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Methods are developed for study of isotropic cubes via resonant ultrasound spectroscopy. To that end,
mode structure maps are determined for freely vibrating isotropic cubes via finite element method
over the full range of Poisson’s ratio ν (−1 to +0.5). The fundamental torsional mode has the low-
est frequency provided ν is between about −0.31 and +0.5. Experimental measurements for the
mode structures of materials with Poisson’s ratio +0.33, +0.3, +0.15, −0.15, and −0.72 are per-
formed using resonant ultrasound spectroscopy and interpreted. Methods are developed to identify
pertinent modes. The experimental results match well with the analysis with the exception of some
splitting of some modes because of slight material anisotropy. The effects of slight imperfection of
specimen shape on the first 10 modes are analyzed for various Poisson’s ratios. © 2012 American
Institute of Physics. [http://dx.doi.org/10.1063/1.4765747]

I. INTRODUCTION

Poisson’s ratio (ν) is defined as the ratio of transverse
contraction strain to longitudinal extension strain in tension.
The Poisson’s ratio can range from −1 to 0.5 for thermody-
namically stable isotropic materials, but most common ma-
terials have positive Poisson’s ratio (0.25–0.33) as the cross
section becomes thinner when stretched. Negative Poisson’s
ratio is known to occur for certain directions of load upon sin-
gle crystals and also occurs in designed foams, via unfolding
of the cells.1 Negative values have also been observed experi-
mentally in polymer gels2, 3 and ferroelastic materials4, 5 over
a narrow temperature range near volumetric phase transfor-
mations. Negative Poisson’s ratios in 2D systems containing
rotating rigid discs in contact have been studied by computer
simulations6 and understood via a model7 which has recently
been generalized.8

Resonant ultrasound spectroscopy (RUS)9 can deter-
mine elastic or viscoelastic moduli by measuring the reso-
nance structure of specimens of compact shape, for example,
cubes,10 parallelepipeds, spheres, and short cylinders.11 The
RUS approach has advantages compared with other experi-
mental methods to determine material properties: it is simpler
in that the specimen does not need to be glued, clamped, or
aligned. Numerical inversion of the mode structure to obtain
elastic constants is done in the study of single crystals. The
inversion process complicates the method because several it-
erations of alignment may be needed if some modes do not
appear with sufficient amplitude to be recognized. Numerical
inversion is problematical for materials with high viscoelastic
damping which broadens resonances so they overlap. Inver-
sion does not work well in materials that are not perfectly
homogeneous because the higher modes become out of tune.
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In such cases, a graphical method of interpretation is helpful;
isotropic material properties are readily determined from the
lowest few modes. Demarest10 provided a diagram of modal
frequency as a function of Poisson’s ratio for isotropic cubes
of Poisson’s ratio between 0.05 and 0.45. With such a plot,
one can easily extract Poisson’s ratio as well as modulus and
damping without numerical inversion. However, a Demarest
plot for an isotropic cube over a full range of isotropic Pois-
son’s ratio has not been presented. The present study is in-
tended to fill this gap. The rationale for cubes is that they are
easy to prepare from a wide variety of materials using stan-
dard tools found in a materials laboratory. That is not the case
for pyramids, spheres, or tetrahedrons. Similarly, cylinders
are easily cut from materials that have been cast into tubes.
A cubical specimen shape is particularly appropriate for ma-
terials that cannot be cast, and for materials that are difficult
to machine into other shapes.

In this work, the mode structures for a cube is determined
numerically and plotted for the full range of isotropic Pois-
son’s ratio from −0.98 to 0.48. The effect of slight deviations
from ideal cubic specimen geometry is numerically evaluated
for materials with various Poisson’s ratios. Results are com-
pared with those of Demarest and with experimental results
for materials of positive and negative Poisson’s ratio. Methods
are provided using standard transducers for the identification
of modes.

The rationale for a graphical method to extract mate-
rial properties from vibration mode structure is that (i) for
isotropic materials it can be quicker and more straightfor-
ward than numerical methods; (ii) numerical methods re-
quire many modes for convergence, but in materials with
high viscoelastic damping, higher modes overlap, preventing
convergence; (iii) specimens that are not perfectly homoge-
neous due to polycrystalline structure or in composites or
due to other causes, may exhibit higher modes that are out
of tune, preventing convergence of the algorithm. A graphical
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FIG. 1. Normalized frequencies of an isotropic cube over the full range of isotropic Poisson’s ratio from −1 to 0.5. The capital letters D, T, S, and F refer to:
dilation, torsion, shear, and flexure, respectively; the subscripts “s,” “a,” and “d” refer to symmetric, anti-symmetric, and doublet, respectively; the number refers
to the order of the mode. Modal frequencies are normalized to the fundamental torsional frequency. Experimental data are indicated as ( · ), (!), (∇), (×), and
(◦) which represent Cu foam 2 (Cu foam squeezed by a volumetric compression ratio of 3.10), Cu foam1 (Cu foam squeezed by a volumetric compression ratio
of 1.44), SiO2, Al6061 alloy, and Brass, respectively.

method allows isotropic material property determination from
the lowest few modes; such a method is applicable to such
specimens.

