%ness), the force
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applied to a deformable object (such as a spring) is in the same direction as the
deformation, corresponding to a restoring force which tends to restore the spring to
its neutral position. Negative sti%ness involves unstable equilibrium, hence a positive
stored energy at equilibrium.
Negative sti%ness is to be distinguished from negative Poisson’s ratio. In the 17th

century, S.D. Poisson observed that a material stretched under axial tensile forces not
only elongates longitudinally, but it also contracts laterally. Poisson’s ratio, represented
by �, is deHned as the negative lateral strain of a stretched or compressed body divided
by its longitudinal strain. Poisson’s ratio is dimensionless, and for most solids its value
ranges between 0.25 and 0.33 (Timoshenko, 1983). For most foams (Gibson and Ashby,
1988), Poisson’s ratio is about 0.3. However, rubbery materials can have values close
to 0.5, which is the upper limit for stability of isotropic materials. Lakes (1987) and
co-workers have conceptualized, fabricated and studied negative Poisson’s ratio foams
with � as small as −0:8. These materials become fatter in cross section when they
are stretched. Other workers have found single crystals, laminates, and other materials
which have a negative Poisson’s ratio, as reviewed by Lakes (1993). For isotropic
materials, a Poisson’s ratio in the range −1 to 0.5 is associated with stability, while a
negative sti%ness material is unstable in bulk form.

3.2. Lumped examples of negative sti:ness

Examples of negative sti%ness are known in the context of certain structures and
objects (Bazant and Cedolin, 1991). For example, consider a column which has been
constrained in a buckled “S” shaped conHguration (Fig. 7a). By pressing laterally on the
column, one can cause it to snap through. The negative sti%ness condition is unstable,
but the column can be stabilized by a lateral constraint, such as by connecting it to a
rigid block. One can easily verify the properties of the buckled column with the aid
of a Rexible plastic ruler.
Negative sti%ness occurs in single-cell models of foam materials. In particular, Rex-

ible tetrakaidecahedral models exhibit a force–deformation relation which is not mono-
tonic in compression (Rosakis et al., 1993). The cells bulge inwardly during high
compressive strain, giving rise to a geometric nonlinearity.
Negative sti%ness also occurs in the lumped cell shown in Fig. 7b. This consists of

sti% rotatable nodes with pre-strained springs. If the pre-strain is suLcient, the e%ective
shear modulus of the cell is negative. Such a two-dimensional lattice structure, orig-
inally examined in a study of generalized continuum mechanics but not for unusual
values of the classical moduli (Berglund, 1977), can give rise to negative Poisson’s ratio
(Lakes, 1991) and even negative shear moduli, provided suLcient pre-strain is incorpo-
rated. The structure is two-dimensionally cubic; however, it is possible to obtain elastic
isotropy by suitable choice of the sti%nesses of the elastic ligaments. Given the elastic
constants provided in Berglund (1977), we invoke isotropy, and calculate the engineer-
ing elastic constants in terms of the node size and the relative magnitude of the noncen-
tral forces. In the following description of the lattice, node radius is r, lattice spacing
is d; k1 = spring constant, k2 = diagonal spring constant, k3 = band spring constant for
noncentral force. The h’s are natural spring lengths and f is a pre-compression factor.
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Fig. 7. (a) A lumped Reuss model. A negative sti%ness element of e%ective modulus E2, represented by
a constrained, buckled column is in series with a spring, which is an element of positive sti%ness. (b) A
lumped cell consisting of sti% rotatable nodes with pre-strained springs. If the pre-strain is suLcient, the
shear modulus of the cell is negative.

The resting length of the oblique bands is

L0 =
√
d2 − 4r2:

The initial length of spring element 2 is related to the pre-strain f by

h2 =d(1− f )
√
2:

The condition for isotropy is

k3 =
k2(1 + 1

2 (1=h2){h2 − d
√
2})− (d=√2h2)k1

2(L0 − h3)L0=d
√
2h2 +

√
2h3(L20 − 4r2)=L0h2d

:

The shear modulus is

G= k1 + k2

(
2− 3h2

d
√
2

)
+ k3

(
2− 8 r

2

d2
h3
L0

)
:

Since one may freely vary the pre-strain, a suLciently large choice of the natural length
h3 (for nonzero node size r) clearly gives a negative shear modulus G.

