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Abstract
This article presents a study of the implications of negative Poisson's ratios in the design of

components subjected to stress. When the Poisson's ratio becomes negative, stress concentration
factors are reduced in some situations and unchanged or increased in others. Stress decay
according to Saint Venant's principle can occur more or less rapidly as the Poisson's ratio
decreases. Several design examples are presented, including a core for a curved sandwich panel
and a flexible impact buffer.

1 Introduction
Recently, the invention of negative Poisson's ratio foams was reported[1-3]. Foam

materials based on metals and several polymers were transformed so that their cellular architecture
became re-entrant, i.e. with inwardly protruding cell ribs. Foams with re-entrant structures
exhibited negative Poisson's ratios as well as greater resilience than conventional foams. The
polymer foams exhibited negative Poisson's ratios as small as -0.7, and values to -0.8 have been
observed in metal foams.

In the theory of elasticity, it is well known that some solutions for stress or displacement
fields are dependent on Poisson's ratio. However, since most engineering materials have
Poisson's ratios very close to 0.3, such dependence has received comparatively little attention.
With the advent of new materials which exhibit controllable negative values of substantial
magnitude, the effect of Poisson's ratio on stress and displacement fields deserves re-examination
within the context of design. Applications of materials with negative Poisson's ratios may be
envisaged (i) based on the Poisson's ratio, (ii) based on the superior toughness and tear resistance
which has been observed in these materials, and (iii) based on the acoustic properties associated
with the vibration of ribs in the material. In this article we consider the implications of the negative
Poisson's ratio in design and in new applications.

2 Consequences of negative Poisson's ratio
Many phenomena in the deformation of elastic materials depend on the Poisson's ratio. The

simplest is that a material with a negative Poisson's ratio will get fatter in cross section when
stretched and thinner when compressed. The relations between the shear modulus G, the Young's
modulus E, the bulk modulus B (the inverse of the compressibility) and Poisson's ratio ν are: B =
2G(1+ν)/3(1-2ν), and E = 2G(1 + ν ). When the Poisson's ratio approaches 1/2, as in rubbery
solids, the bulk modulus greatly exceeds the shear modulus and the material is referred to as
incompressible. When the Poisson's ratio approaches -1, the material becomes highly
compressible but difficult to shear; its bulk modulus and Young's modulus are much less than its
shear modulus.

Poisson's ratio has no effect on stress distributions in many two-dimensional situations
however it may have a dramatic effect in three dimensions. As for two dimensions, Michell's
theorem [4] states that the two-dimensional stress field is independent of Poisson's ratio if either
the body is singly connected or tractions over each interior boundary give no net force. If either of
these conditions is not met, there can be a large effect of Poisson's ratio even in two dimensions
[5]. Some three dimensional stress distributions, including many involving torsion, are
independent of Poisson's ratio.

Stress concentrations
Stress concentrations may depend upon Poisson's ratio ν. In most two dimensional

situations, the stress concentrations have no dependence at all on Poisson's ratio. In three
dimensions, however, there may be a significant dependence of the stress concentration factor
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upon Poisson's ratio. Specific examples for spherical and cylindrical cavities and rigid inclusions
are as follows [6]. Stress concentration factors are given for points at the pole or equator of the
inhomogeneity. The pole is in the direction of the applied load; the equator of the inclusion is the
set of points on it intercepted by the plane perpendicular to the applied load. The cylinder long axis
is perpendicular to the applied load. The θθ direction considered at the equator for the spherical

cavity corresponds to the direction of the applied load; the ψψ direction is orthogonal to it. For the

spherical cavity the stress concentration factors for the equator in the  θθ and ψψ  directions are

positive for ordinary Poisson's ratio, and the usually quoted value for the θθ direction is larger in

magnitude. However the stress concentration factor for the ψψ direction changes sign for small
Poisson's ratio. The stress concentration factor for shear is based on a shear stress at the pole, in a
direction orthogonal to the plane of the shear.