The present paper also provides methods for mode iden-
tification that are appropriate for cubical specimens and that
differ from methods used to identify modes in cylinders.
These methods should be helpful to researchers who use ei-
ther graphical or numerical methods to interpret resonant ul-
trasound results.

II. NUMERICAL ANALYSIS

Cubical models were created using the commercial fi-
nite element software ANSYS on a personal computer. For
the mode structure as a function of isotropic Poisson’s ratio,
isotropic solid cubes were created using 3D, deformable solid
models. Poisson’s ratio was in the range from −0.98 to 0.48.
We did not cover the Poisson’s ratio values of −1 and 0.5, as
these limiting values correspond to zero bulk and zero shear
modulus, respectively; they are not accessible to the software
package. Increments of 0.1 were used. Swept meshes of 2535
hexahedral elements (Solid 185, 8 nodes) were used. Usually,
a mesh of such high density is chosen that its further increase
either does not influence the results or results extrapolated
to infinitely dense mesh do not differ from the obtained re-
sults by more than a chosen error. Mode shapes and frequen-
cies were determined using modal type of analysis; Block
Lanczos was selected as the mode extraction method for the
first 100 modes.

III. EXPERIMENTAL

Samples with cubical shape of the following materials
are prepared: Brass with dimensions 10 × 10 × 10.02 mm3,

Al6061 alloy 10 × 10.1 × 9.9 mm3, fused silica (amorphous
SiO2; Technical Glass, Painesville, OH) 6.66 × 6.66 × 6.64
mm3, and open cell copper foams (Astro Met Associates, Inc.,
Cincinnati, OH) of various size. The samples were cut with a
diamond saw, and sanded and polished into final dimensions.
The as-received copper foam was processed by a sequence of
plastic deformation in orthogonal directions to achieve appro-
priate permanent volumetric compression. This gives rise to
negative values in Poisson’s ratio due to the microbuckling of
the cell ribs.12

Figure 1 shows the RUS sample orientation relative to the
shear and compressional transducer sensitivities. The spec-
imen was supported at its corners with minimal force to
approximate the free vibration condition assumed in the anal-
ysis. Transducers used were Panametrics V153 1.0/0.5 broad-
band shear, polarized with center frequency 1 MHz as well as
longitudinal (compressional) 1 MHz transducers. The driver
transducer was excited via a synthesized function generator.
Shear transducers provide a stronger signal than compres-
sional transducers for some modes, especially for the cru-
cial fundamental torsional mode.13 The output of the receiver
transducer was amplified by a preamplifier. The bandpass was
100 Hz–300 kHz and the gain was from 100 to 1000. The
function generator (Stanford Research DS 345) has a quoted
frequency resolution of 1 µHz, and an accuracy of 5 ppm.
The signals were captured by a digital oscilloscope (Tektronix
TDS 3012B). Contact force was adjusted by moving one
transducer with a fine micrometer drive (vertical stage, New-
port type MVN50). Contact force can perturb modulus and
damping measurement. So, contact force was minimized in
these experiments, translating to a small systematic error.

Identification of modes was done as follows. Polarization
effects on the torsion mode are not as effective for the cube
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as it is for the cylinder. As the cube is rotated about its con-
tact points, the received signal varies with a period of 120◦,
corresponding to the symmetry of the cube. Higher modes
exhibit a similar variation but with a shift in phase. There-
fore, the torsion mode was identified by placing the speci-
men at the center of longitudinal transducers. Assuming per-
pendicular alignment, the torsion mode amplitude is zero by
symmetry. Experimentally the torsion mode was too weak to
resolve in this case. A repeat scan is done with the contact
points near the periphery of the longitudinal transducers. The
torsion mode then appears. The torsion mode is also strong
if shear transducers are used. The torsional mode was identi-
fied by comparing the resonant responses obtained from the
shear transducers with those obtained from the compressional
transducers.

