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 1 Introduction Reversal of physical properties with 
respect to their usual condition can be counter-intuitive and 
interesting. For example, Poisson’s ratio refers to the ratio 
of transverse contraction strain to longitudinal extension 
strain during stretching. Poisson’s ratio is usually positive 
as one can see in the stretching of a rubber band. Negative 
values are permitted by the theory of elasticity as presented 
in detail below. Polymer foams [1] with negative Poisson’s 
ratio have been made and characterized, and negative Pois-
son’s ratio was predicted to occur in model systems [2, 3] 
and in various anisotropic single crystals [4, 5]. Negative 
Poisson’s ratio has been observed in metal foams [6] and 
microporous polymers [7]. Poisson’s ratio is a cross prop-
erty, with no energy associated with it, so there is no re-
striction that it cannot be negative. The same is true for the 
thermal expansion. For example, negative thermal expan-
sion of arbitrarily large magnitude in designed composites 
has been analyzed  [8]. Various models with negative 
thermal expansion are known [9, 10]. In the Appendix A 
we solve a very simple model illustrating such a behavior. 
 Negative specific heat, though forbidden in classical 
thermodynamics, occurs in stars and star clusters [11, 12]. 
The apparent paradox is explained [13] by observing that 
an extensive system is implicitly assumed in thermody-
namic analyses, in which a canonical ensemble of sub-
systems is in equilibrium. Stars contain an internal power 
source from nuclear fusion, however that is not the essen-

tial stabilizing element. The essential physics here is the 
notion of a partition of the total energy. In a model sys-
tem [14], negative specific heat was attained by coupling a 
compressed ideal gas with a nonlinear spring containing 
stored energy. It is also possible for a negative specific 
heat to occur in systems which are not in equilibrium [15], 
for example rapidly cooled amorphous materials near the 
glass transition temperature. 
 Negative pressure is also forbidden at equilibrium by 
thermodynamics for any positive temperature and for sta-
ble potentials with finite interaction range and finite attrac-
tive forces. This is because when such a system is divided 
into two (or a finite number of) macroscopic parts its free 
energy is lower than that of a system at negative pressure. 
(For solids the time necessary for the breakage can be very 
long.) However, it can occur in unstable and metastable 
states [16]. For tethered potentials [17, 18] the negative 
pressure is allowed even at equilibrium. It has been shown 
for various interaction potentials [18–20] that Poisson’s 
ratio should be negative in a range of densities in solids at 
negative pressures. Recent study of frequency dependent 
Poisson’s ratio in fluids at negative pressures [21] showed 
that infinite frequency Poisson’s ratio is positive both at 
the densities corresponding to metastable and unstable 
states. 
 Negative structural stiffness is well known in certain 
post-buckled configurations of structures [22]. Under some 
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conditions a structure with negative stiffness may be stable 
if constrained. In theory, negative material stiffness can 
occur in ferroelastic [23] phase transformation, but the as-
sociated instability is associated with the phase change. 
Negative moduli arise within the context of Landau the-
ory [24] from the formation of two local minima in the 
strain energy function. As a control parameter such as 
temperature is lowered, an energy function with a single 
minimum gradually flattens, then develops two minima. 
The curvature of this energy profile represents a modulus, 
so the modulus softens during cooling, then becomes nega-
tive. This condition is unstable. Bands of material form, vi-
sible as the twin crystal structures associated with ferro-
elastic transformation. Solids with negative material stiff-
ness i.e. negative elastic modulus, can be stabilized with 
sufficient constraint. Negative shear modulus entails insta-
bility in which the material forms domains even if it is 
constrained, but a particle sufficiently small can be single 
domain, owing to surface energy effects. Such particles 
were used as inclusions constrained in a composite, to  
achieve large mechanical damping and anomalies in modu-
lus [25] in the composite. Negative material stiffness, spe-
cifically the bulk modulus, of a constrained solid elastic 
object of any size is stable within the theory of elasticity, 
as described below. Negative bulk modulus (inverse com-
pressibility) is, however, considered to be forbidden in the 
context of thermodynamics. In this paper, the role of nega-
tive bulk modulus is considered. Experimental observa-
tions of negative bulk modulus in pre-strained foam are 
presented and interpreted. 
 
