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Abstract. We analytically investigate the stability of a discrete viscoelastic system
with negative stiffness elements both in the time and frequency domains. Parametric
analysis was performed by tuning both the amount of negative,stiffness in a standard

- Jinear solid and driving frequency Stability conditions were derived fiomn the analyti-
cal solutions of the differential governing equations and the Lyapunov stability theorem.
High frequency response of the system is studied. Stability of singularities in the dissipa-
tion tan d is discussed. It was found that stable singular tand is achievable. The system
with extreme high stiffness analyzed here was metastable. We established an explicit
link for the divergent rates of the metasfable system between the sclutions of differential
governing equations in the time domain and the Lyapunov theorem.

1. Nomenclature.
M, g, Mo mass.
K, k1, ko stiffness for positive stiffness elements.
¢, €1, ¢a: damping coefficient.
@, tr, 0y ratio between the two spring elements in & standard linear solid. o = oy when
kg = 0.
71, 7y2: ratio of damping coefficient of a standard linear solid to that of a damper parallel-
connected to the standard linear solid, ie, v =gn/e
§: phase angle. Define tand = I(k*)/R(k*), where k¥ denotes the dynamic complex
spring constant.
K1, ko' ratio of stiffness of the series spring in a standard linear solid to that of a spring
paraliel-connected to the standard linear solid, i e., & = y/k.
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Fi¢ 1 Spring-mass system, one degree of freedom {dof}.

Y, Y1y Y2, 2, 21, 22: stiffness for standard linear solid elements, to be tuned. Y1 = K1k1,
Yo = Kok, ¥ =1, 2 = 21,

7 T, "2t damping coefficient for standard linear solids. =761, T2 = Yale, B = 1.
%, u1, uz: displacement coordinate of & node.

U %’;—‘

F, F1, F: applied force at a node.

w, £ frequency.

H: Hamilionian h

D: differential operator, 3‘%.

h: superscript, homogeneous solutions of a differential equation.

p: superscript, particular solutions of a differential equation.

subscripts: labels of components in a model. '

2. Introduction. A bulk solid object of negative stifiness materials is not stable.
However, it might be possible to create a stable configuzation for composites with a neg-
ative stiffness component embedded. Extreme material properties and stability-related
issues have been repotted in [3]-[6] and [11)-[14]. Here, we first review the stability of a
simple discrete mechanical model, a spring-mass system, to mathematically demonstrate
its internal stability {9] and the stability under external excitations. Then we investigate
the stability of systems with negative stiffness components. This single degree of freedom
(dof) system is shown in Figure 1.

By Newton’s second law, the equation of motion is

m'&+ku:F, (1)

where m is the mass, k the stiffness, u = u(t) the displacement, and F' = F(t) the external
driving force A superdot indicates the derivative with respect to time. The solution of
the equation of motion in the time domain is as follows. Assume F = P+ Acos i and
P and A are constants.

‘ U=t yP (2)
where the homogeneous solution u® = Ce™? + Che?*t. where A2 = fiw and w? = k/m,
and C1 and C; are constants $o be determined by initial conditions. As for the particular
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solutions, »P, one can express them as follows.

P Acosilt

Pom — e 0 # w 3
y % + o cRm when #w (3
uF = P + —t—A sin(t, when Q=w. (4}

E 20 ’

It is clear to see that instability occurs only when £ = w, due to time-growing be-
havior in its particular solution. Therefore, from this time domain analysis, the stability
eriterion is that the system is stable when O # w. This stability criterion can also be
obtained through analysis in the frequency domain. Applying a Fourier transform on
Fq (1), one converts the governing equation into an algebraic equation, as follows

i 1

FTomA Tk )
The instability of the system occurs only when w? = k/m, which is consistent with
previous results from Eq. {4) Furthermore, the results indicate that the system Is
internally stable when F = § and k/m > 0. Moreover, the system is also stable when
k < 6 and m < 0. For k/m < 0, there are no oscillatory sclutions for the system, only
real cxponential ones. Hence, it is internally unstable.