Spherical cavity in uniaxial tension
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Rigid spherical inclusion in hydrostatic tension

SCF|radial = 3 
1-ν
1+ν

For the spherical inclusion the stress concentration factor is the same for equatorial hoop and axial
stresses. Stress concentration factors as they depend on Poisson's ratio are plotted in Fig. 1 for
cavities and in Fig. 2 for inclusions. Observe that a negative Poisson's ratio reduces the stress
concentration factor for some of the situations involving cavities, and increases it for others. Stress
around a cavity in a field of hydrostatic stress is not affected by Poisson's ratio. For rigid
inclusions, the stress concentration factor becomes large as ν approaches -1.

Ellipsoidal cavities are also of interest in that they can generate much larger stress
concentration factors than spherical ones. The relationships for prolate [7] and oblate [8] ellipsoidal
cavities are rather complicated. We calculate the stress concentrations for the locations shown for
the full range of Poisson's ratio and display them for prolate ellipsoids in Fig. 3, and for oblate
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ellipsoids in Fig. 4. For uniaxial tension, the usual stress concentration for σ1 does not vary very
dramatically with Poisson's ratio, even for very flat ellipsoids (a/b >> 1) for which the stress
concentration factors become large; σ2 shows more variation with ν. Given stress concentration
factors are for the equatorial region, in the direction of the applied load. This location and
orientation gives maximum stress under ordinary conditions but it is not guaranteed to be maximal
for all Poisson's ratios.

 The toughness of a material with sharp cracks can also depend on its Poisson's ratio. In
the context of elasticity theory, the critical tensile stress [9] σ for fracture of a solid of surface
tension T, Young's modulus E, with a plane circular crack of radius r is σ= √[πET/2r(1-ν2)].
When the Poisson's ratio approaches -1, a material of given Young's modulus is predicted to
become very tough. However,
E/(1-ν2)= 2G(1 + ν )/(1 + ν )(1 - ν )= 2G/(1 - ν ).
So the toughness for given shear modulus does not diverge, but for ν→ -1, G becomes large in
comparison with E.

The toughness of a material also depends upon its nonlinear properties, as well as upon
structural aspects. In the materials with negative Poisson's ratios described by the author [1-3], the
presence in these materials of many curved ribs with low stiffness but high extensibility may be
expected to increase the toughness; measurements of toughness will be reported elsewhere.

Saint Venant's principle
An important problem in solid and structural mechanics is the question of the distance

which local stress distributions penetrate into structural members. In many practical problems in
mechanics, one appeals to Saint Venant's principle in neglecting end effects or edge effects at some
distance from the boundaries of the structural element. Saint Venant's principle is usually
demonstrated for particular geometries by the development of energy inequalities. However, some
exact three dimensional solutions are available for the decay of stress due to a self equilibrated
stress distribution on a boundary; many such stress distributions depend on Poisson's ratio.

Some examples of the dependence of Saint Venant stress decay on Poisson's ratio include
the following (Fig. 5). In a pretwisted shell [10] of half-width w, thickness h, and pretwist per
length β, the stress decays with distance from the end as e-z/L and the decay length L for end
stresses is L = Λb = 12(1 - ν2)1/2 βb2/h, so that as Poisson's ratio approaches -1, the decay
length tends to zero. The decay length L of end effects (determined by energy methods) in the
torsion of a narrow rectangular cross section bar with the warp restrained at one end is
L = a[(1+ν)/5]1/2, in which a is the bar width [11], so that the decay length decreases as
Poisson's ratio becomes smaller. The decay length is smaller in the case of a square cross section
bar, but depends on Poisson's ratio in a similar way as shown in Fig. 5. As for self-equilibrated
axisymmetric loads on the end of a circular cylinder, the effect of Poisson's ratio is predicted [12]
to be opposite: the decay length increases as Poisson's ratio becomes smaller. Some caution is
needed in viewing these results [12] since they were arrived at by energy approximations rather
than exact solutions, so it is not guaranteed that the approximations are uniform with Poisson's
ratio. Indeed, recent study of the exact eigenvalue problem indicates that slow stress decay occurs
in circular cylinders with self-equilibrated end loads for Poisson's ratios approaching -1 [13].  As
shown in Fig. 5, the two predictions agree over the normal range of Poisson's ratio but disagree
for values approaching -1.