 2 Experiment: negative incremental bulk mod-
ulus in foam Stable negative structural stiffness is known, 
both theoretically and experimentally, in postbuckled 
structural elements. For example, single cells of foam ex-
hibit a non-monotonic load deformation characteristic [26]. 
Recently, stable negative bulk modulus of a material has 
been observed experimentally in constrained foam [27] 
subjected to hydrostatic compression under displacement 
control. Since a pre-deformation was required to observe 
the effect, it is a negative incremental bulk modulus or in-
verse compressibility. Results are reviewed and additional 
results are presented. 
 Specifically, open cell foams were obtained from 
Foamade Industries, (Auburn Hills, MI, USA), and from 
Foamex International Inc (Eddystone, PA, USA). These 
foams had pore sizes of 2.5 mm (10 pores per inch (ppi)) 
and 0.4 mm (60 ppi). Cubes, cylinders and spheres were 
sectioned from the bulk foam for testing. Experimentally, 
foams were hydrostatically compressed under control of 
volumetric deformation. To do this, known volumes of wa-
ter were injected by a calibrated screw piston into a volu-
metric test chamber fabricated from a 1 liter, polycarbonate 
bottle. To prevent the water from entering the interstices of 
the foam, specimens were sealed inside a cylindrical natu-
ral latex rubber membrane 0.076 mm thick. A thin pressure 
relief tube was provided to allow air within the foam to es- 

 

Figure 1 Hydrostatic stress with respect to volumetric compres-

sional strain [27] for an open cell foam described in text. The re-

gion where the bulk modulus (and, hence, the compressibility) is 

negative is indicated. 

 

cape as the foam was compressed. Water was then injected 
in small increments of about 0.14 mL. After each incre-
ment the pressure sensor was allowed to settle. A typical 
test to 40% strain typically took up to 5 hours. 
 Typical results for a spherical specimen are shown in 
Fig. 1. Non-monotonic behaviour was observed provided 
the foam specimen had small cells (0.4 mm) and was 
spherical in shape. Beyond about 20% volumetric strain in 
hydrostatic compression, the pressure-volume curve had a 
nonmonotonic region indicative of negative bulk modulus. 
Foams with large cells of 2.5 mm size were sufficiently  
anisotropic that the anisotropy of deformation was ob-
served visually. The nonmonotonic effect, hence negative 
compressibility, is attributed to symmetric buckling of the 
foam cell ribs. Too much anisotropy in the structure spoils 
the symmetry, so that the compliant direction deforms via 
cell bending without buckling. Volumetric compression 
was also used in the preparation of the original negative 
Poisson’s ratio foams [1]. The optimal volumetric com-
pression was about a factor of 3 to 4 depending on the type 
of starting foam. Therefore a region of negative com-
pressibility was traversed during the preparation process, 
though it was not measured at the time. 
 
 3 Stability in elasticity theory and in thermo-
dynamics In this section the role of negative compressi-
bility in elasticity theory and in thermodynamics is consid-
ered. Specifically, elasticity theory allows negative com-
pressibility in a constrained object, but thermodynamic 
presentations of stability suggest negative compressibility 
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cannot occur. In isotropic elastic solids, the ‘allowable’ 
range of Poisson’s ratio ν  is 

1 0 5ν- < < . . (1) 

It corresponds to the requirement that the shear, G , and 
bulk, K , moduli [28] be positive for stability of an uncon-
strained block of material. The lack of constraint is equiva-
lent to a surface traction boundary condition in the lan-
guage of elasticity theory. This stability condition is  
equivalent to a statement that the elastic modulus tensor is 
positive definite. If a solid elastic object is constrained (a 
boundary condition of prescribed displacement in the lan-
guage of elasticity), the condition of unique solutions [29] 
and stability [30] becomes that of strong ellipticity. Strong 
ellipticity entails 

0ijkl i j k lC n n m m >  , (2) 

for all nonzero vectors 
i
n  and 

i
m  and ijklC  as the modulus 

tensor. The speed 
2323

/v C ρ=  of shear waves must be real 
or the waves will grow exponentially, so 

2323
0.G C= >  

Similarly since the speed of longitudinal waves is real, 

1111
0.C >  The corresponding range of isotropic elastic con-

stants is [31] 