The internal stability is the stability of a system under no external forcing. However,

in some cases, it is important to investigate a dynamical system with time variables
explicitly (i.e., non-autcnomous systems), such as flutter analysis. A general method for
attacking this problem is to consider the time variable as an ordinary spatial variable [10].
However, by doing so, the Lyapunov indirect method will not be snitable for stability
analysis since it is local. The Lyapunov direct method can be applied, but stability must
be checked at all times in the time domain [8]

Alternatively, one can rigorously derive the stability criteria of a mechanical system
by using the so-called extended energy method [7]. Using the system depicted in Eq. (1)
as an example, we first tewrite the equation of motion for the system as follows.

G+ wq = écosﬂt ' (6)
m
wheze g = g(t) is the generalized coordinate, «? the ratio of & to m, and () the driving
frequency. ¢(t) is different from w(t) in that the latter contains the contribution from the
dead load P. The total energy of the system can be calculated as follows.

E*/t("+ 2 —Acos&'lt)'aﬁt—1'2—1—1%12 2—~/£(Acos$'2t)’dt (7)
= [ lrete- o qdt = 54" +gw'e = | (T gdt.

It is clear to see that the energy is not a first integral of the system. From Eq. (7), it
is understood that the Hamiltonian and non-conservative force can be written as follows.

Lo 149
1, 1 8
H 2p+2wq, and (8}
N———écoth. ' (9
m
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Hete p = 4. Define ¢ = ¢{g,1,}}) = dFE, and, for £ = E(g,p,52), the explicit
representations of ¢ and d¢ are as follows.

oH BH dp
=2l Nt+G=0, G=2-% 10
¢= dq Op dg 10
o4 8¢
d¢ = B ——dg + ‘5:\*(1/\ + —dQ 0 (11}
or

O*H 8N oG 96 8N o1 ON

Yo " a7 T a0 G TP Gagg a0 (12)

Here M is the characteristic frequency of the system. In the present case, A is chosen
to be 02, and € is the control parameter in the stability analysis, which means the results
of the stability analysis will indicate a specific value or region for ) $0 make the system
unstable. In order to calculate ¢ in terms of A explicitly, we assume the solution for ¢ as
follows

q= Beos(At + @) = Beos(Ot + &), (13)
Here B and & are to be determined. Consequently, p can be found as follows.
p=gqg=-BQsin{+ D)= -0/ B2 42 {14)
Thus, the G in Eq. {12) can be calculated as follows. =
dp
G= /B2 — Qﬂ 2
P = (- 2)(- 5 \/Bg— =% (15}

When the instability occuis, dg/dg = co. The instability occurs when the following

equation is satisfied
9?’H O8N  8G
T

Clearly, Eq (16) suggests the system is unstable only when the driving frequency is
equal to the natural frequency of the system, as expected.

The above results can be generalized to the problem with many degrees of freedom.
With external excitations, a systemn becomes unstable when the driving frequency co-
incides with one of the natural frequencies of the system. Ilowever; the system can be
stabilized in the sense that no unbounded responses occur when damping elements are
included. Without driving force, the system is internally stable when both mass and
stiffness are positive or negative. Following the similar spirit in Egs. (2)-(5), we explore
the stability of the 2-dof viscoelastic models, shown in Figure 2, with negative stiffness el-
ements under external excitations, and cross-link our results with the Lyapunov indirect
theorem.

=0, or w-¥=0 . (16}

3. Equations of motion. The mechanical system considered here is shown as Figure
2(a}, in which the left module is called element 1, and the right one is called element 2.
Figure 2(b) is a simplified version of Figure 2{a), intended to be used in later parametric
study. The subscripts indicate to which module a component belongs. The mass points
my and mg are called node 1 and node 2, respectively. Following Newton’s second law,
the equations of motion of the mechanical system can be expressed as follows.
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Fig. 2 (a) The 2-daf viscoselastic model (b) The simplified version

of (a), used in parametric study
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et 22 )4 )-( 8 Yo

where
] 2
i+ Y1.€1 | = 1N U Yiric (18)
Y1+ s ¥+ ¥+ oin
2

Y2C2 i XYz Yeyzcz . .
f2+ f2: g — U} ————— (U2 — U1 ), 19
Yo + qoys Y2+ 052?;2( ) Y2 t+ azyg( ) (39)

are the constitutive equations for the internal force and deformation in the standard
linear solids (i.e, the gy —m — 21 o1 Y2 — Nz — 22 module}. The symbols f1 and fo
denote the internal force in the standard linear solid elements Also, we define y; = sk,
7 = K6 and z; = agy;, where ¢ = 1,2, to facilitate our later parametric study.

