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Abstraet--A theoretical and experimental investigation is conducted of a two-dimensionally chiral honey- 
comb. The honeycomb exhibits a Poisson's ratio of -1 for deformations in-plane. This Poisson's ratio is 
maintained over a significant range of strain, in contrast to the variation with strain seen in known negative 
Poisson's ratio materials. Copyright .~t~/ 1996 Elsevier Science Ltd. 
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1. INTRODUCTION 

Cellular solids are used widely in a variety of engineering applications. In particular, honeycomb cell 
structures are prevalent. The continuing desire for stronger, lighter weight, structural materials for 
use in aerospace and aircraft applications has made these industries the traditional leaders in the 
development of honeycomb structures for technological use. However, improved manufacturing 
processes have made these unique composite materials more affordable and viable for other 
industries. 

Continuing interest in such structures has seen the birth of the next generation of unusual cellular 
solids. Much interest has centered around the recent discovery of re-entrant structures. These are 
unique honeycombs and foams which exhibit negative Poisson's ratios. The allowable range of 
Poisson's ratio in three-dimensional (3D) isotropic solids is from - 1  to ½ [1]. Most common 
materials have a Poisson's ratio close to ½, however rubbery materials have values approaching 
½; they readily undergo shear deformations, governed by the shear modulus G, but resist volumetric 
(bulk) deformation governed by the bulk modulus K, so G ,~ K. Although textbooks can still be 
found which categorically state that Poisson's ratios less than zero are unknown, there are in fact 
a number  of examples of negative Poisson's ratio solids as described below. Such solids become 
fatter in cross-section when stretched. A solid with v ~ - 1 would be the opposite of rubber: difficult 
to shear but easy to deform volumetrically: G ~ K. 

Two-dimensional honeycombs with regular hexagonal cells [Fig. l(a)]  exhibit a Poisson's ratio of 
+ 1 in the honeycomb plane; the out-of-plane properties differ due to anisotropy. The cell walls have 

120 ° angles between walls and all walls are of equal thickness and composition. In contrast 
honeycombs with inverted cells [Fig. l (b)]  give rise to negative Poisson's ratios in the honeycomb 
plane [2-5].  Analysis of deformation of these honeycombs [-2, 3, 5, 6] allows prediction of the 
Young's modulus and Poisson's ratio. Honeycombs are sufficiently simple that the Poisson effect 
can be easily visualized. Structures of the above type require some form of individual assembly. 
Foam materials with a negative Poisson's ratio as small as - 0 . 7  were developed [7] in which an 
inverted or re-entrant cell structure was achieved by isotropic permanent volumetric compression of 
a conventional foam, resulting in microbuckling of the cell ribs. Polymer foams which exhibit 
a softening point [-7, 8], ductile metallic foams [7-9],  and thermosetting polymer foams [-8, 10] can 
be prepared with a negative Poisson's ratio; v ,,~ - 0.8 can be attained in copper foam. The negative 
Poisson's ratio occurs over a range of strain [-8 10] and that range is larger in the polymer 
than in the metal foams. In the above structures and materials, the negative Poisson's ratio arises 
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Fig. 1. (a) Honeycomb with regular hexagonal cells. (b) Re-entrant honeycomb. 

from the unfolding of the re-entrant cells, and isotropy can be achieved along with the negative 
Poisson's ratio. 

Other negative Poisson's ratio structures include the hinged frameworks of Almgren [11] and the 
linked structures of Evans [12]. Aside from the foams [7] developed by one of the authors, the only 
known isotropic negative Poisson's ratio material is an aggregate of crystals of ~-cristobalite [13]. 

This article deals with a negative Poisson's ratio honeycomb [14] in which the negative Poisson's 
ratio is achieved by an unrolling action as was first suggested in Ref. [15]. The honeycomb is two- 
dimensionally chiral and has hexagonal symmetry. 

2. MATERIALS AND METHODS 

The honeycomb structure shown in Fig. 2 is composed of circular elements or nodes of equal 
radius r joined by straight ligaments or ribs of equal length L. The ligaments are constrained to be 
tangential to the nodes. The angle between adjacent ligaments is equal to 60 ° . The honeycomb 
simultaneously possesses both hexagonal symmetry and a 2D chiral symmetry (or "handedness'). 
Structures exhibiting hexagonal symmetry are mechanically isotropic in-plane. Experiments dis- 
cussed later confirm isotropy in Poisson's ratio. A commercially available polystyrene (Evergreen 
Scale Models, Inc.) was used in the fabrication of a model honeycomb. In-plane Poisson's ratios Via 
and v21 were determined as functions of axial strain for the honeycomb. 