0 and a) 0 5 or b) 1G ν ν> < . > .  (3) 

The second condition (3b) for strong ellipticity entails the 
constrained tensorial modulus be positive, 

1111
0.C >  Since 

2 (1 )E G ν= + , this allows negative Young’s modulus E  
and bulk modulus K , specifically 

a) or b) 4 /3E G K-• < < • - < < • . (4) 

Displacement type boundary value problems have unique 
solutions if [32] the elastic constants are in the range for 
strong ellipticity. The condition of strong ellipticity is less 
stringent than that of positive definiteness. 
 In the context of thermodynamics, it is claimed that the 
compressibility (inverse bulk modulus) must be positive. 
Since that claim contradicts the above result of elasticity 
theory, it is of interest to study the assumptions made. The 
continuum has a non-denumerable infinite number of de-
grees of freedom, while a solid made of atoms has a finite, 
albeit large, number of degrees of freedom. If, however the 
atoms are in vibratory motion due to non-zero temperature, 
then the solid of atoms has a form of freedom not present 
in the continuum. 
 Thermodynamics suggests a size dependent metastabil-
ity in fluids associated with negative compressibility, ow-
ing to the nonzero size of atoms and nonzero tempera-
ture [33]. The treatment of Van der Waals is applicable to 
fluids, which have zero shear modulus. The non-monotonic 
portion of the pressure – volume relation is therefore asso-
ciated with instability, specifically the condensation of liq-
uid droplets in a gas. If there is in fact a corresponding me-
tastability in solids, the time scale may, however, exceed 
experimental time scales. Within continuum mechanics, 

there is no size limitation for a constrained object of nega-
tive bulk modulus to be stable. 
 There exists exactly solvable two dimensional system 
of infinitely many interacting hard discs constrained in a 
strip shaped region in which negative compressibility is in-
ferred from analysis of collisions of the discs [34, 35] and 
the system remains internally stable when the volume and 
the shape of the strip are fixed. This result concerning the 
two dimensional model can be extended to three dimen-
sions (spheres in a cylinder). These results do not contra-
dict van Hove’s theorem [36] on non-existence of phase 
transitions in one-dimensional systems with short-range in-
teractions since some assumptions of this theorem are not 
fulfilled by the models. The mentioned systems of hard 
discs and spheres are infinite only in one direction. In the 
Appendix B we show examples of two and three dimen-
sional constrained systems which are infinite in all direc-
tions and, when their volume is fixed, are internally stable 
despite showing negative compressibility. 
 The thermodynamic proof of Münster [37] of positive 
compressibility assumes a system of particles without in-
ternal degrees of freedom and without external fields. It is 
also assumed that the potentials for particle interaction are 
stable. These assumptions appear to preclude consideration 
in the analysis of composite systems with pre-strain of 
constrained inclusions or phase transforming materials 
which are unstable in the absence of constraint. Indeed it is 
claimed that this class of thermodynamic state functions 
can never lead to an unstable state as obtained from the van 
der Waals equation of state. The proof of Kubo [38] of po-
sitive compressibility depends on assuming that a matrix of 
coefficients is positive definite. Moreover the restriction on 
compressibility is obtained from a single matrix element 
without any thermal coupling. This proof therefore is based 
on restrictive assumptions corresponding to an object with 
a free surface, hence it is equivalent to Eq. (1) and does not 
contradict the result of Eq. (3). The proof of Wallace [39] 
of positive compressibility also depends on the notion of a 
positive definite matrix. Constant volume is considered in 
the context of heat capacity, but not in the context of com-
pressibility. Therefore the Wallace result corresponds to 
Eq. (1) for an unconstrained object and does not contradict 
the result of Eq. (3) for a constrained solid. 
 

