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ABSTRACT
Compliant composite unit cells were made with negative sti� ness constituents.

Flexible silicone rubber tubes were incorporated in a post-buckled condition to
achieve negative sti� ness. Large peaks in the mechanical damping tan ¯ were
observed in these systems. Maximum damping was orders of magnitude in
excess of the material damping of the silicone rubber.

} 1. INTRODUCTION
Negative sti� ness entails a reversal of the usual directional relationship between

force and displacement in deformed objects. It is not illegal (does not violate any
physical law), but an isolated object with negative sti� ness is unstable. Negative
sti� ness can be achieved as follows. A column constrained in a buckled ‘S’-shaped
con� guration is in unstable equilibrium (Bazant and Cedolin, 1991). By pressing
laterally on the column one can cause it to snap through. The column can be
stabilized by a lateral constraint. One can easily verify the properties of the buckled
column with the aid of a � exible plastic ruler. Tubes in the post-buckling regime
exert decreasing force with an increase in deformation, and hence negative incre-
mental sti� ness. F lexible tetrakaidecahedra (Rosakis et al. 1993) were considered as
models of single cells in foams and deformed in compression under displacement
control. They exhibit a non-monotonic force–deformation relation, hence they exhi-
bit negative sti� ness over a range of strains.

Negative sti� ness di� ers from negative Poisson’s ratio in that negative Poisson’s
ratio is possible with positive, but unusual, combinations of sti� ness. Poisson’s ratio
¸ is de� ned as the negative transverse strain of a stretched or compressed object
divided by its longitudinal strain. For most solids, ¸ is between 0.25 and 0.33. Foams
(Lakes 1987, 1993) with Poisson’s ratio as small as ¡0.7 have been made. Young’s
modulus E and the shear modulus G are related to Poisson’s ratio in isotropic
materials by relations such as E ˆ 2G…1 ‡ ¸). The ‘allowable’ range of Poisson’s
ratios, ¡1 < ¸ < 0:5, corresponds to the requirement that the moduli be positive
for stability of an unconstrained (surface traction boundary condition in the lan-
guage of elasticity) block of material.

The current investigation experimentally explores viscoelasticity in compliant
composite systems with negative-sti� ness constituents.
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} 2. ANALYSIS
The sti� ness of a linearly elastic two-phase composite for a given volume fraction

of one phase is bounded by the Voigt and Reuss composites (Paul, 1960). The Voigt
upper bound formula, also called the rule of mixtures, is

Ec ˆ E1V1 ‡ E2V2; …1†

in which Ec, E1 and E2 refer to Young’s moduli (sti� ness) for the composite, phase 1
and phase 2 respectively, and V1 and V2 refer to the volume fraction of phase 1 and
phase 2 respectively with V1 ‡ V2 ˆ 1. The Voigt formula corresponds to a laminate
with the laminae aligned with the compressive load. The Reuss structure is aligned
perpendicular to the direction of the load so that each phase experiences the same
stress. The Reuss lower bound formula is

1
Ec

ˆ V1

E1
‡ V2

E2
: …2†

More restrictive bounds were presented by Hashin and Shtrikman (1963) for iso-
tropic linearly elastic composites. Bounds were also formulated by Gibiansky and
Milton (1993) and Gibiansky and Lakes (1993) for viscoelastic composites in a
sti� ness–loss map (a plot of jE*j versus tan ¯). For a viscoelastic material, the moduli
and compliances are complex: E* ˆ E 0 ‡ iE 00 ˆ E 0…1 ‡ i tan ¯), with E 0 ˆ Re …E*†
and tan ¯ ² ‰Im …E*†Š=‰Re …E*†Š; ¯ is the phase angle between the stress and strain
sinusoids. It is tacitly assumed in the Hashin–Shtrikman bounding analyses that the
strain energy density of all phases is positive, corresponding to positive sti� ness.