IV. RESULTS AND DISCUSSION

A. Numerical results: Effect of Poisson’s ratio
on modes

Figure 1 shows the Demarest plot for an isotropic cube
(bodies of cubic shapes made of isotropic materials) over the
full range of isotropic Poisson’s ratio from −1 to 0.5. Fre-
quencies are normalized to the following frequency:

f 0 = 1
πL

√
G
ρ

, (1)

in which L is the cube side length, and ρ is the density. This
is the normalization used by Demarest; the torsion mode ap-
pears in the graph at a normalized frequency f/f0 =

√
2. The

lowest Mindlin–Lamé shear mode14 in the isotropic cube is a
factor 1.57 up from the fundamental torsion mode and, as with
torsion, is independent of Poisson’s ratio. The Mindlin–Lamé
mode frequencies are known analytically for several symme-
try classes. For example, in the cubic system, with m as an
integer

f = m

L
√

2

√
(C11 − C12)/2

ρ
. (2)

For the isotropic case, (C11−C12)/2 = C66 so this fre-
quency is governed by the shear modulus alone. That is useful
in the identification of modes particularly in ranges of Pois-
son’s ratio for which the Mindlin - Lamé modes (e.g., Dd1)
are well separated from other modes.

The modes shown in Fig. 1 represent the first 20 modes.
Discrete values of Poisson’s ratio chosen give rise to kinks in
the curves. The results agree with those of Demarest for the
range of Poisson’s ratio for which results are given.

It can be seen from Fig. 1 that the fundamental mode for
an isotropic cube is the torsional mode (i.e., Td1) when the
Poisson’s ratio is between approximately −0.31 and +0.48.
For −0.57 <ν < −0.31, the fundamental mode is a predomi-
nantly bending mode (i.e., Fs1). For −0.98 < ν < −0.57, the
fundamental mode is the first dilation mode (i.e., Ds1). The
Fs1 mode has a sufficient slope with respect to Poisson’s ra-

FIG. 2. Representative mode shapes and their dependence on Poisson’s ratio
for the first five modes including Td1, Fa1, Ss1, Fs1, Ds1. Colors represent
magnitude of displacement; for interpretation of color (or shading), refer to
the text.

tio to allow its determination; it is the second mode for −0.24
< ν < 0, the fourth mode for 0 < ν < 0.25, and the sixth mode
for −0.25< ν < 0.46. The lowest frequencies are particularly
important for interpretation because torsion provides G alone,
and the lowest modes are spaced more widely than higher
ones. Modes Fs1, Dd2, Ds1 are very sensitive to Poisson’s
ratio; mode Fs1 is the lowest mode with substantial slope so
it is the most useful to obtain Poisson’s ratio.

Representative mode shapes of isotropic cubes and their
dependence on Poisson’s ratio for the first five modes (i.e.,
Td1, Fa1, Ss1, Fs1, and Ds1) are shown in Fig. 2. Colors rep-
resent the magnitude of displacement. Minimum and zero dis-
placement appear as dark blue. Maximum displacement ap-
pears as red, and the intermediate displacements appear as
yellow and green. For torsion, the maximum displacements
occur at the cube corners; zero displacements occur along the
axis of rotation and on the surface at the midpoint between
edges.

Generally speaking, slight deviation in shape from ideal
cube inevitably exists from an experimental perspective. Such
deviations may include the difference in side length and devi-
ation from right angle corners, corresponding to a monoclinic
shape. It will be helpful for the interpretation of experimental
results by exploring the effects of such shape deviations from
the ideal cube on the mode structures.

Figure 3 shows the normalized frequencies for the first
10 modes of an isotropic cuboid with slight tetragonality as a
function of aspect ratio H/L (i.e., tetragonality) for materials
with various Poisson’s ratios. The cuboid has side length of
L and height of H (as shown in Fig. 5(a)). Most modes tend
to shift to lower positions on the vertical axis when the aspect
ratio H/L deviates from 1, but the decreasing rates vary from
one mode to another. Other modes, such as Fa2 and Ss2, will
keep a monotonic rate in lowering of position as aspect ratio
H/L increases. As a result, the order of mode structures may
change due to the tetragonality of the cube specimen.