 4 Thermoelastic coupling and restrictions on 
sign of the compliance Any difference between stabil-
ity conditions in elasticity and in thermodynamics may be 
associated with coupled fields. Consider, therefore, ther-
moelastic damping in order to understand stability condi-
tions associated with negative moduli. This energy dissipa-
tion results from the fact that adiabatic and isothermal 
moduli differ, and the time scale for observation may be 
neither fast enough to be adiabatic nor slow enough to be 
isothermal. 
 Consider [40, 41] a unit volume of elastic material 
with strain ijε  and entropy S  as dependent variables, and 
stress ijσ  and absolute temperature T  as independent vari- 
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ables: 

d d d
ij ij

ij kl

kl T

T
T

σ

ε ε

ε σ

σ

∂ ∂
= + ,
∂ ∂

 (5) 

d d d
kl

kl T

S S
S T

T
σ

σ

σ

∂ ∂
= + .
∂ ∂

 (6) 

( )ij klε σ∂ /∂  represents elasticity, ( )ij Tε∂ /∂  represents ther-
mal expansion, ( )

kl
S σ∂ /∂  represents the piezocaloric effect 

in which heat is generated in response to stress, and 
( )S T∂ /∂  represents heat capacity. In linear materials, the 
elasticity equations allowing for temperature changes be-
come [41] 

T

ij ijkl kl ijS Tε σ α= + D , (7) 

ij ij

C
S T

T

σ

α σD = + D  , (8) 

in which 
T

ijklS  is the elastic compliance tensor at constant 
temperature, ijα  is the thermal expansion tensor, and C

σ

 is 
the heat capacity per unit volume at constant stress. In the 
isotropic case, ij ijα αδ= . 
 The compliance 

T

ijklS  is the isothermal compliance and 
is the compliance actually measured in an elastic material 
under deformation which is slow enough that any heat ge-
nerated via the piezocaloric effect has time to flow, equal-
izing the temperature. The elastic compliance is different 
under deformation which is sufficiently fast that this heat 
has no time to diffuse (adiabatic condition, d 0S = ). To 
calculate the adiabatic compliance, set d 0S =  in Eq. (6) 
and combine Eqs. (5),(6) to eliminate d :T  

d d d

ij

ij kl T
ij kl kl

kl T

S

T

S

T

σ

σ

ε

ε σ

ε σ σ

σ

∂ ∂

∂ ∂ ∂
= - .

∂∂

∂

 (9) 

Now ( ) ( )ij kl TT S
σ

ε σ∂ /∂ = ∂ /∂  since these derivatives can be 
expressed in terms of a thermodynamic potential function 
by virtue of the first and second laws of thermodynam-
ics [41]. Dividing both sides of Eq. (9) by d

kl
σ  to obtain 

the adiabatic compliance ( )ij kl Sε σ∂ /∂ , 

ij ij ij kl

kl klS T

T

T T S
σ σσ

ε ε ε ε

σ σ

∂ ∂ ∂ ∂ ∂
- = - .

∂ ∂ ∂ ∂ ∂
 (10) 

If the material is linear, Eq. (10) becomes 

S T

ijkl ijkl ij kl

T
S S

C
σ

α α- = - . (11) 

The adiabatic compliance 
S

ijklS  differs from the isothermal 
compliance 

T

ijklS , and the difference depends on the thermal 
expansion and on the heat capacity. 
 Equation (11) gives a relaxation strength 

T S

ijkl ijkl ij kl

ijkl S S

ijkl ijkl

S S T

S S C
σ

α α
∆

-

= = . (12) 

The relaxation strength is a measure of the magnitude of time 
(or frequency) dependence of a material; in the present con-
text, conditions are intermediate between adiabatic and iso-
thermal. The peak mechanical damping tan peakδ  is half the 
relaxation strength, peaktan 2δ ∆= / . Since the thermal expan-
sion ijα  is diagonal, there is no relaxation associated with 
thermoelastic coupling in shear; a volume change is required. 
 As for stability, the mechanical damping is positive in 
passive materials. Negative damping entails acoustic am-
plification in the material, hence a divergence of wave am-
plitude. The corresponding condition 0∆ >  implies a re-
striction on compliance S , provided the heat capacity is 
positive. 
 Consider a relaxation strength associated with volume 
change, e.g. bending. The relevant elastic constant for 
bending vibration in reeds [42] is Young’s modulus 

1111
1E S= / . Then the condition of passivity of a material in 

reed bending vibration will imply positive Young’s mo-
dulus E  provided the material has no other source of 
damping than thermo-elastic coupling. If the modulus is 
slightly negative, the instability will manifest as a slow 
build-up of vibration in the material until the stored energy 
is exhausted. If, however, the material has other sources of 
dissipation so that the total tan 0,δ >  then negative  
Young’s modulus will not entail instability by this mecha-
nism. The bending of a reed, however, involves all surfaces 
free except one end. Therefore the restriction 0E >  in this 
case does not contradict the elasticity result that a fully 
constrained object can be stable with 0K < . 
 There is also a thermoelastic relaxation [43, 44] which 
gives rise to attenuation of longitudinal waves. The corre-
sponding elastic constant is 