As for normal loads upon an infinite elastic half space [14], the decay of stress goes as a
power law rather than an exponential. The power in the power law does not depend on ν, but the
magnitude of the mean normal stress for all distances from the load goes as 1 + ν,  so that this
stress vanishes as ν tends to -1.

Other stress distributions
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Consider cantilever bending of a beam of circular cross section of radius a, with the
centerline in the z direction. Bending is by a concentrated load P in the x direction. Axial and shear
stress components are [11]

σzz = - 
4P
πa4  (L - z)x

σxz, surf = - 
P

πa2  
1+2ν
1  +  ν

σxz,center = - 
P

πa2  
(3+2ν)

2(1 + ν)
σyz,center = 0

As Poisson's ratio approaches -1, the σxz shear stresses become large, the shear modulus becomes
large, but the deflection curve is unchanged. For a Poisson's ratio of -0.5 the surface shear stress
σxz vanishes, while the center shear stress does not vanish for any realizable value of ν. The shear
at the center is equal or larger in magnitude than the shear at the surface for positive Poisson's
ratios, but for sufficiently small negative Poisson's ratios the shear at the surface becomes larger.
For ν = -1, the surface shear is larger by a factor of two. So, we cannot always assume that the
location of the maximum stress is always the same when Poisson's ratio can vary over the full
range.

In the case of a uniformly distributed load [11], the curvature K depends on Poisson's
ratio:

K = 
M
EI   [1 - 

{7 + 12ν +  4ν2}
6(1+ν)

  
a2

L2 ]  ,

such that for ν → -1, the bend rigidity M/K becomes small.
In the indentation of a block of material by a localized circular pressure distribution of

radius a, consider the indentation rigidity is P/w = E/2a(1- ν2), in which E is Young's modulus, P
is the pressure, and w is the indentation [11]. A material with a negative Poisson's ratio
approaching the thermodynamic limit -1 will be difficult to indent even if the material is compliant
in tension/compression. Since E/(1- ν2)= 2G/(1- ν) it is evident that stiffening effects of this type
reflect the relationship between Poisson's ratio and the shear modulus.

Transverse curvature in bending
Consider the transverse curvature which occurs in the pure bending of a beam or a plate.

When Poisson's ratio is positive, the transverse curvature is opposite the principal curvature of
bending and is known as the anticlastic curvature. For a material with a negative Poisson's ratio,
transverse curvature is in the same sense as the principal curvature: synclastic curvature, as is
anticipated in the exact, three-dimensional solution for the problem of pure bending [11].
Synclastic (or conclastic) curvature is demonstrated in Fig. 6 for a re-entrant honeycomb, which is
bent by moments along two of its four edges.

3 Design examples
Core for sandwich panel
Honeycombs with cells shaped as regular hexagons are commonly used as lightweight

cores for flat sandwich panels. Such honeycombs are anisotropic, with high stiffness and a
Poisson's ratio near zero for out-of plane deformation; and Poisson's ratios ν near +1 for the in-
plane directions. Bending of such a honeycomb gives rise to a saddle shape as a result of the
anticlastic curvature. Such conventional honeycombs strongly resist being bent into any shape
other than the hyperboloid which results from anticlastic curvature. In particular the rigidity
(moment divided by curvature) for the bending of an isotropic plate free to undergo anticlastic
curvature is Eh3/12; for a plate bent to a cylindrical shape it is Eh3/12(1-ν2); for a plate bent to a
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spherical shape it is Eh3/12(1-ν). For conventional honeycomb (which is highly anisotropic), ν ≈
+1 for the in-plane deformation associated with bending, so that for bending into a spherical or
cylindrical shape the rigidity diverges. Attempts to forcibly bend them into a convex shape cause
the cell walls to buckle.