3.3. Distributed examples of negative sti:ness

Materials in the vicinity of certain phase transformations are expected to exhibit
negative sti%ness on a micro-scale for the following reasons. Ferroelastic (Salje, 1990)
and ferroelectric materials (Lines and Glass, 1979; Cady, 1964) in the vicinity of phase
transformations exhibit sti%ness components which achieve a minimum or tend to zero
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at a critical temperature. Below the critical temperature a domain or band structure
appears. Domains may be from several millimeters to tens of micrometer in size. These
phase transformations have been analyzed via a modiHed (Falk, 1980, 1983) Landau
theory in which the free energy F depends on strain U and temperature T as follows:

F= �U6 − �U4 + �(T − T1)U2; (3.1)

with �, �, � and T1 as positive constants depending on the material. DeHne a normalized
temperature,

Tn=
��
�2
(T − T1)− 1

4
: (3.2)

The free energy is seen to have a single relative minimum at high temperature Tn¿
1=12, three relative minima at intermediate temperature −1=4¡Tn¡ 1=12, and two
relative minima separated by a maximum at low temperature Tn¡ − 1=4. This max-
imum at a strain of zero represents unstable equilibrium. Formally, the stress–strain
relation is �= 9F=9�. At low temperature, the e%ective sti%ness is negative. One does
not ordinarily speak of it in that way in the context of ferroelastic or shape memory
materials since that condition is unstable. As the temperature is lowered, a spontaneous
strain appears, corresponding to a shift from the “center” position of unstable equilib-
rium to one of the stable points of minimum energy. The material acquires a structure
of domains or bands. The poly-domain material has a positive sti%ness. Formation of
bands has been understood via continuum elasticity (Knowles and Sternberg, 1978)
in which stress–strain behavior has a non-monotonic portion. The domain walls re-
quire energy to form; therefore, particles of suLciently small size (from micrometer to
centimeter scale depending on the material) are observed to be single domain (Salje,
1990). Such single domains are expected to exhibit negative sti%ness. Experimental
results regarding inference of negative sti%ness are reported elsewhere (Lakes, 2001a;
Lakes et al., 2001).
Foam materials under heavy compression have a macroscopic positive sti%ness; how-

ever, they develop a band structure when heavily compressed, and this band structure
is related to stability of the individual cells (Rosakis et al., 1993). The transformation
to a banded structure is linked to buckling of the foam cell ribs, which also gives
rise to a nonlinear stress–strain characteristic. From the band structure, one may infer
negative sti%ness on the local scale via the analysis discussed below. Negative sti%ness
has been observed experimentally in single-cell models as discussed above.

4. Stability considerations

4.1. Overview

Since a negative sti%ness constituent alone is unstable, we provide here a preliminary
discussion of the stability of a composite having a negative sti%ness constituent. This
instability of a negative sti%ness material may be understood as follows. Consider a
block of material. Perturb the block slightly with a small force. If the block has positive
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Fig. 8. Reuss composite. Internal energy U (arbitrary units) vs. position coordinate z (arbitrary units) and
dimensionless sti%ness parameter f, the ratio of sti%ness of the two phases.

sti%ness, it will resist the deformation with an opposing force. If the sti%ness is negative,
the block exerts a force in the same direction as the perturbation, creating a divergent,
unstable condition.

4.2. Stability of lumped one-dimensional model

If no external constraint is applied, the Reuss model (Fig. 7a) with a negative sti%ness
phase (such as the post-buckled column in Fig. 7a) is unstable because the spring end
(at left in Fig. 7a) is free. Since the spring supplies no force, the model is equivalent
to the negative sti%ness portion alone.
Consider a constrained Reuss model in which the force in Fig. 7a is supplied by a

hard constraint. To evaluate the stability of this model, consider the internal energy U
as it depends on coordinates related to deformation. In the following, E1 is a positive
sti%ness (a spring), z is the position of the joint between the spring and buckled
column, and f is a dimensionless scaling parameter which can assume positive or
negative values, with negative values corresponding to the buckled column element;
the 1=2 refers to a 50% “volume fraction” in the lumped system:

U = 1
2E1(1− z)2 + 1

2fE1z
2: (4.1)

As shown in Fig. 8, the internal energy U is concave up as a function of z, provided
that f¿−1. Therefore, some Reuss composites with a negative sti%ness constituent are
stable when constrained. Behavior of a Reuss model (Fig. 8) has a singularity as shown
in Fig. 9. The Reuss model with a single element of each phase is to be distinguished
from the Reuss composite which has multiple elements. Some theoretical studies have
been conducted of chains of elements with nonmonotone stress–strain relations (Balk
et al., 2001); slow deformation leads to a vibrating steady state with radiation of
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Fig. 9. Reuss composite, 50% volume fraction. Composite sti%ness normalized to sti% phase sti%ness vs.
dimensionless sti%ness parameter f.

energy in the elastic case, or hysteresis in the viscoelastic case. Such elements have
also been called bi-stable elements (Puglisi and Truskinovsky, 2000). Such chains are
not equivalent to a Reuss composite since each element is bi-stable, or equivalently,
has negative sti%ness. A Reuss composite with multiple elements will likely exhibit
di%erent stability conditions from a single-cell model, at least under the assumption that
each lamina has moduli exactly equal in magnitude. Non-monotonic force–deformation
relations have also been explored in continuous media from the perspective of applied
mathematics (James, 1979; Ball, 1996). Negative sti%ness of large magnitude is possible
in a constrained Reuss model. For many applications, that may not be as useful as a
positive composite sti%ness. However, the regime for which Reuss composite sti%ness
tends to positive inHnity is unstable. So Reuss composites cannot be used to achieve a
large positive sti%ness greater than that of the constituents. Three-dimensional aspects
of Reuss-type laminates were considered by Gutierrez (1999), who explored regimes
of stability for such microstructures.

4.3. Stability of materials viewed as continua

There are several ranges of elastic constants which are associated with stability of
elastic materials on various levels. We consider Hrst the case of inHnitesimal homo-
geneous isotropic linear elastic deformations from an unstrained state. The strain energy
is positive deHnite if and only if the shear modulus G and Poisson’s ratio � satisfy
(e.g., Timoshenko and Goodier, 1970)

G¿ 0 and − 1¡�¡ 0:5: (4.2)
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Materials that obey these relations give rise to unique solutions of mixed boundary-value
problems in which any appropriate combination of surface tractions and surface dis-
placements is speciHed. Hill (1957) showed that uniqueness is a necessary condition
for incremental stability; such materials do produce stable solutions for large classes
of mixed boundary-value problems. Based on these facts, we recognized that it would
be possible to prepare materials with a negative Poisson’s ratio which would be stable
with no external constraint. In view of that fact, negative Poisson’s ratio materials were
prepared in our laboratory (Lakes, 1987). Inequality Eq. (4.2) implies that E, G, and B
must be positive for positive deHniteness of the strain energy and for an unconstrained
block of material to be globally stable under small deformation for a wide range of
loading conditions.
Boundary-value problems for which purely displacement boundary conditions are

prescribed have unique solutions (Cosserat, 1898) that are also incrementally stable
(Lord Kelvin, 1888) if the elastic moduli are strongly elliptic:

G¿ 0 and −∞¡�¡ 0:5 or 1¡�¡∞: (4.3)

This range is considerably less restrictive than the range in inequality Eq. (4.2). Phys-
ically, the displacement boundary condition corresponds to a constraint on the elastic
object. That constraint makes for stability, hence a less restrictive range of admissible
elastic constants. [Truesdell and Noll (1965) have further shown that a homogeneous,
arbitrarily anisotropic body in a homogeneously (Hnitely) strained conHguration sub-
ject to purely displacement boundary conditions has a unique and stable solution for
superimposed inHnitesimal deformation if the strained state elastic modulus tensor is
strongly elliptic.]
In terms of the LamUe moduli 1 and G, the strong ellipticity conditions (4.3) are