1111
C , which must be positive in 

a passive material with positive attenuation. But that con-
stant is already known to be positive via the condition of 
strong ellipticity in elasticity. Therefore the condition of a 
passive material with positive damping in this case does 
not contradict the elasticity result that a fully constrained 
object with 0K <  or 0E <  can be stable. 
 
 5 Discussion Proofs, thermodynamic and otherwise, 
are based on assumptions. Some of these may seem so ob-
vious that they are not stated. Although negative heat ca-
pacity appears to be excluded by thermodynamics, it oc-
curs in stars and star clusters which admit long range 
gravitational forces and in systems which are not in equi-
librium. These systems do not follow all the assumptions 
of thermodynamics. Thermodynamic demonstrations that 
compressibility must be positive all appear to deal with un-
constrained systems, in agreement with elasticity. Study of 
thermo-elastic coupling discloses no new instability as a 
result of that coupling. Experiments on foam under hydro-
static compression shows that a negative incremental com-
pressibility occurs. It is possible that some form of cou-
pling between the stress field and atomic motion could 
give rise to a slow instability or metastable behavior in 
constrained systems with negative compressibility, but 
such an effect has not been found. 
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 In the Appendix B we describe a microscopic model 
composed of ‘nodes’ and connecting them identical 
‘bonds’ (or ‘pistons’) whose length depends on force ap-
plied to their ends. The bonds are non-bendable and a con-
straint is imposed on the angles between the bonds – the 
angles cannot change. Hence, the system can change its 
size but has to preserve its shape. Thus, it is a perfect 
auxetic of Poisson’s ratio –1. If the force-length depend-
ence contains a van der Waals like loop then the loop sur-
vives also in the pressure-volume dependence of the sys-
tem, i.e. the isotherm of the system has to contain a range 
where the bulk modulus (and, in consequence, also com-
pressibility) must be negative. Obviously, when the vol-
ume is fixed, the system remains internally stable. 
 
 6 Conclusions To conclude, no convincing case has 
yet been found in thermodynamics that negative com-
pressibility of a constrained solid object is inadmissible or 
unstable. Negative moduli have been inferred from behav-
ior of composites with ferroelastic inclusions. Negative 
compressibility has been measured in constrained slow hy-
drostatic deformation of polymer foams. A simple ‘micro-
scopic’ model has been presented which is internally stable 
at a fixed volume despite of the fact that, for a range of 
densities, it shows negative bulk modulus. 
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Appendix A 

 Simple model of negative thermal expansion In 
Fig. 2a one can see a one-dimensional model with the in-
teraction potential 

2

max min max

min max

( ) ( )
( ) 2

( )

k
r r r r r

u r

r r r

Ï - , Œ , ,Ô
= Ì
Ô•, œ , .Ó

 (13) 

Taking 1k = , 
min

0r =  and 
max

1r = , one can express the free 
enthalpy per particle, g, as a function of external pressure,

p, acting on the system 

B

B

( )
( ) log exp d ,

u r p r
g p k T r

k T

+È ˘
= - -Í ˙

Î ˚
Ú  (14) 

where kB is the Boltzmann constant. 
Remark: As the studied model is one-dimensional, the ex-
ternal pressure applied is just a force acting on the ends of 
the line along which the particles move. When the model is 
generalized to three dimensions the pressure has its stan-
dard interpretation. 
 Differentiating g  versus p  one obtains the length per 
particle 

T

g
l

p

∂
= ,
∂

 (15) 

from which the thermal expansion coefficient can be ob-
tained as 

1

p

l

l T
α

∂
= .

∂
 (16) 

 It is easy to notice that at low pressures, for which the 
average length of the system is larger than 

min max
( ) 2r r+ / , 

any increase of temperature causes better sampling of 
smaller distances in this model, i.e. the thermal expansion 
is negative at such pressures. This is shown in Fig. 2b. 
 