3.1. Solutions in the freguency domain. Investigating the solutions of the equations is
helpful in understanding the 1esponse of the systems at different frequency. After Fourier
transform, the governing equations of the system, Eqs. {17)-(19), can be converted into
the following algebraic eguations. -

2(2)-(2) g

where
T - ~w?my 4+ ky ko +iwle o) Hdi +Hdy ~(ks +dwes) — dp (21)
a —(k;g + iwCQ) —dy —~w2m2 +kytiweg+d |’
244 :
Yy T wne
2 .
dy = cys 1 wyrrats (23)

Yg + ol + iwyels

1t is noted that the determinant of the coefficient matrix, Eq (21), dominates the
boundedness of the displacement responses in frequency domain. In other words, if the
coefficient matrix becomes singular, the system will be unstable in the sense that finite
input produces unbounded ocuiput. However, it is not required for T fo be positive
definite for stability We remark that for gyroscopic systems. T is not symmetric, as
discussed in [1], {2], [7] and 1eferences therein. One usually encounters gyroscopic systems
when follower forces are considered. Cur system is not gyroscopic. The effective complex
compliance (je55) and effective stiffness (k.5;) can be caltulated at a specified frequency
as follows.

Uy

Jets =Jegs T ety = = and (24)
2
F

kops = hips +Kipp = = (25)

g
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The effective tan d is defined as follows.

k j.H
tand = £, or tané = 2L (26)
ef f defs

For the special case my = mg =0, 1 = €2 =0, yo = 0,k = 10, and kp = 5 kN /m,
the overall tané can be obtained from tand = h/g, where

h(y, z,m,w) = Swny A%, (27
gy, 2,7,w) = (W7 + 2w + (y + 2)7) + 2By(wn? + 2y + 2))A% + 15057 4%, (28)
A=i4 2420 (29)

y oy

Here z = ay  Choosing zero masses is done to reduce some mathematical complexities,
and at the same time, simulates a composite material in the continuum sense. This is
the special case studied in [13]. Later, we will discuss some interesting singular behavior
of the overall tané for this special case.

3.2, Solutions in the time domain. The general solution of Eq. (17) in the time do-
main is quite complicated. For the purpose of demonstrating extreme properties of the
mechanical system due to a negative stifiness element, we assume ¢z = 0, k2 = 0, and
~g = 0, as shown in Figure 2 (b). One should be aware that artificially setting material

_properties to be zero causes certain degrees of degeneracy in solitions. We will point
out the effects of degeneracy along with our derivation. The governing equation can be

expressed as follows.
iy 0 ‘h‘,l C] & )&rl
0 ma 153 oo ity
kit+he —ko Uy hy_[ A
{_ ~ky ko w ) T\ e JT\R) (30)
To decouple the above equation, one multiplies the inverse of the stiffness matrix {non-

singular stiffness matrix is assumed} on the both sides of the equation, and then obtains
the following.

B hhem U2,
10 ul) b L5

+ + B )= 1 (31

o210+ (8)-(BrRes o

It can be seen thab the above equation is not fully decoupled yet. However, if one
makes a further assumption that m; = mp = 0, the equations can be decoupled as
follows.

1
u1+—ul~’r Il==—-(F1+1*23), (32)
i31 €1 5]
B ktk
it By LB thp (33)

51 a0 ciks
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where
—y1litag)it oy M&J\L
fi=e m [](’TC uy + it )e + f1{0) (34)
1C1

The zero mass assumption is implemented in later pumerical study by assigning my =
me = 1078 Also, the assumption is legitimate in our study since the analysis is intended
to model composites in the continuum sensc. Note again, by deoing so, m-degeneracy
is unavoidable. Appendix A shows the effects of the m-degeneracy through a 1-dof
example. Fg. (34) is the solution of Eq (18). f1{0) is the initial condition, equal
to you1(0). Observing Eq. (33), it can be found that the solution of us is completely
determined by that of uy, as in Eg. {35} From now on, we assume F) = § throughout
the 1est of the analysis. The physical rationale is to simulate the mechanical behavior
of two phase composites, in which the interface between the two phases has no external
force applied independent of the solid phases.