In this work we relax that assumption. The Voigt, Reuss and Hashin–Shtrikman
formulae cease to be bounds if sti� ness is negative, but they still correspond to
realizable composites. To examine the e� ect of negative sti� ness constituents,
write the Reuss equation (2) in terms of the compliance J ˆ 1=E rather than the
sti� ness E .

Ec ˆ 1
J c

ˆ 1
J 1V1 ‡ J2V2

: …3†

One phase is assumed to have a negative sti� ness and hence a negative compliance.
This compliance may be added to a positive compliance of similar magnitude to
obtain a compliance which is very small, tending to zero. The corresponding elastic
composite sti� ness exhibits a singularity. The form of equation (3) resembles that of
a resonance. It is not resonant since the opposing terms in the denominator arise
without inertia. Elastic composites with particulate and coated sphere structure give
rise to similar singularities and they can be stable (Lakes and Drugan 2000). For a
viscoelastic composite, the moduli are complex; � gure 1 shows that the composite
mechanical damping tan ¯ is predicted to become singular when the positive
and negative sti� ness values are balanced. The experiments presented here involve
� exible tubes in the post-buckling regime of behaviour, shown schematically as insets
in � gures 2 and 3.

} 3. METHODS
Composite unit cells were fabricated by adhesively bonding silicone rubber tubes

with silicone cement, in a Reuss con� guration. The con� guration, with one tube and
two end pieces 10 mm long, is shown in the insets in � gure 3; the long tube segment
was 40 mm long. Each tube was 10 mm in outside diameter and 6 mm in inner
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diameter. The stability of composites containing many such cells is discussed in } 4.
The nonlinear post-buckling characteristics of the silicone tubes were examined using
a con� guration intended to isolate the e� ect of the kink formed during buckling.
Tubes 40 mm long were provided with hard rubber plugs 10 mm long, press-� tted
into the lumen and cemented with silicone (insets in � gure 2). These were used to
examine the post-buckled condition in as pure a form as possible.
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Figure 1. Theoretical modulus jEcj and damping of a Reuss composite. tan ¯ ˆ 0:1 is assumed
for the material.

F igure 2. Load–deformation plots for straight and post-buckled tubes under displacement
history which is sinusoidal in time at 1 Hz.



Material property testing was done with a servohydraulic (MTS type 976) testing
system under displacement control. A load cell (Sensotec 41-571) of 100 lb (445 N)
capacity was used. Sinusoidal waveforms at 1 Hz were input in displacement control.
The amplitude was 0.127 mm. Both the magnitude and the phase of the force
response were measured using a lock-in ampli� er (Ithaco, type 3961B). To control
or tune the e� ective sti� ness of the tube elements, their nonlinear post-buckling
characteristic was utilized. Tuning of the e� ective sti� ness was achieved by varying
the dc component of displacement, and hence the pre-strain.

} 4. RESULTS AND DISCUSSION
The viscoelastic properties of a tube subjected to sinusoidal load while straight

and in the post-buckled condition are plotted in the Lissajous � gures in � gure 2. The
straight tube exhibits linearly viscoelastic behaviour with a positive sti� ness, as
indicated by the positive slope in the load-deformation diagram, and a damping
tan ¯ ˆ 0:12. Although the response is nonlinear over large deformations, small
sinusoidal oscillations about a selected centre point give rise to a linearly viscoelastic
load deformation characteristic. The same tube in the post-buckling regime exhibits
a negative sti� ness as indicated by the negative slope of the corresponding Lissajous
� gure. Ripples in the curves are due to feed-through noise in the testing machine. In
both cases the load–deformation curve is traversed in a clockwise direction as shown
by the arrows, as is expected in a passive system with no internal source of power.
For the post-buckled tube, the phase angle between load and deformation exceeds
908, so tan ¯ is negative. According to bounding theorems on restrictions upon
viscoelastic behaviour (Christensen 1972) the assumption of a non-nega tive rate of
dissipation of energy gives a non-nega tive imaginary part to the sti� ness, E 00 5 0. In
the present results, E 0 < 0 and tan ¯ < 0; so E 00 > 0. If one assumes both a non-
negative stored energy and a non-nega tive rate of dissipation of energy, then E 0 5 0.
In the experiments, the ‘initial’ state has some stored energy. Therefore a negative
sti� ness E 0 is not inconsistent with these theorems.
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Figure 3. Experimental viscoelastic behaviour of a compliant silicone tube composite unit
cell at room temperature.