G¿ 0 and 1+ 2G¿ 0: (4.4)

The physical signiHcance of the 1 + 2G¿ 0 condition is that the sti%ness, which can
also be considered as the tensorial modulus C1111, is positive for axial compression
or extension under lateral constraint (uniaxial strain). When Eq. (4.4) is satisHed, the
speed of longitudinal waves is positive. Inequality Eq. (4.4) is equivalent to (Timo-
shenko, 1983)

G¿ 0;
E(1− �)

(1 + �) (1− 2�) = 2G
(1− �)
(1− 2�)¿ 0: (4.5)

Since E=2G(1+ �), the range of E for strong ellipticity is −∞¡E¡∞. As for the
bulk modulus,

B=
2G(1 + �)
3(1− 2�) (4.6)

or equivalently B= 1 + 2G=3, so that for strong ellipticity −4G=3¡B¡∞. So the
condition of strong ellipticity allows some moduli to be negative. If strong ellipticity is
violated, the material may exhibit an instability associated with the formation of bands
of heterogeneous deformation (Knowles and Sternberg, 1978). Note that the speciHc
examples of achieving extremely high composite bulk modulus exhibited in Section 2
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required a negative bulk inclusion modulus that need not violate strong ellipticity in
the inclusion.
Our earlier examples of achieving extremely high composite shear modulus require a

negative shear modulus in the inclusions, which does violate the strong ellipticity con-
dition in the inclusions. However, the violation of strong ellipticity does not guarantee
the loss of stability of the inclusions: experiments show that, for example in ferroelas-
tic (Salje, 1990) and ferroelectric (Lines and Glass, 1979; Cady, 1964) materials, the
energy penalty of band formation suppresses banding when particles of the material
are suLciently small. Thus in these examples and others, an instability criterion based
purely on elasticity theory may not contain enough of the physics of the actual mate-
rial behavior, and hence may predict instabilities in regimes where such do not occur
in reality. Negative shear modulus can also occur in lumped elements which cannot
form bands and for which continuum conditions of ellipticity do not apply. A full
accounting of shear properties with single domains would necessarily incorporate both
anisotropy of the crystal and surface energy. Furthermore, the experiments of Lakes
et al. (2001) involve inclusions having a negative shear modulus, yet the measured
dramatic increase in complex composite shear modulus shows that they must not be
experiencing a banding instability.
In summary, negative sti%ness is not excluded by any physical law. Objects with

negative sti%ness are unstable if they have free surfaces. They can be stabilized if they
are constrained rigidly or by an elastic composite matrix. A continuum with a negative
bulk modulus is stable if constrained. Negative shear modulus in a continuum can give
rise to a banding (domain) instability associated with loss of ellipticity, but such an
instability does not always occur when strong ellipticity is violated.

4.4. Stability of three-dimensional composite

We consider the elastic moduli and Poisson’s ratio of composites which attain the
lower Hashin–Shtrikman formulae. As shown in Fig. 10, signiHcant enhancements in
sti%ness are obtained within the stability limits −1 to 0.5 on the composite Poisson’s
ratio, corresponding to the shear and bulk moduli of the composite being positive.
The critical inclusion modulus values for stability and for singularities depends on the
assumed concentration and Poisson’s ratio of the inclusions and the Poisson’s ratio of
the matrix.

5. Discussion

Possible uses of composites with inclusions of negative sti%ness are as follows.
They may be used in studying properties of single domains of ferroelastic, ferroelectric,
shape memory martensite or ferromagnetic materials. A dilute concentration is suLcient
to obtain substantial e%ects; therefore, not much sample material is needed. Some
materials under study cannot be easily prepared as large single crystals; polycrystalline
arrays may be brittle. Such composites also Hnd applications in which high sti%ness or
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Fig. 10. Isotropic Hashin–Shtrikman ‘lower’ composite. Composite moduli G and B (normalized to the matrix
shear modulus), and composite Poisson’s ratio � vs. sti%ness of inclusion phase for 5% volume fraction of
inclusions. Poisson’s ratio �=0:1 for inclusions and 0.35 for matrix.