¢
—kqt k .J.‘_
g = 8_‘11_ [/ ( ! fl )6 €1 {ﬂ +u2(0) (35)

As for the solution of ), one infroduces Eq. (34) into Eq. (32), and differentiates
hoth sides of the equation with respect to time to eliminate the integral from fi.

l+as),.  kp(i+a ? 1+
ety F (k1 + 1 +M)u1+(m__ﬁ4,m) _nit 0!1)

. Uy = N+ By (36)
T T1rC1 Mo Y161

Eq. {36) is a second-order constant coefficient ordinary differential equation with non-
homogeneous (o1 forcing) terms. Let Fo = Py + Agcos{st; one can find the general
solution as follows. % and A a1e pre-chosen constants.

w = u o, 37
= G 4 o, o9
where
2
*_(kl ‘it M) + (k}l +w + El.(._l.jf.l,)_) 4(k1y1(11~a1} aryd )
e = - B, (39)
‘ 201
p o wnllta) | 1 A M=o O
uy T A]AZPz + Q%+}«§( T EDY; 08 Lot -+ _—Q% Y, sin (2at)
1 ,
B (40)

T D -2)D )

Hete, D is the differential operator, defined as d/dt. In the solution, C and Cy
are constants to be determined by initial conditions, and the particular solution can be
carried out more explicitly. However, it is enongh for stabitity discussion.

~ Observe that if ¢; = 0, the solution of Eq. (36) is

_ —k!y1(1+&1)—aly F2 loy g (14oey J ey ¥e
Yy =€ M T [ Py e~ kit dt 4+ uq(0)|, where kit #£0
1

(41)
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Consequently, following Eq. (33),
k] + ko fl
= oo 1t
kiky 2 Ry
where fi is determined by Eq  (34). It noted that when ki + 1 = 0, 4, becomes
unbounded, and so does us consequently. Based on the solutions for the displacements,
Eqs. (34) and (41), one can define two time congtants, as follows.

(42)

n{k1 + y) o
T hy(l+ o)+ ag? for . (
= 5("1“??165’ Jor uy (44)

It is noted that Eq. (43) is the relationship between the time constant and the rate of
overall divergence for the system, as discussed in (14] by using the Lyapunov indirect
method. As for cl # 0, the solutions of Eqs. (32) and (33) are more complicated, and
can be shown as follows, when F, = (.

1 = () eht + Cg&Azt + HT; and {45)
BTN A
—ugze?ll_ [/ (~—1—+—L—>-F2 fl)e £l dt+u2(g)J {46)
o Cks €
where
ii(lta e +a Eyyi(1+en) , oud
. ey 4y 4 Y (71?4 ‘}}:i:\/(h oy + 191(; 1)z —401(%-——-,- y )‘
1,2 T
(47)
-u (1+a ¥ ¥flteyl
h= { ("iui totn)e 0 dt+ fy (U)] : (48)
Similarly, time constants for the solutions can be defined as follows.
To = ——% and T = —é, for (49)
M (50)
AL for wuy.

If the time constant is positive, the solution, corresponding to the relevant degree of
freedom, is exponentially decaying. Negative time constants indicate instability. The
applied force (F) and particular solution (u?) do not change the boundedness of the
solutions if F, is a bounded function with respect to time.

4. Stability analysis. It is understood that the Lyapunov indirect method, or
Routh-Hurwitz criterion, for stability analysis is based on a first order approximation. In
other words, if a system fails the stability test with the Lyapunov indirect method, the
. response of the system is unbounded under infinitesimal perturbation. However, the rate
of divergence may be controllable. For the mechanical system, as shown in Figure 2(b},
one needs to find the eigenvalues of the Jacobian matrix of Bq. (51), which is derived
from Egs. (17)-(19) through the state-space technique [8] with <2 = 0 and v2 = {. Then,
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by tuning the parameters y, 7, and &, we identify that the regimes containing eigenvalues
with positive real part are unstable o is a dimensionless parameter, defined as o = z/y.

i 0 1] 1 0 0 ay )
fig 0 0 0 1 0 ua 9
.. kit+ky & 1tez 1
in =| = m— __ch —c"i —m v |+ f:‘l- . (51)
b, & k& A g B
k -m,% 2 (%) 2 sl te il
ey’ ~
f L0y 0 - [Ny 0

