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Abstract: In this paper, two new 2D re-entrant topologies with negative Poisson’s ratio are 
presented and their mechanical properties (Poisson's ratio and energy absorption capacity) are 
studied using finite element method (FEM) as a function of geometric parameters. The first 
topology (model 1) was constructed by adding two sinusoidal shaped ribs into the classical 
re-entrant topology, while the second topology (model 2) was made by introducing extra 
vertical ribs to reinforce the sinusoidal shaped ribs. Simulation results show that model 1 and 
model 2 topologies can reach a minimum value in Poisson's ratio of -1.12 and -0.58 with an 
appropriate geometric aspect ratio, respectively. The energy absorption capacities of model 1, 
model 2 and classical re-entrant model were studied at various compression velocities. 
Enhanced energy absorption capacities were observed in the two new re-entrant topologies 
compared with the classical re-entrant topology. Model 2 exhibited the highest energy 
absorption capacity and a highest plateau stress. The plateau stress of model 1 was about half 
that of model 2, and when the compression velocity is more than 20m/s, the plateau stress of 
model 1 became lower than that of the classical re-entrant model. 
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1. Introduction" "
Cellular solids, including engineering honeycombs and foams, are widely used in many 
structural applications due to their unique properties, including high strength to weight ratio, 
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energy absorption, and diffusive transport properties. The mechanical properties of a cellular 
solid are determined by its topology, the properties of the solid material from which it was 
made, and its relative density (mass of the cellular material divided by that of the solid 
material from which the cellular material is made) [1]. Researchers are trying to improve the 
mechanical properties of cellular solids by developing new topologies. In recent years, 
auxetic honeycomb structures with negative Poisson’s ratio have attracted numerous 
attentions. For a linear 3D isotropic material, the Poisson’s ratio is bounded to a range from 
-1 to +1/2 due to thermodynamic stability [2]. In contrast, for a 2D isotropic material, the 
range of Poisson’s ratio is from -1 to +1 [3]. Indeed, honeycomb with regular hexagonal cells 
has a Poisson's ratio approaching +1 in plane [1]. For both 2D and 3D anisotropic materials, 
the Poisson's ratio c is unbounded [4a, 4, 5]. It has been shown that auxetic honeycombs 
exhibited improved mechanical properties over conventional honeycombs [6-12]. Cellular 
solids can exhibit negative Poisson's ratios if the cell walls have an inverted bow-tie shape 
[13, 14], and such a topology is regarded as a classical re-entrant topology. Negative 
Poisson’s ratio behaviour has been observed experimentally in polymer gels near phase 
transitions [15, 16], in orthorhombic alloy in a set of planes [17], in ferroelastic ceramic [18] 
and InSn alloy [19] near phase transformations, and also in certain in-plane directions in 
designed 2D and 3D structures [20-29]. However, the stiffness of re-entrant honeycombs is 
lower than that of the traditional honeycomb counterparts because of the structural geometry 
[30], as a result, there are limited structural applications of re-entrant honeycombs where 
structural stiffness is of the top desire [31]. Lu et al. [32] proposed a new topology concept by 
adding a narrow straight rib into the unit cell of classical re-entrant structure to improve the 
structure stiffness. The narrow straight rib is placed in such a way to connect the two concave 
vertices of the classical re-entrant unit cell. However, too high a stiffness reduces the auxetic 
response of the new topology.  
 In the present study, two new 2D re-entrant topologies with enhanced auxetic responses 
are introduced. Their Poisson's ratios and energy absorption capacities are studied using FEM 
as a function of geometric parameters. The first topology (model 1) was constructed by 
adding two sinusoidal shaped ribs into the unit cell of classical re-entrant topology, while the 
second topology (model 2) was made by introducing extra vertical ribs to reinforce the 
sinusoidal shaped ribs. Simulation results show that model 1 and model 2 can reach a 
minimum value in Poisson's ratio of -1.12 and -0.58 with an appropriate geometric aspect 
ratio, respectively. Enhanced energy absorption capacities were observed in these modified 
re-entrant topologies compared with the classical re-entrant topology. Model 2 exhibited the 
highest energy absorption capacity with a highest plateau stress. While, the plateau stress of 
model 1 was about half that of model 2, and when the compression velocity is more than 
20m/s, the plateau stress of model 1 became lower than that of the classical re-entrant 
topology. The topologies proposed here could provide new opportunities for lightweight 
sandwich panel and energy absorption applications. 
 