The viscoelastic properties of a Reuss (series) tube composite unit cell are plotted
in � gure 3. The damping tan ¯ attains a large peak of magnitude much larger than
the baseline viscoelastic properties of the tube material. Negative values of tan ¯
signify phase angles greater than 908, and hence a negative value of the composite
modulus. This would entail instability of a free unconstrained block; in the present
results the Reuss composite element is constrained by the displacement control of the
testing machine. The tube ensemble is not of a true Reuss type since the deformation
of the tubes is distributed rather than lumped; di� erent regions of the buckled tube
contain di� erent amounts of stored strain energy. Moreover, since the buckling
process is nonlinear and accompanied by a large change in incremental sti� ness,
the comparison with the simple linear Reuss model involves the general nature of
the singularity rather than the details of the shape of the curves. Even so, the
expected singularity indeed appears in the experimental results.

The consequences of non-monotonic force–deformation relations in continuous
media have been explored from an applied mathematics perspective (for example
James (1979) and Ball (1996)). For example, the range of isotropic elastic constants
for strong ellipticity is G > 0 and ¸ < 0:5 or ¸ > 1 (Knowles and Sternberg 1978),
which allows negative Young’s moduli. Violation of strong ellipticity in an initially
homogeneous solid gives rise to an instability associated with the formation of bands
of heterogeneous deformation. These analyses are considered to be applicable to the
band structure observed in materials which undergo phase transformations. Indeed,
the original Landau (1965) theory assumes an internal energy function which can
develop multiple minima at certain temperatures, and hence instability. One does not
usually speak of negative sti� ness in this regard since, owing to the instability, it is
not observed. The present results, by contrast, deal with the e� ects of constituents of
both positive and negative sti� ness. A multicell Reuss composite would probably be
unstable, however particulate composites with negative sti� ness inclusions can be
stable (Lakes and Drugan 2000).

Negative sti� ness is also known in dynamical systems. The 1808 phase shift
which occurs above the fundamental natural frequency may be interpreted as a
negative sti� ness, although it is usually not spoken of in that way. Certain dielectric
composites can exhibit extreme behaviour albeit at a very high frequency (Nicorovici
et al. 1994). The present concept does not depend on inertial terms: it is not resonant.

Composite systems containing constituents of positive and negative sti� ness
exhibit giant anomalies in the mechanical damping. They may be called exterlibral
since they are on the boundary of balance, or archidynamic since they are based on
initial force. Negative sti� ness can be achieved in a variety of ways; the use of
buckled tubes in the present study is illustrative of the concept. In addition to re-
entrant cells (Rosakis et al. 1993) and buckled tubes, one may consider inclusions of
materials in the vicinity of phase transitions, by virtue of the unstable equilibrium
analysed in the Landau theory (Falk 1980) or systems involving powered � uid � ow
(Thompson 1982). Tubes need not be macroscopic; they could be nanotubes.
Composites with constituents of negative sti� ness may be of use in damping layers
applied to plates of structural material.

} 5. CONCLUSIONS
The damping tan ¯ of composites with buckled rubber tubes of negative sti� ness

attains a large peak, orders of magnitude larger than the damping of the rubber, in

Extreme damping in compliant composites 99



harmony with expectations of an elementary Reuss model incorporating a consti-
tuent of negative sti� ness.
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