However, since the solutions for the system, shown in Figure 2 (b), have been explicitly
derived, as expressed in Eqs. (41) and (42) for ¢; = 0, or Egs. (45) and (46) for ¢; £ 8,
one can examine the stability of the system via the boundedness of the solutions as time
approaches infinity Direct investigating the boundedness of the solutions is equivalent
to Lyaspunov inditect method for stability analysis. The major benefit of investigating
the solutions in the time domain is that the stability analysis can be done in a more
transparent manner. Later, in our parametric study, we directly solve the eigenvalues
of the Jacobian matrix in Eq. {51} It has been identified that the time constant in
Eq. (43) is 1esponsible for the only eigenvalue with positive real part in the Jacobian
matrix, as discussed in [14]. In the following, we derive stability criteria on the physical
quantities of our model from the solutions in the time domain. First, for ¢; # 0, fiom
Eq. (46}, the conditions for us to be bounded are as follows.

(a) k1 /c1 > 0, so that there will be no exponentially growing behavior due to ug(0).

{b) fi1(t} and F(t) need to be non-exponentially giowing functions, such as constant,
trigonometric functions, or exponentially decaying functions.

In contrast, when ¢; = 0, from Eq (42), Condition (a} does not exist for uz(t) to be
bounded Furthermore, even in the case ¢ # 0, since we assume that k; > O.and ¢; > 0
throughout, Condition (a) is trivial. Since F} is the only applied force, one can artificially
set it to satisly Condition (b}, The behavior of fy(¢) needs further investigation. From
Eq. (34), it can be determined that the following conditions must satisfy Condition (b).
(c}y >0and @ > ~1, or y < 0 and @ < ~1, so that there will be no exponentially
growing behavior due to f;(0).

{d) u1(t} and 4;(t) must be non-exponentially growing functions.

In order to satisfy Condition (d), one needs to look into the solution of u;, Eq. (45),
carefully. It can be understood that the particular soluticn of 4; will be bounded if Fa
is bounded and the driving frequencies are not equal to the resonant frequencies of the
system (rigorously speaking, it is not the conventional resonant frequencies (~¢ /K/M ),
but Ay and Ag; see Eq. (47}). As for the homogeneous sclution of u;, one can derive the
stability conditions from Eq. (47) as follows, with the definition of y = xk. One of the
following two conditions is enough to ensure the stability. _

() 1+ 5+ 5028 > 0 and (14 5+ 4te)y — 4 4 ety <
() 1+ n+ =032 5 g and (221e) 1 er?) 5 g

For the second equation in Condition (e}, we have checked that & does not have
purely real-mnnber solutions in & = —100 to 160, for v = 1,16,100,1000. Theiefore,
we conjecture that the inequality cannot be satisfied for a wide range of a, &, and 7.
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Consequently, Condition {e) will not be satisfied. Further analysis shows that Condition
{f) can be replaced by the following two conditions
(flyx>0ande>-%~—y—-1orx <0and o < —% —y—1, for the first inequality in
f).
(2 s >0andor+a+1>0,00 -l <k <Dand o< g4, 00 k< —land o > —73,
for the second inequality in {f).

Conditions (f!) and (f2) have to be satisfied simultaneously to fulfill Condition (f). In
contrast, when ¢, = 0, from Eq. (35}, Condition (e} is not necessary, and Condition (f)

must be replaced by the following one.

ky(l+a)+ay®
(&) i(n(:ﬁy) = >0
Condition (g) can be further simplified as follows, with the definition of y = xk, when

kin >0
(g)1+x>0and ar® +ok+a> 0,0t L4k <0and ar? +an + 5 < 0.

It can be shown that Condition (g') is equivalent to Condition {f2). In the case fox
y < 0 (negative stiffness in the standard linear solid element), Conditions (¢}, and (e}, o1
Conditions (¢)o, {f1), and (f2) must be satisfied to ensure bounded responses, as shown
in Figure 3, the shaded area as an example of stability regimes with a negative stiffness
element. The first quadiant of Figure 3 also indicates stability, corresponding to positive
stiffiness for all the elements.

"7 5. Discussion. It is noted again that the parametric study here and in the following
is based on the model shown in Figure 2(b). The stability map, as shown in Figure 3,
is valid as long as the driving force, F;, is a non-exponentially growing function and its
driving frequency is not the natural frequency of the system. The dotted line indicates
the asymptote of the stability boundary. From the stability analysis above, one can
identify the stahbility regions as follows.