For  this honeycomb structure, variations in three principal geometrical quantities are possible. 
First, the cell wall thickness t which was set at 0.25 mm. The node radius r was set at 6.35 mm. 
Finally the ratio R/r of the distance R between the centers of adjacent (ligament-joined) nodes and 
r was set at 5.0 for this model. All three quantities were selected with the following criteria in mind: to 
conform to available material dimensions, to promote ease of model construction, to allow adequate 
distances and stiffness for realistic and measurable behavior, and to achieve sufficiently low relative 
density that rib or ligament bending would dominate. In accordance with this last criterion, the wall 
thickness of the nodes was made 1.25 mm to allow for rigid body behavior of the nodes in 
comparison with the ligaments. Overall dimensions for the model, which contained 105 nodes, were 
approximately 305 mm x 355 mm. 

This model structure was hand-built by first making a wooden jig which located the circular 
nodes. The nodes were cut to the proper depth of 10 mm from uniform annulus stock polystyrene 
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Fig. 2. Two-dimensional chiral honeycomb structure: (a) diagram; (b) photograph of deformed honeycomb. 
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(1.25 mm wall thickness) and placed on the jig. Ligaments were cut from uniform sheet stock 
polystyrene (0.25 mm thickness) to the correct width for depth and calculated length, L. The 
ligaments were aligned in position and welded to the nodes by brushing the joints with a solvent for 
polystyrene, methyl ethyl ketone (Testors at Plastic Cement no. 3502). 

The entire model was placed on top of a high-quality photocopier and uniformly loaded in 
compression first in the Xa then in the X2 directions using a movable, rectangular frame. Displace- 
ments in both directions were recorded xerographically from the motion of targets placed on the 
model. Measurements of displacements were used to calculate the two Poisson's ratios. Resolution 
of all length measurements was limited to + 0.25 mm of the actual value. These results are presented 
and discussed in Section 4. 

3. ANALYSIS  

3.1. Geometry and unit cell identification 
In the following, expressions for the theoretical predictions for the Poisson's ratios vl 2 and v2 ~ as 

well as for the corresponding Young's moduli E 1 and E2 are developed. We remark that a 2D 
structure has four independent elastic constants described by the Young's moduli E1 and E2, a shear 
modulus Gl1, and Poisson's ratios v12 and v2~. The reciprocal relation links the four constants of 
interest in this study as follows: 

ELY21 = E2v12.  ( l )  

As noted by Gibson and Ashby [6], the mechanism which dominates the linear elastic deforma- 
tion of honeycombs is that of bending of the cell walls. The approach to determine the mechanical 
behavior for the overall honeycomb structure begins with the identification of the unit cell structure 
(the smallest, repeatable, oriented, structural unit). The geometry of this honeycomb is unusual, and 
the corresponding unit cell geometry is equally so. To visualize the unit cell represented by the 
heavier lines in Fig. 3, the honeycomb is viewed as a lattice of many such cells with the aforemen- 
tioned nodes comprising circular, interstitial spaces between adjacent cells. 

Referring to Fig. 3, the Xl-axis passes through the centers of the described arcs along the 
major axis of the cell. The Xz-axis passes through the corresponding points along the 
minor axis. 

~ j 

- ' ~  T x2 
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Fig. 3. Geometry of the unit cell. 
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The necessary geometric parameters are described by the following relations: 

R/2 
sin0 = - -  ~ 0  = 30 ° (2) 

R 

2r 
sin/~ = - -  (3) 

R 

2r 
tan p = - - .  (4) 

L 

Regardless of configuration, the angle between adjacent ligaments and adjacent node centers is 
constant and equal to 2 0 = 60 c. 

3.2. Linear elastic defi)rmation mechanism 
Analysis of the mechanism of cell wall bending as the pr imary influence upon in-plane moduli and 

Poisson's ratios for deformation of hexagonal cell honeycombs is presented by Gibson and Ashby 
[6]. In the case of the novel honeycomb described here, the same method is equally valid; hence, it is 
employed in a similar manner. However, owing to the unique structure of this honeycomb, some 
distinctions arise with regard to how the loads are transferred to the cell walls and how their 
deflections, in turn, cause the linear displacement within the cells. 