2. Materials and methods 
Two types of modified re-entrant topologies with negative Poisson’s ratio are developed in 
the present study. The unit cell of model 1 topology, as shown in Fig. 1a, is constructed by 
adding two sinusoidal shaped ribs with a length of period T and a peak-to-peak amplitude of 
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h1 into the unit cell of the classical re-entrant topology [33]. Its geometry is defined by its 
height, H0, length, L0, and the depth of concavity, l1, which determines the degree of 
re-entrant structure and behaviour. We define H0=L0 in the present study. Periodic packing of 
the model 1 unit cell creates a 2D re-entrant cellular structure as shown in Fig. 1(b). The unit 
cell of model 2 topology was created by introducing two vertical ribs of height h2 into the 
unit cell of model 1 topology to serve as a reinforcement for the sinusoidal shaped ribs. 
Model 2 topology unit cell and the corresponding structure are shown in Fig. 1(c) and 1(d), 
respectively. A parameter, α=(h0−h2)/H0, was defined to determine the level of buckling of the 
introduced sinusoidal ribs. It is noted here that we keep the relative density the same for 
different types of re-entrant lattice structures by varying the wall thickness of the truss 
members, while all the truss members have the same wall thickness for a specific type of 
re-entrant lattice structure. 
It will be shown later that Model 1 re-entrant lattice structure gives rise to the strongest 
auxetic response when α = 0.25. Further investigation was thereafter performed to study the 
auxetic response of model 1 lattice structure to a change in the length of the sinusoidal shaped 
ribs; a length of half period (T/2) and one and a half periods (3/2T) for the sinusoidal shaped 
ribs were selected (Fig. 1) for this extra study. The relative density of lattice structures with 
different lengths of sinusoidal shaped ribs was kept the same by changing the truss member 
wall thickness.  

"
Figure 1." (a) Model 1 topology unit cell constructed by adding two one period (T) length sinusoidal 
shaped ribs into the classical re-entrant unit cell (the classical re-entrant unit cell is shown in red). Its 
corresponding lattice structure is shown in (b). (c) Model 2 topology unit cell constructed by adding 
reinforcement vertical ribs into model 1 topology unit cell. Its corresponding lattice structure is shown in 
(d). (e) Model 1 topology unit cell constructed by adding two half period (T/2) length sinusoidal shaped 
ribs into classical re-entrant unit cell. (f) Model 1 topology unit cell constructed by adding two one and a 
half periods (3T/2) length sinusoidal shaped ribs into classical re-entrant unit cell. 
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  All the lattice structure models used for FEM simulations have a size of 276 x 200mm with 
181 unit cells. Copper was selected as the parent material to provide ductile behaviour. It has 

a density of 8930 kg m-3, Young's modulus of 117 GPa, and Poisson�s ratio of 0.35. The 