Bendable honeycombs which can be formed into convex shapes are currently available
under the trade name Flex-core®, of Hexcel Co, as shown in Fig. 7. This material is anisotropic
in-plane: properties measured in our laboratory for a representative sample of density 0.08 g/cm3

were: in-plane Poisson's ratios ν21 = +0.5 and ν12 = +0.9, and Young's moduli E1 = 0.4 MPa,
and E2 = 0.2 MPa. This contrasts with honeycomb of regular hexagons for which both in plane
Poisson's ratios are +1, and the out of plane Poisson's ratio is ≈0. It is possible to bend Flex-
core® honeycomb into a convex shape, but considerable force is required to achieve a small radius
of curvature.

By contrast, a negative Poisson's ratio honeycomb [15-17] can be prepared with inverted
hexagonal cells. It is easily bent into a convex shape such as that shown in Fig. 6 with a minimum
of bending moment. Such a core, when combined with stiff face material, could be used to make
convex curved sandwich panels. The convex shape would be spherical for ν= -1 (which is
possible in a re-entrant honeycomb), cylindrical for ν = 0, and ellipsoidal for -1< ν < 0. Cell
shapes for negative Poisson's ratio honeycomb are shown in Fig. 6, and for comparison, an
idealized cell shape for negative Poisson's ratio foam is shown in Fig. 8. Sandwich panels of
convex shapes may find use in the aircraft industry, in the construction of domes, and elsewhere.

Sandwich panel cores are also made from stiff three dimensional cellular solids (foams)
which exhibit ν ≈ 1/3. The foams are isotropic or nearly so, unlike honeycombs. Since the in-
plane stiffness is comparable to the out of plane stiffness (which should be high) it is not practical
to bend a flat foam sheet into a curved shape. However in the case of polymer foam cores, such
bending could be achieved while the polymer is in the process of polymerization, or in
thermoplastic polymers polymers temporarily softened by heat. Forming of the core into a convex
shape by this procedure would be facilitated by the use of negative Poisson's ratio foam. Other
properties of such foam, such as toughness, are currently under study.

Wrestling mat
Consider the choice of materials for an elastic impact force buffer such as a wrestling mat

or a knee pad. Let us examine the penetration rigidity F/u in which F in the indentation force and u
is the maximum displacement, for elastic materials. It is desired that the buffer should be effective
for both large and small impactors. In the context of a wrestling mat, either an elbow or a person's
entire back may strike the mat. For a sufficiently small impactor, approximate the mat as an elastic
half space under a circular pressure distribution [11] of radius a,

[F/u]narrow = Gan/(1-ν).
For an impactor much larger than the mat thickness, consider the uniform compression of a layer
of thickness H and radius aw, in which the lateral Poisson effect is restrained. Let the force F be
distributed uniformly over the layer. Then,

[F/u]wide = 
Gaw

2

2H(1+ν)
(1-2ν)

  .

In this application, it is desired that the layer reduce impact forces which may be distributed over a
wide area or a narrow area. The layer must be sufficiently compliant for distributed forces, yet
must be sufficiently rigid that it does not bottom out under a concentrated force. The following
ratio should be of the order of unity.

[F/u]wide/ [F/u]narrow = 
2aw

2

anH   
1-ν2

1-2ν   .
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Materials with negative Poisson's ratios offer the best performance, and rubbery materials are the
worst in this application. Current mats tend to be made of elastomeric foams (with ν ≈ 1/3) rather
than rubber(with ν ≈ 1/2), a logical choice in view of the above. As an example, let aw= 10H, and
an= 0.1H (narrower than an elbow but consistent with the approximation made), so  aw/an =100.
Then the optimal Poisson's ratio is ν = -0.9993. We remark that an exact solution is available for
the stresses in an elastic layer acted upon by a distribution of force [18], however such complexity
is not necessary in this example.

