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Abstract

Both conventional and negative Poisson's ratio foams exhibit dispersion of acoustic

waves as well as cut-off frequencies at which the group velocity tends to zero.  This

macroscopic behavior is attributed to micro-vibration of the foam cell ribs. The purpose of

this article is to develop a micromechanical model of the cut-off frequency. This model is

based on the resonance of ribs which may be straight, curved, or convoluted. As foam cell

ribs become more curved, the cut-off frequency decreases. Therefore foams with curved or

convoluted ribs are expected to provide superior performance in applications involving the

absorption of sound.

1. Introduction

Acoustic waves are dispersed as they propagated through a fiber-reinforced

viscoelastic material [1]. For three-dimensional random particulate composite containing

spherical inclusions, the wave propagation behavior is significantly influenced by the

excitation of the particle resonances [2]. Cellular solids also exhibit dispersion of acoustic

waves, in which the wave speed varies with frequency, and cut-off frequencies, in which

the phase velocity of acoustic waves tends to zero as frequency increases [3]. These effects

become more pronounced and occur at lower frequency [4] in re-entrant foams with

negative Poisson's ratio [5]. Moreover, negative Poisson's ratio polymer foams exhibit

superior sound absorption in comparison with polymer foams of conventional structure

[6]. An increase in wave speed with frequency is associated with viscoelastic behavior [7]

or with effects due to rotational motion of the microstructure [8]. A decrease in wave speed

with frequency (as well as cut-off frequencies) is associated with micro-vibration of the

structural elements [9]. In this article we present an analytical model of the vibration of

structural elements in cellular solids with the aim of predicting the cut-off frequency of

acoustic waves in these materials. It is intended that the understanding gained will be of use

in the design and use of materials which offer superior performance in the absorption of

sound or vibration.

2. Method

The foam micro-resonance behavior is analyzed by considering the foam rib as a

vibrating member, which is modeled to be a curved beam, a partial ring, or a helical spring

as the convolutedness of the member increases.  The cut-off frequency of the foam is
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derived from the relation for the lowest vibrational mode of the rib and from a relation

extracted from the theory of elasticity of open-cell foams.

In the following, the natural frequency of a foam rib modelled according to various

geometrical assumptions is presented. The natural frequency of such ribs depends on the

boundary conditions at the ends. The ends may be fixed or free to move in idealized

analyses.  In an actual foam, each rib is connected to other ribs, so it is neither fixed nor

free but somewhere in between. The difference between fixed and free conditions is

typically a factor of two; this is much less than the factor of hundreds associated with the

difference in curvature or convolutedness of the ribs.

2.1. Foam rib modeled as a curved beam ( sector angle 0° ~ 90° )
The natural angular frequencies ωn of a complete circular ring, have been shown to

be [10]

ωn = 
r2Es

4R4ρs

  
n2(n2-1)2

n2+1
 (1)

( circular cross section ),

or ωn = 
I Es

AR4ρs

  
n2(n2-1)2

n2+1
(2)

( rectangular cross section )

for flexural vibration in the plane of the ring,

and ωn = 
r2Es

4R4ρs

  
n2(n2-1)2

n2+1+ν
 (3)

( circular cross section )
for flexural vibration normal to the plane of the ring, in which ωn is the natural angular

frequency in radians per second, r is the radius of the ring's circular cross section, R is the
radius of the ring, Es and ρs are the Young's modulus and mass density of the solid ring,

A is the area and I is the moment of inertia of a rectangular cross section, n is an integer
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used to define the vibration shape of the ring ( 2n = number of nodal points;  n≥2,), and ν
is the Poisson's ratio of the ring material.

It can be easily determined from Eqs. (1) and (3) that the natural frequencies of a ring

vibrating flexurally in plane and normal to plane differ by less than 3% with ν = 0.3.

Therefore, Eqs. (1 ) and (2) are used to predict the flexural vibration of a ring with the

circular cross section, and the rectangular cross section respectively.

The fundamental vibration of a curved beam simply supported at both ends is

mechanically equivalent to the flexural vibration of a segment between two nodal points of

a complete ring.  The natural frequency of a curved beam of sector angle θ ( 0° ≤ θ ≤ 90° )

are thus obtainable from Eqs. (1) and (2) with

n = 
180°

θ
(4)

or n = 
πR
L (5)

in which L is the length of this curved beam representing the foam cell rib.  The natural
frequency ω

beam
 ( in radians per second ) of a curved beam simply supported at both ends

is also obtained as

ω
beam

 = 
π2

2  
r

L2 
Es
ρs

  
n2-1

n  
1

n2+1
(6)