(I) k > 0 and o > § (not interesting, since positive stiffness for all the elements),

() -1 < s <0and a < -3, and

(III) « < ~1 and @ > — 1=, depending on .

The shaded area is the stable 1egion foi any +v. For the c-degenerate case, le, c=0, v
must be set as large as possible to maintain finite %, the damping in the standard linear
solid. In this case, case {IHI) does not depend on +y any more. However, it does not
mean that the region, & > —ﬁ, is stable because of Condition {c). This result implies
that if the response of the system at node 1 is stable, i.e., bounded, then that at node
2 is stable, as well 'Thus, the trajectories of the symbols, solid square and open circle,
coincide. One is the stability boundary and the other is the frajectory causing infinite
compliance with ¢ = § and » = 0 for the 1-dof case, i.e,, ko = 0, 12 = 0 (see Eq. (63) in
Appendix B). As will be scen later, to achieve extreme high stiffness, one needs to be in
the region where k < —1. .

Figure 4(a) shows the guasi-static response of the model in Figure 2{b) with respect to
the negative stiffiness element (y). The highest compliance at y = —1.6 kN/m is 1reached
simultaneously for nodes 1 and 2 due to stiffness neutralization in Element 1. The lowest
compliance (i.e., highest stiffness) occurs at abont y = —2.6 kN/m. The real part of the

compliance of the system at node 1 is negative when y < —1.6 kN/m, and that at node
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Fic 3 Stability map for @, ~, and x, based on the sclutions of
governing differential equations in time domain. The shaded region
and the first quadiant (i.e, & > 0 and o > Q) correspond to stability.

2 is negative when —2.6 < y < —1.6 kN/m. The stability analysis based on Lyapunov’s
theorem shows a stable regime, as indicated in Figure 4(b). Since « is negative, the role of
the negative stifiness element switches between the y- and z-springs, again by definition
2 = ay Thus, the system becomes unstable when y > 0 and y < —1.6 kN/m. The
parameters n and w are assumed to be 0.0001 kN-s/m and 0 rad/s, respectively, in both
Figures 4 and 5. It is noted that for such a small viscosity #, a standard linear solid with
no negative stiffness elements has a time constant (7 & viscosity/stiffness) on the order
of 1072 seconds, if the stiffness of spring elements is about 10 kN/m. Consequently, the
Debye peak for the tand of the standard linear solid will be at a frequency of about 10°
rad/s. In Figure 5, we plot the compliance curves and the stability-losing eigenvalue with
respect to the negative stiffness (y), for different o's. Tt can be seen that the spacing
between extreme high compliance and stiffness can be reduced by increasing «. But,
the distance cannot be reduced arbitrazily much, as can be seen for large o’s. Also, the
stability-losing eigenvalue has larger magnitude, indicating higher rate of divergence, ie,,
more unstable, for lazge . It is noted again thai the stability boundary from previous
analysis is at extreme high compliance.
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Fig 4. Quasistatic behavior: no inertial terms  (2) Compliance,
R(E1 /) and R(42/ 5}, on a linear scale (left) and absolute com-
pliance, (@1 /Fy| and [G2/F2| , on a logarithmic scale {right) vs ¥
with w = 0 and o = —1.2 (b} OveraHl compliance and the stability-
losing eigenvalue vs y with w = 0 and & = —1.2. We define z = ay, :
where ¥ and z are stiffness in Figure 2 (b) with o1 = ¢ The unstable it
branch for y > @isdueto o < 0
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Fic 5 Quasistatic behavior: no inertial terms. Effective compliance
(liessl} vs. negative stiffness (y) in the purely elastic limit with
different. o's & = 10,ks = 5 kN/m, my = mg = 10-28 kg, n =
0.0001 kN-s/m and w = 0 rad/s We define z = ay, where y and
z are stifiness in Figure 2 {b) For clarity, compliance curves are
separated by multiplying by a constant.