In the initial, undeformed state before load application, the ligaments are straight (undeformed). 
Referring to Fig. 4, a uniaxial stress, a l  or ~r 2, is applied to the cell along XI  or X2; as a consequence 
of this, a torque T results in bending of the ligaments into a sigmoid shape, and rotation of the nodes 
as described below. Both the ligament bending and the equal rotation of all nodes is visible 
experimentally in the deformation of the model. The ligaments remain rigidly tangent to the node, 
therefore the deformation is constrained to correspond to a change of area without change of shape. 
Deformations due to axial compression and shear within the ligament can be neglected so long as 
the ligaments are sufficiently slender, hence the relative density of the structure is kept below 
a critical value. In their general analysis of honeycombs, Gibson and Ashby suggest this value to be 
PiPs ~ 0.29, with p as the honeycomb density and p~ as the density of the solid from which it is made. 

When ligament AB is loaded it bends, but the ligament does not rotate, so the angle between AB 
and the X1 (or any other fixed axis) remains constant. For  very large deformations (not treated here), 

- e  2 

q T 

Fig. 4. Deformation of a ligament. Top: kinematics of the deformation. Bottom: free-body diagram 
of a ligament. 
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the length of AB will contract without any rotation. This effect has been verified empirically. The 
circular nodes do rotate since the motion of the ligament end is tangent to the circle. 

The orthogonal deformations of the honeycomb result from the displacement of the node centers. 
The angular deflection q~ of beam AB measured at its endpoints coincides with the nodes' rotation 
through the same angle, ~b. This is due to the constraint that the slope of AB, at A or B, remains 
tangent to the node. So, in order to maintain ~b and 0, the ligaments must "wind" onto the nodes. 
This results in a displacement of adjacent nodes along the direction of R. The effective displacement 
of each node, is as if it were rolling along R. 

Referring to Fig. 4, the deformation, e, of the cell is the same for both nodes C and D and is related 
to the angular deflection q5 of AB by 

e = r sin ~b 

el = r~bcos0 

e2 = r~b sin 0 (5) 

in which, for small deflections, r sin ~b ~ rq~ and 0 = 30 °. 

3.3. Prediction of Poisson's ratios and in-plane moduli 
The deflection of any arbitrary ligament in the honeycomb is equivalent to that of AB due to 

a common load configuration for each. This deflection can be analysed using standard beam theory 
[16] by modeling AB as a beam of thickness t, width d, length L, and Young's modulus Es (for the 
solid, in this case polystyrene). The standard result for the deflection is, with I = ~ t3d, 

TL E, t3 d 
~b=6E,  i ,  or T -  ~ 4~. (6) 

The strains are, from Eqn (5): 

81 
el 0.866rq~ r 

. . . .  ~b (7) 
(0.866)R 0.866R R 

el 0.5r~b r 
- (8)  

(0.5)R 0.5R R 
E2 m 

Poisson's ratios are calculated as follows for loading in both directions: 

82 
Y12 - -  - -  1 (9) 

e l  

81 v21 - - 1. (10) 
82 

Young's modulus may be calculated via an energy approach. The internal energy U for the rib is 

Urib = f T d O .  ( 1 1 )  

Incorporating Eqns (6) and (7), and recognizing a torque is applied at each end, 

E~t3 d c~ 2 = 2 E~t3 d R2 
- -  e 2 . ( 1 2 )  Uri  b = 2 ~ 4L r 2 

A cell contains three ribs each of which is shared with an adjacent cell, so the energy for one cell is 3/2 
that of a single rib. 

In the continuum view, with V as the volume, the energy Ucm is 

Ucm= V ~rde= V~E~ 2. (13) 

For  a single triangular cell, V = R2(a//3/2)d, so for that volume, 

uom = R 2 e 2. ( 14 )  
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Equating the energies for one cell in the structural and continuum views, 

t 3 L 2 
E = Es xf3 L3 r2 • (15) 

The Young's moduli for loading in different directions must be equal owing to the kinematical 
constraint that the ligaments remain tangent to the nodes. For  comparison, Gibson and Ashby 
obtain a similar dependence Es( t3 /L  3) in honeycombs of conventional structure, however with 
a different geometrical factor. 

Applying the reciprocal theorem [Eqn (1)] verifies that 

E1 v21 = E 2 v 1 2 .  (16) 

The fact that E1 = E2 and v21 = v~2 suggest the mechanical symmetry of the honeycomb to be 
cubic or higher. As for structural symmetry, the honeycomb structure is invariant to 60 ° rotations 
and 120 ° rotations, but it is not invariant to inversions. As for directional anisotropy, we remark that 
structural invariance to 60 ° rotations (hexagonal symmetry) gives rise to a mechanical condition of 
transverse isotropy, that is, isotropy in-plane [17]. Young's modulus of a hexagonal material is 
independent of direction in the plane normal to the hexagonal symmetry axis [18]. The present 
results are consistent with this symmetry argument. We remark the Gibson and Ashby suggest that 
certain types of triangular honeycomb are anisotropic in-plane, however based on established 
symmetry considerations, we expect that these were not perfectly symmetric. 