( circular cross section )

by substituting Eq. (5) into Eq. (1),

or ω
beam

 = 
π2

12
 

t
L2 

Es
ρs

  
n2-1

n  
1

n2+1
(7)

( rectangular cross section )

by substituting Eq. (5) into Eq. (2) with A = mt2 and I = mt4/12, in which the dimensions

of the rectangular cross section are t by mt and m ≥1.
The natural frequency ω

beam
 is determined by the boundary conditions as well.  The

natural frequency of a straight beam with clamped-clamped ends or free-free ends is 2.25

times as large as that simply supported at both ends [9].  Therefore, the natural frequency

of a curved beam with clamped-clamped ends or free-free ends is obtained as
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ω
beam

 = 
2.25π2

2  
r

L2 
Es
ρs

  
n2-1

n  
1

n2+1
 (8)

( circular cross section ),

or ωbeam = 
2.25π2

12
 

t
L2 

Es
ρs

  
n2-1

n  
1

n2+1
 (9)

( rectangular cross section )

by multiplying Eqs. (6) and (7) by a factor of 2.25.  Application of eqs. (8) and (9) to foam

rib mechanics is approximate since the factor of 2.25 between different boundary

conditions of a straight beam is applied to the case of a curved beam.

For an open-cell foam, analysis of the overall foam material stiffness based on rib

bending in the theory of elasticity predicts [11,12]

Es
ρs

 = 
1
4  

E

ρ
  
L2

r2 (10)

for circular cross section ribs,

and 
Es
ρs

 = 
2

m2+1
  
E

ρ
  
L2

t2
(11)

for rectangular cross section ribs,
in which E

s
 and ρ

s
 are the Young's modulus and mass density of the solid of which the

foam is made, E and ρ are the Young's modulus and mass density of the foam, and foam

rib properties r,t,m, and L are as previously defined.
Substituting Eqs. (10) and (11) into Eqs. (6)-(9), and recognizing that ω

beam
 =

2πν
cut

, the rib resonance frequency ν
rib

 ( Hz ), hence the cut-off frequency of open-cell

foams ν
cut

 ( in Hz ) on the basis of simply supported ribs can be obtained as

ν
cut

 = 0.393 
1
L 

E

ρ
  
n2-1

n  
1

n2+1
 (12)

( circular cross section ),
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or ν
cut

 = 0.641 
1

m2+1
 
1
L 

E

ρ
  
n2-1

n  
1

n2+1
 (13)

( rectangular cross section ),
and the cut-off frequency of open-cell foams ν

cut
 ( in Hz ) on the basis of clamped-clamped

end or free-free end ribs can also be obtained as

ν
cut

 = 0.884 
1
L 

E

ρ
  
n2-1

n  
1

n2+1
 (14)

( circular cross section ),

or ν
cut

 = 1.44 
1

m2+1
 
1
L 

E

ρ
  
n2-1

n  
1

n2+1
 (15)

( rectangular cross section ).

We define a parameter Ξ associated with the degree of convolutedness of the ribs.

Several rib geometries are considered here, and the purpose of Ξ is to provide a common

representation for the different analytical solutions used.

The convolutedness parameter Ξ of a curved beam of sector angle θ is defined as

follows:

Ξ  =  
L

    =  
θ

π
180

2 sin(
θ
2)

(16)

in which  is the straight distance between two end points of the curved beam.  The value of

Ξ increases from 1 as a straight beam to 1.11 as θ = 90°.

2.2. Foam rib modeled as a partial ring ( sector angle 180° ~ 360° )
Using the  Rayleigh method, the natural frequency of a partial ring of sector angle θ

between 180° and 360° with both ends clamped can be obtained [13].  The fundamental
angular frequency ωring ( in radians per second ) of vibration of such a ring in its own

plane is given as

ωring = f(θ) 
E

s
I

µR4 (17)
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in which f(θ) is a numerical factor which decreases as θ increases ( f(θ)=4.5 at θ=180° and

f(θ)=0.6 at θ=360° ), Es is Young's modulus of the solid from which the ring element

considered as a foam rib is made, and µ is the mass density per unit length of the ring.

Substituting Eqs. (10) and (11) into Eq. (17), with I=r4π/4 and µ=ρsr2π for circular

rib foam, I=mt4/12 and µ=ρsmt2 for rectangular rib foam, the cut-off frequency νcut ( Hz )

of open-cell foams is obtained as

νcut = f(θ) 
1

2π
 

L

(dcell)
2 

E

ρ
(18)

( circular cross section ),

or νcut = f(θ) 
1

π
 

2

3(m2+1)
 

L

(dcell)
2 

E

ρ
(19)

( rectangular cross section ),
in which the foam cell diameter dcell = 2R, and E is Young's modulus of the foam. We

remark that Eq. 10 gives the foam stiffness based on bending  of rib elements. Since

curved rib elements have bending rigidity nearly identical to that of straight rib elements,

the same relation can be used.