Figure 4 shows the first ten modes of the cuboid with a
slightly monoclinic shape (with equal sides) versus the shear
deforming angle (linear art figure is shown in Fig. 5(b) for the
illustration of shear deformation and angle α) at various Pois-
son’s ratios. It can be observed from Fig. 5 that slight shear
deformation has minimal effect on the normalized frequencies
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FIG. 3. Normalized frequencies for an isotropic cuboid as a function of aspect ratio H/L for materials with various Poisson’s ratios (a) v = −0.98; (b) v = −0.5;
(c) v = −0.2; (d) v = 0; (e) v = 0.3; and (f) v = 0.48.

for almost all the modes studied. No kink was observed on
any mode as the shear deforming monoclinic angle changes
(within the range from 90◦ to 93◦). Modes monotonically shift
to lower positions on the vertical axis with increasing mono-
clinic deformation but with different slopes. Fs1 and Fa1 have
steeper slopes compared with other modes with respect to the
deformation. Such an effect is considered to be attributed to
the following reason. Fs1 and Fa1 correspond to the bending
modes; the cuboid shear may allow bending deformation to

occur more easily, and hence makes the modes to show up at
relatively lower frequencies.

B. Experimental results

The mode structures for brass, Al6061 alloy, SiO2, and
Cu foam cube samples were determined through RUS mea-
surements and were plotted in Fig. 1 to compare with the
numerical results. Frequencies were normalized to the first

FIG. 4. (a)–(f) Normalized frequencies for an isotropic cuboid as a function of shear deforming (monoclinic) angle α for materials with various Poisson’s ratios.
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FIG. 5. A cuboid with (a) tetragonal and (b) monoclinic deformation.

torsional mode frequency. The first torsional mode is deter-
mined by the following method. The torsional mode is usually
too weak to be detected by using compressional transducers,
particularly if the specimen is positioned at the transducer
centers. By contrast, a very sharp response can be observed
by using shear transducers. For brass, Al6061 alloy and SiO2,
the first torsional mode is found to be the lowest mode that can
be detected (i.e., no additional mode below the first torsional
mode was found), and their torsional fundamental modes are
105.5 kHz, 145.1 kHz, and 262.8 kHz, respectively. The cor-
responding shear moduli derived from Eq. (1) are 36.8 GPa,
28 GPa, and 33.2 GPa, respectively, which are consistent with
published results.11 Compared with the Demarest plot derived
from the present numerical analysis, the Poisson’s ratios of
brass, Al6061 alloy and SiO2 were determined to be +0.33,
+0.3, and +0.15, respectively. These results are consistent
with accepted values. Also the Mindlin Dd1 mode was too
weak to resolve when the specimen was at the center of lon-
gitudinal transducers, but became visible when the specimen
was placed off center or tested with shear transducers.

For the two re-entrant copper foam specimens with dif-
ferent volumetric compression ratios of 1.44 and 3.1, the first
torsional frequency and calculated shear modulus are 4.612
kHz and 75.5 MPa, 5.88 kHz and 158.7 MPa, respectively.
However, the first torsional mode is not the fundamental (low-
est) mode for the copper foam specimen with a volumetric
compression ratio of 3.1. A non-torsional mode was observed
below the first torsional mode, which is identified by the
fact that it shows up by using both compressional transduc-
ers and shear transducers; the torsion mode is not detectable
when compressional transducers are used and the specimen
is placed at the center. The Poisson’s ratios of the two re-
entrant copper foam specimens were determined to be about

−0.15 and −0.72, respectively (as shown in Fig. 1). Splitting
of the first mode was observed which is attributed to a slight
material anisotropy. The Poisson’s ratio of transformed cop-
per foam is consistent with values reported earlier.

The plot of mode structures for a cube sample as a func-
tion of Poisson’s ratio ν was generated numerically over the
full range of isotropic Poisson’s ratio ν (−1 to +0.5). The fun-
damental frequency is the torsional mode when ν is between
−0.31 and +0.5, and is the bending mode when −0.57 < ν

< −0.31. The dilation mode becomes the fundamental fre-
quency when ν < −0.57. The Fs1 mode has a sufficient slope
with respect to Poisson’s ratio to allow its determination. It is
the second mode when −0.24 < ν < 0, the fourth mode when
0 < ν < 0.25, and the sixth mode when −0.25 < ν < 0.46.

V. CONCLUSIONS

The present numerical results are in good agreement with
the present RUS experiments for cubes with Poisson’s ratio
+0.33, +0.3, +0.15, −0.15, and −0.72. The results match
well except for slight splitting of some modes by less than 5%
because of slight material anisotropy. Modes were identified
by difference in response to longitudinal vs. shear excitation,
therefore, mode splitting did not interfere with interpretation.
The effects of slight deviation from ideal cubical shape on the
first 10 modes are analyzed for various Poisson’s ratios. Re-
sults show that the effects of monoclinic deviation are small,
while the effects of tetragonal deviation are of larger magni-
tude. Small deviations do not interfere with interpretation.
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