lattice Poisson's ratio is independent of parent material properties but depends only on the 
geometry, yet the lattice collapse strength scales with the parent material strength. In this 
study, the lattice Poisson's ratio was investigated using ANSYS as a function of geometric 
parameter α. Αn α  in the range from -0.25 to 0.25 was studied.  A bilinear strain-hardening 
relationship was used to represent the true stress–strain relationship of the parent material, 
and the yield strength and tangent modulus were selected as 400MPa and 100MPa, 
respectively. The cell walls were meshed with Shell 163 elements (the number of elements 
depends on the edge length, and every edge had at least 5 elements). The Poisson's ratio was 
calculated from the elastic region of the stress strain diagrams obtained from the FE analysis. 
It is noted here that ANSYS does not take into account inertial effects and assumes time 
independent loading, and thus it studies the static mechanical responses.  Therefore for 
dynamic studies, the following method was used. 
  ANSYS/LS-DYNA was used to analyze the energy absorption capacities of the proposed 
re-entrant structures at different compression velocities. ANAYA/LS-DYNA is specially 
designed to study dynamic response which takes into account inertia effects. The structures 
were compressed between two rigid platens with the bottom platen fixed, and the top platen 
moving at a constant velocity.  
Results and discussion 
3.1'Poisson's'ratio'
The relationship between the Poisson's ratio of the proposed re-entrant structures and the 
geometric parameter α (− 0.25 ≤ α ≤ 0.25) is shown in Fig. 2. It is noted that when α=0, the 
sinusoidal shaped ribs become straight ribs. It can be seen from Fig. 2 that the Poisson's ratio 
of model 1 topology first increased to a maximum value and then decreased with an 
increasing α,  while the Poisson's ratio of model 2 topology increased monotonically with an 
increasing α. The Poisson's ratio of the two re-entrant topologies achieved minima of 
approximately -1.12 and -0.58 when α = 0.25 and  − 0.25, respectively. The minimum 
Poisson’s ratios of model 1 re-entrant lattice structures with half period (T/2) length and one 
and a half periods (3T/2) length sinusoidal shaped ribs are -1.17 and -1.32 when 
α=0.25  and  − 0.25, respectively. Compared with classical re-entrant lattice structure with 
the same geometric parameters, which has a Poisson’s ratio of -1.424 (dot line as shown in 
Fig. 2), model 1 topologies exhibit comparable auextic responses.  
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'
Figure 2. The relationship between the Poisson's ratio and α (α=(h0−h2)/H0) of modified re-entrant lattice 
structures. The Poisson's ratio of classical re-entrant lattice structure with the same geometric 
parameters is shown for comparison. "
'
3.2'Energy'absorption'capacity'
The energy absorption capacities of model 1 and 2 re-entrant lattice structures with one 
period length sinusoidal shaped ribs (Fig 1b and d) were analyzed at different compression 
velocities (from 2m/s to 60m/s), and their stress-strain diagrams are shown in Fig. 3. 
Responses of classical re-entrant lattice structure are also included for comparison. All three 
types of lattice structures have an identical relative density.  
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Fig. 3 The stress -strain diagrams of model 1 and model 2 re-entrant lattice structures with one period 
length sinusoidal shaped ribs and identical relative density at various compression velocities (a) v=2m/s; (b) 
v=5m/s; (c) v=10m/s; (d) v=20m/s; (e) v=40m/s; (f) v=60m/s. Classical re-entrant lattice structure 
responses are included for comparison. 
 
The energy absorbed up to densification is commonly used to evaluate energy absorption 
capacity of cellular solids [6]. The energy absorption capacity per unit volume (Wv) of a 
lattice structure up to densification can be calculated via equation 

0
( )dD

vW
ε
σ ε ε= ∫                        (1) 

where σ(ε) is the plateau stress of the structure and εD is the densification strain which defines 
the strain beyond which the structure compacts and the stress rises steeply. The plateau is due 
to buckling of the ribs, or, if ribs are sufficiently thick, the plastic flow stress of the rib"
material [6].  
 
Table 1 The energy absorption capacity per unit volume (Wv) of classical, model 1 and 2 re-entrant lattice 
structures with sinusoidal shaped ribs of various lengths of period at various compression velocities. All 
lattices have the same relative density. 
 