Appendix B 
 An internally stable model with negative bulk 
modulus In Fig. 3a a simple two-dimensional model is 
shown for which the dependence of the force, F , on the 
distance, L , between the centers of interacting nodes (con-
nected by non-bendable ‘rods’ or ‘pistons’) is given by 
(see Fig. 3b) 

1
(0 1)

( ) 1 sin ( 1) (11 2π)

1
(1 2π )

2π

L
L

F L L L

L
L

Ï , Œ , ,Ô
Ô

= - - , Œ , + ,Ì
Ô
Ô , Œ + , • .
Ó -

 (17)

 

  

0.05
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0.15
0.2T

0.2

0.4

0.6
0.8

p

− 2
0
2α

0.05
0.1

0.15
0 2T (b) 

Figure 2 (online colour at: www.pss-b.com) (a) One-dimensional model defined by Eq. (13). (b) Thermal expansion coefficient, 

( )
p

l T lα = ∂ /∂ / , of the model as a function of pressure, p, and temperature, T. 
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Figure 3 For the two-dimensional model shown in (a), if Poisson’s ratio equals 1ν = -  and the length–force dependence of rods is 

given in (b), the energy on volume dependence is presented in (c), and at 0T Æ  the pressure–volume dependence is given in (d). It 

can be seen that a volume range exists, in which the bulk modulus is negative. 

 

 Assuming that the angle between the rods is fixed and 
the rods are identical, one can easily obtain the energy of 

the system at a given volume, ( ) 2
3/2V L= , per particle 

3 ( ) d
( )

F L L

E V
V

-

= ,
Ú

 (18) 

which is plotted in Fig. 3c. Differentiating the energy with 
respect to volume one gets the pressure, p, in the system 

( )
( )

E V
p V

V

∂
= - ,

∂
 (19) 

which is shown in Fig. 3d. 
 The above calculations concern the system at zero tem-
perature. (One can expect, however, that at low tempera-
tures the isotherms of the system will be very similar to 
that shown in Fig. 3d.) If one fixes the volume of the sys-
tem then, because its Poisson’s ratio is equal to –1, no in-

ternal transformation of its structure is possible and it will 
be stable even in the range of volumes where the bulk 
modulus is negative. 
 The number of nodes does not influence the mechani-
cal properties of the above model, so it can be infinitely 
large in any direction. 
 Analogous models can be built in three dimensions, e.g. 
by replacing bonds of a fcc lattice by rods interacting 
through a potential similar to that described by Eq. (17). 
 One can expect that at low temperatures the isotherms 
of the system will be very similar to that shown in Fig. 3d, 
i.e. it will be possible to observe negative bulk modulus  
at some densities, whereas the system will be internally 
stable. 
 

References 
  [1] R. S. Lakes, Science 235, 1038–1040 (1987). 

  [2] K. W. Wojciechowski, Mol. Phys. 61, 1247–125 (1987). 

  [3] K. W.Wojciechowski, Phys. Lett. A 137, 60–64 (1989). 

20 40 60 80 100 120
V

0.25

0.5

0.75

1

1.25

1.5

1.75

2

p

(d)



phys. stat. sol. (b) 245, No. 3 (2008) 551 

 

www.pss-b.com © 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 

Original

Paper

  [4] A. Y. Haeri, D. J. Weidner, and J. B. Parise, Science 257, 

650–652 (1992). 

  [5] R. H. Baughman, J. M. Shacklette, A. A. Zakhidov, and 

S. Stafstrom, Nature 392, 362–365 (1998). 

  [6] E. A. Friis, R. S. Lakes, and J. B. Park, J. Mater. Sci. 23, 

4406–4414 (1988). 

  [7] B. D. Caddock and K. E. Evans, J. Phys. D, Appl. Phys. 22, 

1877–1882 (1989). 

  [8] R. S. Lakes, J. Mater. Sci. Lett. 15, 475–477 (1996). 

  [9] J. Grima, P. S. Farrugia, R. Gatt, and V. Zammit, Proc. R. 

Soc. Lond. A 463, 1585–1596 (2007), see also references 

therein. 

[10] R. S. Lakes, Appl. Phys. Lett. 90, 221905 (2007). 

[11] W. Thirring, Z. Phys. 235, 339–352 (1970). 