tunable sti%ness is needed. Inclusions need not be temperature-sensitive ferroelastics;
pre-stressed or pre-buckled elements may be used as inclusions.
Anomalies (sharp variations) are predicted in composite properties when the inclu-

sions have a negative modulus of magnitude comparable to the matrix modulus. The
conclusion is not dependent on the use of extremal composites. The anomalies occur in
the following composites: Reuss, Hashin–Shtrikman lower (attainable by hierarchical
laminates) and random matrix–inclusion (variational estimate).
The anomalies assume a singular form in composites with linear elastic constituents

as well as those with constituents in which the nonlinearity is of a geometrical form.
If the matrix has a nonlinearity in the constitutive relation, the anomaly in composite
modulus becomes Hnite. If the constituents are linearly viscoelastic (Lakes, 2001b),
then the anomaly in composite modulus is also Hnite, and is accompanied by a large
peak in material damping, tan �.
The question of whether one can claim to have considered every possible type of in-

stability that could conceivably occur in composite materials having a negative sti%ness
phase is obviously a very diLcult question that we cannot address fully here. Indeed,
it would seem impossible to prove that one had deHnitively analyzed every possible
instability: This is so because we do not believe the question is physically addressable
purely within classical elasticity theory. For example, consider the banding instability
discussed earlier. It is known from elasticity theory that when strong ellipticity is vi-
olated, banding is predicted to be possible from classical elasticity. However, as we
noted, experiments have shown that this banding instability is suppressed in suLciently
small particles due to the energy penalty of domain formation. Thus, one must incorpo-
rate additional physics beyond classical elasticity theory (accompanied by experimental
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Fig. 11. Experimental torsional compliance and mechanical damping, tan �, vs. temperature for a composite
containing 1% by volume vanadium dioxide particles in a tin matrix, from Lakes et al. (2001). Measured
results for pure tin, for which tan �=0:019 over the temperature range considered, are also plotted for
reference. Measurements were conducted at 100 Hz, well below resonance, during slow cooling through the
ferroelastic transition of the inclusions.

measurement of the energy penalty, for example) for the theoretical prediction of the
permissible regime of this instability to be correct. We anticipate similar scenarios for
other instability types.
Further justiHcation that the ideas proposed in this paper are not merely theoret-

ical constructs but have actual real-world merit consists of two sets of experiments
performed on viscoelastic materials in which extreme composite material properties
(elastic modulus and viscoelastic damping) were actually experimentally attained, and
not compromised by unanticipated types of instabilities. The elastic and viscoelastic
behavior of composites having a negative sti%ness phase has been illustrated for com-
posites with particulate ferroelastic inclusions (Lakes et al., 2001) at 100 Hz, in the
quasistatic regime, at least an order of magnitude below the lowest natural frequency,
and the viscoelastic behavior for composites with post-buckled tube elements (Lakes,
2001a) at 1 Hz, well below the lowest natural frequency. In the particulate composites,
particulate inclusions of vanadium dioxide (VO2) of 150 �m size or smaller were in-
corporated into a tin matrix by rolling sheets of tin with particles, followed by casting
into a cylindrical mold. Vanadium dioxide is a ferroelastic material which undergoes a
transformation from monoclinic to tetragonal at Tc = 67

◦C. Although the concentration
of inclusions is dilute, extreme values, well in excess of those of either constituent,
were measured in the composite mechanical damping, tan �, as well as in the composite
sti%ness in the vicinity of the transition temperature of the inclusions, as illustrated by
the experimental results for a composite with particulate ferroelastic inclusions (Lakes
et al., 2001) shown in Fig. 11. Indeed, observed sti%ness and damping anomalies in the
composite are much larger than they could be for inclusions of any positive sti%ness or
damping. For example, if the particles were as sti% as diamond (E=1000 GPa), com-
posite theory predicts a composite sti%ening e%ect of only 1.9% and no change in the