Compression 
velocity(m/s) 

Wv/MJm-3 
Classical  Model 1 (T) Model 1 (T/2) Model 1 (3T/2) Model 2 (T) 

2 0.6326 2.9780 2.5996 0.8792 7.4731 
5 3.9573 4.1185 3.4660 1.5605 9.5618 

10 5.5383 5.8794 5.8405 2.6926 9.7823 
20 6.9000 7.6192 7.3567 5.3866 10.2608 
40 9.8852 10.6909 11.5320 11.3644 14.4747 
60 13.7338 15.5202 17.6848 16.9502 22.2510 

 
Values of energy absorption per unit volume Wv of the classical, model 1 and model 2 
re-entrant lattice structures at different compression velocities are summarized in Table 1. 
Results showed that the energy absorption capacity of all the models increased with an 
increasing compression velocity, and this trend is consistent with reports on auxetic structures 
[6, 12]. Model 2 topology gave rise to the highest energy absorption capacity while the 
classical re-entrant topology exhibited the lowest energy absorption capacity. The classical 
re-entrant topology exhibited a lower plateau stress compared with model 1 and 2 re-entrant 
topologies. Plateau stress of the five topologies increased with an increasing compression 
velocity, yet, that of the classical re-entrant topology exhibited a faster increasing rate 
compared with the other four topologies, and showed a comparable plateau stress as model 1 
topology when the compression velocity is higher than 20m/s. Compared with the classical 
and model 1 re-entrant topologies, sharp undulations in flow stress were observed in the 
plateau region in model 2 topology. The energy absorption capacity of Model 1 topology 
with sinusoidal shaped ribs of various lengths of period was also studied. Results showed that, 
the energy absorption capacity of model 1 topology with one period (T) length sinusoidal 
shaped ribs was higher than those of model 1 topology with T/2 and 3T/2 lengths of ribs at a 



7"
"

compression velocity below 40m/s. When the compression velocity is higher than 40m/s, the 
energy absorption capacity of model 1 topology with T/2 and 3T/2 lengths of ribs become 
higher than that of topology with one period (T) length ribs. 
      
Rate dependent energy absorption capacity of the lattice structures studied here is considered 
to be attributed to the inertia of the ribs. Energy absorption capacity of a lattice structure is 
highly dependent on its plateau stress level. Based on the sensitivity of plateau stress to the 
compression velocity, the applied compression velocity can be divided into three zones to 
distinguish their the relationships between velocity and behaviour: (1) quasi-static zone 
where plateau stress is insensitive to a change of compression velocity; (2) transition zone, 
and (3) dynamic zone where plateau stress is highly sensitive to a change in compression 
velocity. We found that the compression velocity no higher than 2m/s  belongs to the 
quasi-static zone. 

 
Fig. 4 Deformation mechanisms (a) model 1, (b) model 2 and (c) classical re-entrant lattice structures at a compression 

velocity v=2m/s. 

The deformation mechanisms of the classical, model 1 and model 2 re-entrant topologies at a 
compression velocity of v=2m/s are shown in Fig.4. Localized "V"-shape crush bands were 
observed in the classical and model 2 re-entrant topologies, however, no such bands were 
observed in the model 1 topology. Collapse initiated near the fixed end, and propagated 
through toward the moving end.  
 
4. Conclusions  
Two new 2D re-entrant topologies with negative Poisson’s ratio were introduced and their 
mechanical properties were studied using FEM as a function of geometric parameters. 
Simulation results show that model 1 and model 2 topologies can reach a minimum value in 
Poisson's ratio of -1.12 and -0.58, respectively, with an appropriate geometric aspect ratio. 
Results showed that the energy absorption capacity of all three models increased with an 
increasing compression velocity. Model 2 topology gave rise to the highest energy absorption 
capacity while the classical re-entrant topology exhibited the lowest energy absorption 
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capacity. The classical re-entrant topology exhibited a lower plateau stress compared with 
model 1 and 2 re-entrant topologies. Plateau stress of three topologies increased with an 
increasing compression velocity, yet, that of the classical re-entrant topology exhibited a 
faster increasing rate compared with the other two topologies, and showed comparable 
plateau stress as model 1 topology when the compression velocity is higher than 20m/s. Also, 
Localized "V"-shape crush bands were observed in the classical and model 2 re-entrant 
topologies, however, no such bands were observed in the model 1 topology. The new layout 
can be considered as a possible basis to design new concepts of auxetic structures with 
special functions. 
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