For the vibration of a partial ring normal to its own plane, the cut-off frequency of

open-cell foams is obtained to be

νcut = f(θ,C) 
1

2π
 

L

(dcell)
2 

E

ρ
(20)

( circular cross section ),

or νcut = f(θ,C) 
1

π
 

1
3 

L

(dcell)
2 

E

ρ
(21)

( square cross section )

in which f(θ,C) is a coefficient similar to f(θ) in Eq. (17) but with additional considerations

on the bending stiffness and torsional stiffness of the ring.  Only the cut-off frequency of

circular and square cross section rib foams is derived as a result of the complication caused

by C in Eq. (21).
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The convolutedness parameter Ξ of a partial ring of sector angle θ from 180° to 360°

is defined as

Ξ  =  
L
2R

    =  θ 
π

360 (22)

with values from 1.571 to 3.142 for a rib modelled as a partial ring.

2.3. Foam rib modeled as a helical spring

Here the foam rib is so curved that it loops upon itself, and is describable as a helical

spring. The governing equation of a helical spring vibrating in the axial direction has been

obtained  as [14]

d2u

dx2  =  
1
2  

(Dm)2

r2   
ρs
Gs

  
d2u

dt2
 (23)

( circular cross section ),

or
d2u

dx2  =  
2.45m
m-0.56  

(Dm)2

t2
  

ρs
Gs

  
d2u

dt2
 (24)

( rectangular cross section ),

in which x is the axial direction of the spring, t is the time, u is the deflection in the x
direction, D

m
 is the mean diameter of the coil, and G

s
 is the shear modulus of the spring

material.

Solving Eqs. (23) and (24) with proper boundary conditions applied, the natural
frequency ν

spring ( in Hz ) of a helical spring vibrating in the axial direction with clamped-

clamped ends or free-free ends is derived as

ν
spring

  =  
1

2π
  

1
ns

  
r

(Dm)2  
Gs
ρs

  (25)

( circular cross section ),

or ν
spring

  =  
1
2  m-0.56

2.45m   
1
ns

  
t

(Dm)2  
Gs
ρs

 (26)

( rectangular cross section ),
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in which ns is the number of the coils of the spring and Gs is the shear modulus of the solid

comprising the spring elements which represent foam ribs.  The natural frequency of a

helical spring with circular coils given by Eq. (25) is identical to that published elsewhere

[10].
Substituting Eqs. (10) and (11) into Eqs. (25) and (26) with G/G

s
=E/E

s
 and d

cell
=

D
m

 applied, the cut-off frequency ν
cut

 ( Hz ) of open-cell foams with ribs modeled as

helical springs is obtained to be

ν
cut

  =  0.113  
1
ns

  
L

(dcell)
2  

G

ρ
  (27)

( circular cross section ),

or ν
cut

  =  0.5  2(m-0.56)

2.45m(m2+1)
  

1
ns

  
L

(dcell)
2  

G

ρ
 (28)

( rectangular cross section ),

in which G is the shear modulus of the foam and ρ is its density.

The convolutedness parameter Ξ of a helical spring of ns turns is defined as

Ξ  =  
nsDmπ

Dm

    =  n
s
π (29)

It is possible in principle to have a helical foam rib with many turns, but such ribs have not

been practically realized.

As given by Eqs. (16), (22) and (29), the convolutedness Ξ of three different

vibrational members which are used to model the foam ribs, are defined consistently.  The

convolutedness Ξ can also be considered as the ratio of the arc length to the maximum

straight distance between any two points along such a member.  For a curved beam of

sector angle θ between 0° and 90°, the value of the convolutedness parameter Ξ is 1 as a

straight beam and increases to 1.11 as a curved beam of θ = 90°.  For a partial ring of

sector angle θ between 180° and 360° and a coil spring, the value of the convolutedness Ξ
is defined as the ratio of the ring length to the ring diameter and increases from 1.571 or
π/2 as a half ring to 3.142 or π as a complete coil, and to nsπ as a coil spring of coil

number (number of turns) ns.  However, the cut-off frequency ν
cut

 of a partial ring of θ
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from 90° to 180° or Ξ from 1.11 to 1.571 is not well obtained yet as a result of a numerical

technique problem.