In Figures 6, 7, and 8, we show the high frequency responses of the system under the
influence of negative stiffness with 5 = 0.0001 kN-s/m and a = —5. All peaks are struc-
tural resonant and anti-resonant frequencies. The purpose of studying high frequency
responses is to understand the process of neutralization due to negative stiffness. Figure 6
shows the frequency response of compliance at discrete negative stiffness in y It is noted
when y = —15 kN/m, there is no anti-iesonant-like behavior In Figure 7, the peaks are
also structural resonances for high frequency responses. Tt shows that the anti-resonant
pesks (high stiffness) move to the low negative stiffness regime (i.e., in the stable zone,
if negative stiffness is low cnough), as driving frequency increases. Excessive negative
stiffness makes anti-resonances disappear. From Figures 6 and 7, it also can be seen
that by tuning either frequency or negative stifiness, one can alter the spacing between
resonant and anti-resonant peaks, or even flip their order of appearance with respect to
frequency or negative stiffness. We emphasize that at the low frequency limit the up-
ward or downward peaks in compliance are not structural resonant phenomena, but at
high frequency the peaks indicate the natural frequencies of the system. The shift in the
natural {requency is due to cancellation in overall stiffness. The stability analysis of the
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F16. 6. Dynamic compliance vs  trequency with different negative
stiffness () in units of kN/m. my =my = 103 kg k1 = 10kz =35
KN/m, o = —5,1 = 00001 kN-s/m_ Absclute compliances at node
1 and node 2 are caleulated from }i; /Fs| and 153/ Faj, respectively.
The symbol |5] denotes compliance either at nade 1 or node 2. Based
on Figure 2(b) with ¢; = 0 The upwaid and downward peaks are
structural resonances and anti-resonances, respectively Thin solid
lines are the compliance at node 1 and thick ones are the eflective
compliance of the system For clarity, curves are separated by mul-
tiplying by a constant

systent driven at 25k 1ad/sec is shown in Figure 8, with respect to negative stiffiness. It
shows that the extreme high stiffness (y = —7 kN/m) is located in the stable regime. The
result is not too surprising physically, because one can easily obtain extreme dynarzical
i stiffiness due to the structural anti-resonant response and negative stiffness plays a role to
' shift the structural anti-resonance, but the metl{odology is based on Lyapunov’s indirect
' ’ theorern. Again, the instability in the regime y > 0 is due to o < 0. When y < —7 or
| : y > 0, eigenvalues split. The eigenvalne whose real part is greater than zero causes the
' syster to be unstable, as discussed in [12].

In Figire 9 (), we plot the h and g function in Egs. (27) and (28) to demonstrate
the singularities in tan é. This phenomena have been reported in [13] and [14]. Here, we
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Fig. 7. Dynamic complience vs y with different frequencies Fre-
quency is in units of 10° rad/sec. m1 = mp = 10-8 kg & =
10,k2 = § kN/m, & = —5, p = 0.0001 kN-s/m. Absolute compli-
ances at node 1 and node 2 are calculated from [&; /5| and [Ga/Fyf,
respectively. The symbol |j| denotes compliance either at node 1 or
node 2. Based on Figure 2(b) with ¢; = 0. Peaks indicate strue-
tuzal resonances for high frequency responses. For clarity, curves aze
separated by multiplying by a constant.

mathematically investigate the behavior of tan § under the influence of negative stiffness.
It is noted that in this analysis, we set z = 5 kN/m and w = 1 rad/sec. As seen, when 7
is small (less than about 0.4 kN-s/m), there aze two zeros in the g function, indicating
two singulazities in tand, since the A function is finite, in the negative stiffness range
plotted When 7 is large, the singularities in tan disappear and the tand curve appears
as a hump, as reported in {13] ard [14]. In Figure 9 (b), we show that the stability
boundazry, calculated based on Lyapunov’s indirect theorem, coincides at the right hand
side of the fitst zero (from the origin) in g. It indicates thét the singularities of tan§ are
located in the unstable {or metastable} regime. However, in a limiting case, as n — 0,
one can achieve stable singular tané.