4 Discussion and conclusions
As for fabrication, negative Poisson's ratio honeycombs can be made from conventional

ones by mechanically inverting each cell, provided that the cell walls are sufficiently flexible. They
can also be made ab initio by preparing corrugated strips and cementing them. As for the
relationship between cell shape and Poisson's ratio, theoretical treatments are available of
deformation of hexagonal cell honeycombs, including those with re-entrant cells giving rise to
negative Poisson's ratios [15-17]. The high out-of plane stiffness associated with conventional
honeycomb is retained in honeycomb with a negative Poisson's ratio.

Many stress distributions relevant to design are significantly affected when the Poisson's
ratio of the material assumes negative values, particularly values approaching the lower limit -1.
Stress concentrations can be very sensitive to Poisson's ratio; negative values of Poisson's ratio
can be helpful or harmful, depending on the context. Published stress concentrations are for stress
components which are maximal for ν ≈ 0.3. For materials with negative Poisson's ratios, other
stress components may be more important. For example in the case of the rigid inclusion, stress at
the pole can have large values of opposite sign to the stress at the equator usually considered. Such
a stress could be very important in a brittle material with a negative Poisson's ratio. Moreover, in
cantilever bending, the location of the maximum shear stress changes as Poisson's ratio is made
sufficiently negative. Consequently, it is recommended that all stress components be considered in
design-oriented calculations for negative Poisson's ratio materials. Elastomeric or ductile materials
with negative Poisson's ratios may not be as sensitive to stress concentrations as are brittle ones.
However there are many structural possibilities for negative Poisson's ratio materials [19].
Recently, laminate structures have been introduced which give rise to negative Poisson's ratios
[20]. Other aspects of Poisson's ratio such as wave propagation and reflection problems have been
recently treated [21]; these may be relevant to ultrasonic or geological applications.

Negative Poisson's ratio foams and composites are not homogeneous. The application of
the continuum theory of elasticity may therefore be questioned. Phenomenologically it is observed
that in fibous composites and in compact bone, stress concentration factors, determined in the
laboratory for holes which are not very much larger than the structure size, are smaller than values
calculated via elasticity theory. Some writers attempt to circumvent this disagreement by calculating
an average stress in a region rather than using the maximum stress to predict failure. The influence
of the microstructure size can be incorporated more rationally via the Cosserat theory of elasticity
[22-25], which, unlike the classical theory, has a natural length scale. In Cosserat solids, the stress
concentration factor around an inhomogeneity is predicted to differ [24] from classical values if the

inhomogeneity size is comparable to the the characteristic length ”  of the material. Phenomena
associated with Cosserat elasticity are likely to be of larger magnitude, and therefore of greater
interest in materials such as composites and cellular solids with comparatively large structural

features. In cellular solids, the characteristic length ”  may be the on the order comparable to the
average cell size. The physical origin of such effects is in the bending and twisting moments
transmitted through the fibers in a composite or in the cell ribs in a foam.
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1. Stress concentration factors vs Poisson's ratio for a spherical cavity. Uniaxial tension, biaxial
tension, and shear at the equator; uniaxial tension at the pole.
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2. Stress concentration factor vs Poisson's ratio for rigid spherical and cylindrical inclusions
under uniaxial tension.
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3. Stress concentration factor vs Poisson's ratio for a prolate ellipsoidal cavity under uniaxial
tension, shear, and biaxial tension, for a/b = 10.
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5. Illustration of stress decay according to Saint-Venant's principle. Normalized decay length
for stress vs Poisson's ratio for different situations. For the end effects in circular cylinders, the
approximate solution, based on an energy approach, is from [11]; the exact solution is from [12].
6. Bending of a negative Poisson's ratio honeycomb.

See video in http://silver.neep.wisc.edu/~lakes/Poisson.html
7. Commercially available honeycomb, Flex-core®, which can be deformed with some effort
into a convex shape.
8. Idealized unit cell of negative Poisson's ratio foam.

See Lakes, R. S. "Foam structures with a negative Poisson's ratio",
Science, 235 1038-1040 (1987).