3. Materials

Results of free-free resonance experiments in torsion conducted at room temperature

were published earlier [4].  Two types of viscoelastic foams, polyester foam and Scott

industrial foam, were tested.  The polyester foam is partly open cell and partly closed cell

and Scott industrial foam is all open cell. Partial closed cells are considered to behave as

open cells since substantial material must be in the cell walls of closed cell foams to result

in significant differences in the mechanical properties according to Gibson and Ashby [12].

The properties which are required for cut-off frequency predictions of these two

conventional viscoelastic foams are listed in Table 1.

4. Results and discussion

The cut-off frequencies of conventional viscoelastic foams were obtained

experimentally as 2500 Hz and 1000 Hz for polyester foam and Scott industrial foam

respectively, as indicated earlier [4]. The experimental results, as well as predictions

obtained with foam ribs modeled as curved beams, partial rings and helical springs, are

shown in Figs. 1 and 2. One might expect the cut-off frequency to behave as a continuous

function of the convolutedness parameter. However different geometrical configurations

are considered as approximations of the cell rib for each part of the range. Therefore

different functional relations result.

Observe that both types of conventional foam exhibit observed cut-off frequencies

considerably lower than the values predicted assuming straight ribs. This comparison is in

contrast to one made earlier [4]. The reason is that a vibration formula for straight bars,

taken from Ferry [15] was later found to be incorrect by a factor of (2π)2 ; the correct

relations are used in the present work. Conventional foams, therefore, behave as if the ribs

were convoluted rather than straight. In the actual foams the ribs are slightly curved in the

conventional foams, and sharply curved into loops (not springs) in the re-entrant foams.

The difference is attributed to concentrations of mass at the junctions of the cell ribs. Such

concentrations were found to be difficult to incorporate into further refinements of the

modelling. Another possible structural feature not yet accounted for includes the presence
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of plate or membrane elements in the polyester foam. Gibson and Ashby [12] have

considered the effect of such elements in the static behavior of foams. If membrane

elements are thin enough, they may resonate at a lower frequency than rib elements. One

may also consider the role of interaction between adjacent cells. Multi-cell theories have

been considered in detail in solid state physics for the analysis of vibration in crystal lattices

[16]. In such theories, it is the size of the unit cell, not the size of ensembles of cells, which

governs the dispersion and cut-off frequency for acoustic waves.  Therefore understanding

the single cell resonant behavior of foams is sufficient unless they contain structure on a

larger scale.

As for viscoelasticity, the foam ribs of a polymer foam can be expected to exhibit

mechanical damping as quantified by the loss tangent tan δ. The tan δ of the cell rib material

will affect the breadth of the rib resonance but not to first order the rib resonance

frequency. The present analysis deals with the cut-off frequency for the foam, which

depends on resonance of the ribs. Viscoelasticity will not to first order affect the

conclusions.

As for the negative Poisson's ratio foams, the structure is clearly more convoluted [5]

than that of conventional foams, so that lower cut-off frequencies are expected and they are

observed for negative Poisson's ratio foams. There is considerable freedom the structure of

negative Poisson's ratio materials: the initial density, permanent volumetric compression,

and rib material properties are all independent variables. The optimal combination which

would result in the most favorable acoustic behavior is as yet not known.  Even so,

negative Poisson's ratio foams studies thus far exhibit higher sound absorption and lower

sound reflection characteristics compared with foams of conventional structure.

5. Conclusions

1. Cut off frequencies are predicted based on modeling of micro-vibration of cell ribs

which may be straight, curved, or helical.

2.  The predicted cut-off frequency decreases as the ribs become more convoluted.
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TABLE 1

Foam material properties

Young's Shear Mass  

modulus  modulus density Cell size Rib length
E ( KPa ) G ( KPa )  ρ ( g/cm3 ) dcell ( mm ) L ( mm )

Conventional

Polyester foam 211 81 0.0310   0.5 0.4

Re-entrant

Polyester foam 211 81 0.0860   0.35 0.4

Conventional Scott

industrial foam 86 33 0.0304 2.5 1.5

Re-entrant Scott

industrial foam 75 29 0.108 1.6 1.5
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1. Modeled cut-off frequency vs  convolutedness parameter Ξ of ribs, polyester foam.

Assumed input properties are those of a polymer foam studied in the laboratory,

vibration normal to plane, clamped-clamped ends or free-free ends.

As indicated, circular cross section ribs, and rectangular cross section ribs, for various

cross section shapes denoted by m.
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2. Modeled cut-off frequency vs convolutedness parameter Ξ of ribs, Scott industrial foam.

Assumed input properties are those of a Scott industrial foam studied in the laboratory,

vibration normal to plane, clamped-clamped ends or free-free ends.

As indicated, circular cross section ribs, and rectangular cross section ribs, for various

cross section shapes denoted by m.