6. Conclusions. We rigorously derive the stability criteria for the 2-dof viscoelastic
system containing a negative stiffness element. The stability conditions derived from the
time domain solutions of the differential systems are good for the response of the system
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Fi¢ 8 Routh-Hurwitz sigenvalues and dynamic compliance vs. g,
at w = 25k rad/fsec. my = maz = 1078 kg ky = 10,ky = 5 kN/m,
o = --5, = 8 0001 kN-s/m. Based on Figure 2(b} with &g =0 The
unstable branch for y > 0 is due to o < §.

at any fiequency. Stable extreme stifiness at high frequency is demonstrated. Stable
extreme tand at low frequency is verified. In the low frequency limit, the system shows
stable extreme high compliance and metastable extreme high stiffness

7. Appendix A: A case of m-~degeneracy. The purpose of this appendix is to
demonstrate the effects of c-degeneracy and m-degeneracy We consider the 1-dof vis-
coelastic model, as shown in Figure 10. The governing equation of the system can be
expressed in the state-space representation, as follows.

1 0 1 g - @ 0

s =1k & -=x flv )+l E] (52)
. b3 o

f gg_ y *y(l_;-l f 0 .

It is understood that the characteristic equation of the Jacobian matrix in Eq. (52) is a
complicated third-order polynomial. The solutions of the characteristic equation are the
eigenvalues for the Lyapunov stability analysis. However, for ¢ = 0 (c-degeneracy), one
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Fig 10. One-dof viscoelastic model
can write down the simpler characteristic equation as follows.
1+ k 2 1
)\3+u,\2+(_+£))\+9§_+ng_ (53)
7 mom mn mn

However, if one further assumes m = { (m-degeneracy), the characteristic equation
becomes '

k{ar? + ar + k)

M1+ k)
As seen, from Eq. (53) to (54}, the numbers of roots of the characteristic decrease from
3 to 1, which means that there is some information missing for stability analysis due to
degeneracies.

(54)

8. Appendix B: Further demonstration through a I-DOF viscoelastic
model. The purpose of this appendix is to show the statement made in the first para-
graph in the discussion. Consider the mechanical model shown in Figute 16. The corre-
sponding governing equations in time domain are as follows, when m = (.

ku+ci+ f=F (55)

n : yz un .
f y-l— Zf y+ Z y+ Zu, . ( )

where y = &k, z = axk, and n = ~y¢. The symbol f denotes the internal force in the
standard linear element. Through Fourier transform, the governing equations in the
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frequency domain are
(k+ic)i+ f = F, (57)
(y+ 2 +iwn) f = (yz + iwyn) (58)
Cne can calculate the effective compliance as follows.
U A B
4 _ i 59
FoOAT B ATLBY (59)
where
ol + o) + w252
A=k+ki————— 60
TR e v et (60)
_ ¥
B =wefl + AT a7 o5 ), and . (61)
o=k ks, B=n/y,y=n/c (62)
For c =n =0, ie, B =0, the extreme (infinite) compliance occurs at A =10, ie,
14+a -
y=-—= (63)

For a fixed k, one can draw two hyperbolic curves on the o — y plane. To derive the
solution of Eq. (55) and {56) in time domain directly, we first rewrite the governing
equation in the following way.

(1+a)

ky(l+ ) +3y_2) y(l + a)

ci+(k+y+2 k(5 R BT
The general solution of BEq. (64) is as follows
u=u" 4 ¥ (65)
The homogeneous solution is |
wh = CheMt 4 Cheet, (66)

whete £ and € are determined by initial conditions and

—(k+y+ Ei,l_;j‘il) + \/(k oyt 24(1:&})2 - 4(?634(1:&1 + Qqﬂ)
- (6

The positive 1eal part of X's indicates that the homogeneous solution, u?, becomes un-
bounded as time increases, which is unstable in the sense of Routh-Hurwitz In order to
obtain stable (non-growing) solutions, one of the following two sets of inequalities must
be satisfied, for k¥ > 0. Let y = xk and ¢ # 0. '
(B-1)1+x+ 5&1;’—"‘) >0and (1+«+ ”(1,}"“))2 — a(slted | QTKQ) < 0. It is conjectured
that the second inequality will not hold for a wide range’of «, v, and .
(B-2) 145+ =% 5 0 and (£42) 4 axly 5 g

As seen, Condition (B-2) here is the same as Condition (f) in the 2-dof case. Figure
11 shows the compliance curves, based on Eq. (59), and the results from Lyapunov’s
stability analysis. It shows that if the ameunt of negative stiflness is more than that
corresponding to the highest compliance, the system will be unstable. Since negative o
is used in the graph, there is another unstable branch when y is sufficiently positive.

A =
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Fic. 11. Gompliance and eigenvalue analysis of the 1-dof system in
Figure 10.
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