1004 R.S. Lakes, W.J. Drugan / J. Mech. Phys. Solids 50 (2002) 979–1009

viscoelastic damping tan �; if the particles were inHnitely sti%, the composite would be
only 2.1% sti%er than tin matrix. If the particle sti%ness were to vanish, the composite
would soften by 1.9% and have no change in tan �. The inclusions are therefore more
e%ective than diamond in increasing the composite sti%ness at selected temperatures;
moreover, the composite exceeds the classical bounds based on positive sti%ness. The
compliance exceeds the Hashin–Shtrikman bounds for this composite (note scale for
the compliance on the right in Fig. 11).
In the lumped systems, compliant composite unit cells were made with negative

sti%ness constituents (Lakes, 2001a). Flexible silicone rubber tubes were incorporated
in a post-buckled condition to achieve negative sti%ness. Large peaks in mechanical
damping tan � of the composite were measured in these systems. Maximum damping
was orders of magnitude in excess of the material damping of the silicone rubber.
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Appendix A

A.1. E:ective bulk modulus of a composite sphere

To compute the e%ective bulk modulus of the composite sphere treated in
Section 2.3, MB, recall Hrst that this relates the volume-average triaxial stress and strain
in the composite as

tr( M�)=3= MB tr(MU): (A.1)

Also, recall that the volume-average stress and strain are given by

M� ≡ 1
V

∫
V
��� dV = 1

V

∫
S
tx dS; MU ≡ 1

V

∫
V
			 dV = 1

2V

∫
S
(nu + un) dS; (A.2)

where t is the traction vector, x the position vector, n the outward unit normal vector
to the surface S, u the displacement vector, and tx, nu and un are dyads. For the
geometry described in Section 2.3, on the outer boundary of the composite sphere, we
have

t= �rrer ; x= ber ; n= er ; u= urer ; (A.3)

where er is the radial unit vector, so that Eq. (A.2) becomes

M�= �rr(b)I; MU= ur(b)
b

I; (A.4)

where I is the second-rank identity tensor. Thus, for the present geometry of a sphere
containing a spherical inclusion, Eqs. (A.1) and (A.4) with Eqs. (2.2) and (2.4) show
that

MB=
tr( M�)
3 tr(MU) =

b
3
�rr(b)
ur(b)

=
b3B2�2 − 4G2�2=3

�2b3 + �2
: (A.5)
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As noted by Hill (1963), in this problem the bulk modulus can also be determined
from the ratio of the (uniform) applied normal stress to the fractional volume change.

A.2. Finite deformation elasticity solution for spherical symmetry

Here, we show the determination of the Hnite deformation elasticity solution used
in Section 2.3.2; this summarizes and builds on the analysis of Ogden (1984). Since
we consider isotropic material, we have that W (U)=W (11; 12; 13), where 1i are the
principal stretches, so the principal components of the Biot stress are, from Eq. (2.17),

Ti=
9W
91i

: (A.6)

For the spherically symmetric problems to be analyzed, the reference conHguration
spherical coordinates are R;�;�, while the current conHguration spherical coordinates
are r; �; �. The deformation is thus given by

x=f(R)X ⇒ r=f(R)R; (A.7)

where X and x are the reference and current conHguration position vectors, respectively,
and the function f(R) is to be determined. From this, the displacement Held is

uR= r − R= [f(R)− 1]R; (A.8)

and the deformation gradient tensor is

F=f(R)I +
1
R
f′(R)XX: (A.9)

The spherical symmetry of the deformation demands that F=U; this with Eq. (A.9)
thus shows

1R=Rf′(R) + f(R); 1�= 1�=f(R): (A.10)

Thus, for the present spherically symmetric problems, the nonzero components of the
right-stretch strain tensor E=U − I are, using Eq. (A.10),

ERR= 1R − 1; E��=E��= 1� − 1: (A.11)

Since R= I for the spherically symmetric deformations considered, Eq. (2.16) shows
that S=T, so that the equations of equilibrium ∇̃ · S=0 take the form

9TRR
9R +

2
R
(TRR − T��)= 0; T��=T��: (A.12)

The stress components appearing in Eq. (A.12) will be the principal stresses of our
problems; from Eqs. (2.18) and (A.6), we compute

TRR=F ′(I1)− 2c11� + c212�; T��=T��=F ′(I1)− c1(1R + 1�) + c21R1�:
(A.13)