The lack of inversion symmetry constitutes a chiral anisotropy, which is entirely distinct from 
directional anisotropy. Chirality has no effect on the classical elastic properties of a material. To 
demonstrate this, consider the tensorial Hooke's law 

(~ij = Cijkl l?'kl ,  (17) 

in which aij is stress, ekt is strain and C is the elastic modulus tensor. 
The transformation law for the modulus tensor under coordinate changes is 

Ci~kl' = aimaj, akoalnCmnop. (18) 

For an inversion, the transformation matrix is just the negative of a Kronecker delta 

a i m  = - -  6 i m .  (19) 

So the classical elastic modulus tensor is unchanged by chirality: 

Cijk~' = ( -- 1) 4 Cijkl = Cijkl. (20) 

Some materials behave as generalized continua [19] which allow more freedom than classical 
elasticity. For example, Cosserat elasticity has a characteristic length scale. The non-classical 
behavior is influenced by chirality [20]. Effects of this type are absent in the current analytical and 
experimental work since they do not occur in the absence of strain gradients or gradients in rotation 
of micro-elements. 

4. EXPERIMENTAL RESULTS AND DISCUSSION 

Experimental results for Poisson's ratio vs strain are shown in Figs 5 and 6. Note the expanded 
scale in Poisson's ratio. The error bars represent inaccuracies due to the measurement resolution. 
Resolution error was dominant and was therefore used instead of error due to statistical consider- 
ations. As would be expected, the measurement error decreases as the strains increase. Results are 
consistent with the theoretical Poisson's ratio of - 1, within the uncertainties involved. Poisson's 
ratio showed no obvious dependence upon strain, in agreement with theory. The theory based on 
cell wall bending provides a good approximation for both in-plane Poisson's ratios even at relatively 
high strains (up to approx 0.2). However at sufficiently large strain, we expect that the assumptions 
of elementary beam theory used in the analysis would cease to apply. 

The circular nodes were observed to rotate as the honeycomb was deformed. Rotational degrees 
of freedom in solids are known analytically [19], and unusual effects can occur in three-dimen- 
sionally chiral materials with such freedom [20]. We remark that a chiral molecular structure 
consisting of'rigid hexamers' and with a negative Poisson's ratio has been suggested [21]. Moreover 
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Fig. 5. Experimental Poisson's ratio v vs axial compressive strain of chiral honeycomb. ×:  v, 2 for loading 
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Fig. 6. Poisson's ratio vs strain. Re-entrant hexagonal honeycomb (theory). Re-entrant copper foam (experi- 
ment). 

in the present honeycomb, as the nodes rotated, the ligaments were observed to bend, as anticipated 
in the analysis. Ligament deformation was less regular at the edges, and the ligaments were not 
always tangent to their nodes at the specimen edges; under sufficient deformation these ligaments 
appeared to buckle. This is not surprising since the biaxial strain and stress in the analysis cannot be 
sustained at the boundaries when uniaxial tension is applied. The honeycomb was observed to 
recover fully to its original dimensions following strains of up to 25%. 
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The constancy of Poisson's ratio vs strain over a significant range of strain is unusual and differs 
from the behavior of other materials and structures. For example, Fig. 6 shows the behavior of 
re-entrant honeycomb with inverted hexagonal cells based on the analysis of Gibson and Ashby [6], 
and also an experimental curve for re-entrant copper foam [9]. The constancy of v in the present 
honeycomb is due to the ability of the cells to "wind" in upon thenqselves during compression. In 
contrast, the other materials with a negative Poisson's ratio exhibit a substantial nonlinearity since 
deformation changes the angles between structural elements; these angles govern the Poisson's ratio. 
Young's moduli of chiral honeycomb depend upon the L/r ratio, hence the R/r ratio; the bending or 
buckling behavior of the ligaments, hence the strain ranges for which linear elastic theory will apply, 
can be expected to depend on this ratio. 

Foams have 3D micro-structures, in contrast to honeycombs in which the relevant structural 
features are confined to 2D. We may envisage the possibility of 3D chiral micro-structures which 
deform via a mechanism similar to that which governs the present honeycomb, and which give rise 
to extremal Poisson's ratios over a wide range of strain. 

5. C O N C L U S I O N S  

(1) Analysis based on ligament bending in the chiral honeycomb predicts v = - 1 independent of 
strain, in two orthogonal directions. 

(2) Experimental determination of Poisson's ratio v yields results consistent with v = - 1 inde- 
pendent of strain. 
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