[12] D. Lynden Bell and R. Wood, Mon. Not. R. Astron. Soc. 

138, 495–525 (1968). 

[13] D. Lynden Bell, Physica A 263, 293–304 (1999). 

[14] F. Herrmann and H. Hauptmann, Am. J. Phys. 65, 292–295 

(1997). 

[15] J. Bisquert, Am. J. Phys. 73, 735–741 (2005). 

[16] A. R. Imre, phys. stat. sol. (b) 244, 893–899 (2007). 

[17] M. Kardar and D. R. Nelson, Phys. Rev. E 35, 3056 (1987). 

[18]  K. W. Wojciechowski, Mol. Phys. Rep. 10, 129–136 (1995). 

[19] K. W. Wojciechowski and K. V. Tretiakov, Comput. Meth-

ods Sci. Technol. 1, 25–29 (1996). 

[20] K. W. Wojciechowski, J. Phys. A, Math. Gen. 36, 11765–

11778 (2003). 

[21] D. M. Heyes, phys. stat. sol. (b) 245(3), 530–538 (2008), 

this issue. 

[22] Z. Bazant and L. Cedolin, Stability of Structures (Oxford 

University Press, Oxford, 1991). 

[23] E. K. H. Salje, Phase Transformations in ferroelastic and co-

elastic crystals (Cambridge University Press, Cambridge, 

UK, 1990), Chap. 1, p. 5. 

[24] F. Falk, Acta Metall. 28, 1773–1780 (1980). 

[25] R. S. Lakes, T. Lee, A. Bersie, and Y. C. Wang, Nature 410, 

565–567 (2001). 

[26] P. Rosakis, A. Ruina, and R. S. Lakes, J. Mater. Sci. 28, 

4667–4672 (1993). 

[27] B. Moore, T. Jaglinski, D. S. Stone, and R. S. Lakes, Philos. 

Mag. Lett. 86, 651–659 (2006). 

[28] S. P. Timoshenko and J. N. Goodier, Theory of Elasticity, 

3rd ed. (McGraw-Hill, 1970). 

[29] E. Cosserat and F. Cosserat, C. R. Acad. Sci. Paris 126, 

1089–1091 (1898). 

[30] Kelvin, Lord (Thomson, W.), Philos. Mag. 26, 414–425 

(1888). 

[31] J. K. Knowles and E. Sternberg, J. Elast. 8, 329–379  

(1978). 

[32] J. H. Bramble and L. E. Payne, On the uniqueness problem 

in the second boundary value problem in elasticity, in: Proc. 

Fourth National Congress of Applied Mechanics (1963),  

pp. 469–473. 

[33] J. Van der Waals, thesis, University of Leiden (1873); Eng-

lish translation: On the continuity of the gaseous and liquid 

states, edited by J. R. Rowlinson (North Holland, Amster-

dam, 1988), p. 254. 

[34] K. W. Wojciechowski, P. Pierański, and J. Małecki, 

J. Chem. Phys. 76, 6170–6175 (1982). 

[35] K. W. Wojciechowski, P. Pierański, and J. Małecki, J. Phys. 

A, Math. Gen. 16, 2197–203 (1983). 

[36] L. van Hove, Physica A 15, 951–961 (1949). 

[37] A. Münster, Statistical Thermodynamics, Vol. 1, 1st Engl. 

ed. (Springer-Verlag, Berlin, 1969), sect. 4.2, pp. 212, 217, 

218, 226; sect. 4.5, p. 261. 

[38] R. Kubo, Thermodynamics (North-Holland Publ. Company, 

Amsterdam, 1968), pp. 140–147. 

[39] D. C. Wallace, Thermodynamics of crystals (John Wiley & 

Sons, New York, 1972). 

[40] R. S. Lakes, Viscoelastic Solids (CRC Press, Boca Raton, 

1998). 

[41] J. F. Nye, Physical Properties of Crystals (Oxford Univer-

sity Press, Oxford, 1976). 

[42] C. Zener, Phys. Rev. 52, 230–235 (1937). 

[43] C. Zener, Elasticity and Anelasticity of Metals (University 

of Chicago Press, 1948). 

[44] K. Lücke, J. Appl. Phys. 27, 1433–1438 (1956). 

 