Substitution of Eq. (A.13) into Eq. (A.12) leads to

d
dR
[F ′(I1)− c1I1] + c1

[
d1R
dR

+
2
R
(1R − 1�)

]
=0; (A.14)
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having used Eq. (A.10) and the fact that I1 = 1R+21�; these latter two facts also show
that

dI1
dR
=
d1R
dR

+
2
R
(1R − 1�); (A.15)

the use of which reduces Eq. (A.14) to

F ′′(I1)
dI1
dR
=0: (A.16)

Since we wish to permit F ′′(I1) �=0 for constitutive Rexibility reasons to be discussed
shortly, Eq, (A.16) reduces to the requirement

dI1
dR

≡ d
dR

(
R
df
dR
+ 3f

)
=0: (A.17)

This can be integrated immediately to give the general solution

f(R)= 1 + �+
�
R3
; (A.18)

where � and � are as-yet undetermined constants. Thus, from Eqs. (A.8), (A.10) and
(A.11), the displacement and strain Held solutions will have the forms

uR= �R+
�
R2
; (A.19)

ERR= �− 2 �
R3
; E��=E��= �+

�
R3
: (A.20)

We emphasize that the above are the general solutions for arbitrary F(I1).
As noted in Section 2.3.2, within the Hnite deformation formulation, we wish to

examine both the case of a linear stress–strain constitutive relation and a nonlinear
one. Thus, for simplicity we chose F(I1) to have the speciHc form:

F(I1)=d1I 31 + d2I 21 + d3I1 + d4 ⇒ F ′(I1)= 3d1I 21 + 2d2I1 + d3; (A.21)

where d1 − d4 are constants.
We assume a stress-free reference conHguration (1R= 1�= 1�=1), which from Eq.

(A.13) requires

F ′(3)− 2c1 + c2 = 0: (A.22)

Applying this requirement to Eq. (A.21) gives

27d1 + 6d2 + d3 − 2c1 + c2 = 0: (A.23)

The spherical symmetry of the composite problems to be analyzed requires equality
between two of the principal stretches, 1�= 1�, so that for these problems the principal
invariants of U are

I1 = 1R + 21�; I2 = 12� + 21R1�; I3 = 1R12�: (A.24)
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Now, for our speciHc constitutive model Eq. (2.18) with Eq. (2.21), the stress Helds
Eq. (A.13) become, using Eq. (A.24),

TRR=3d1(1R + 21�)2 + 2d2(1R + 21�) + d3 − 2c11� + c212�;

T��=T��=3d1(1R + 21�)2 + 2d2(1R + 21�) + d3 − c1(1R + 1�) + c21R1�:
(A.25)

By employing Eq. (A.11), these can be written in terms of strain components as, using
Eq. (A.23) to substitute for d3,

TRR = 2(9d1 + d2)ERR + 2(18d1 + 2d2 − c1 + c2)E��

+3d1E2RR + 12d1ERRE�� + (12d1 + c2)E2��

T��=T�� = (18d1 + 2d2 − c1 + c2)ERR + (36d1 + 4d2 − c1 + c2)E��

+3d1E2RR + (12d1 + c2)ERRE�� + 12d1E2��: (A.26)

We shall choose the constants in our Hnite deformation constitutive equation so that Eq.
(A.26) reduce to the small-displacement-gradient constitutive equations when strains are
inHnitesimal:

�=2GU+ (B− 2G=3)tr(U)I: (A.27)

Comparing Eq. (A.26) in the small strain limit with Eq. (A.27) shows that

2(9d1 + d2)=B+ 4
3G; 18d1 + 2d2 − c1 + c2 =B− 2

3G: (A.28)

Using Eq. (A.28) to eliminate d2 and c1, and for convenience renaming constants as
P ≡ 3d1; Q ≡ c2, Eq. (A.26) becomes

TRR=(B+ 4
3G)ERR + 2(B− 2

3G)E�� + P(ERR + 2E��)2 + QE2��;

T��=T��=(B− 2
3G)ERR + 2(B+

1
3G)E�� + P(ERR + 2E��)2 + QERRE��:

(A.29)
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