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Abstract:  
In this paper, the method for determining the Poisson's ratio of isotropic spheres is studied via resonant 
ultrasound spectroscopy (RUS). To that end, The mode structure maps for freely vibrating isotropic spheres are 
obtained via finite element method over the full range of Poisson’s ratio (-1 to +0.5). RUS experimental 
measurements for spherical materials (Pure indium, steel, SiO2, 13.5wt% In-Sn alloy, and copper foams) are 
compared with the numerical results and the Poisson's ratio is determined as +0.4, +0.3, +0.2, -0.08, and -0.3, 
respectively. The effects of slight imperfection of specimen shape on the first 12 modes are analyzed for various 
Poisson’s ratios.  
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1. INTRODUCTION 

Poisson's ratio (ν) is defined as the ratio of the transverse contraction strain to the longitudinal extension 
strain in tension. Poisson’s ratio can range from -1 to 0.5 for isotropic materials, but most solids have positive 
Poisson’s ratio (0.25-0.33). Negative Poisson’s ratio is known in single crystals and also occurs in designed 
foams via unfolding of the cells [1]. Negative Poisson’s ratio behavior has been observed experimentally in 
polymer gels near the phase transitions [2, 3], orthorhombic alloy in a set of planes [4], ferroelastic ceramic [5] 
and InSn alloy [6] near the phase transformations.  

RUS [7] is known as a useful technique to determine elastic or viscoelastic moduli by measuring the 
resonance structure of specimens with compact shapes such as cubes, spheres, and short cylinders [8]. Yaoita [9] 
provided a diagram of modal frequency as a function of Poisson’s ratio for isotropic spheres of Poisson’s ratio 
between 0 and 0.45. With such a plot, one can easily extract Poisson’s ratio as well as modulus and damping 
without numerical inversion[10]. However, with the development of negative Poisson's ratio materials, it is 
necessary to obtain a plot over the full range of isotropic Poisson’s ratio.   

In this work, the mode structures for a isotropic sphere is determined numerically for the full range of 
Poisson’s ratio from -0.98 to 0.48. The Poisson's ratios of steel, SiO2, re-entrant copper foam, pure Indium and 
13.5wt% In-Sn alloy spheres were determined experimentally via RUS. Experimental measurements were 
compared with the numerical results, and good agreement was found between the measurements and predictions. 
The effect of slight ovality was also evaluated numerically for materials with various Poisson’s ratios. 
2. NUMERICAL ANALYSIS 

The mode structures as a function of isotropic Poisson’s ratio of an isotropic solid spheres were studied 
using the commercial finite element software ANSYS with the 3D deformable sphere models. Poisson’s ratio 
was set to vary from -0.98 to 0.48 with an incremental step of 0.1. Mapped meshes of 32000 hexahedral 
elements (Solid 185, 8 nodes) were used. Mode shapes and frequencies were determined using modal type of 
analysis; Block Lanczos was selected as the mode extraction method for the first 200 modes. 
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3. EXPERIMENTAL 
Spherical samples were prepared using five different materials, steel, fused silica (amorphous SiO2; 

Technical Glass, Painesville, OH), 13.5wt%In-Sn alloy (a composition near the phase boundary; alloy 
fabrication method can be found in [6]), pure indium (99.9%, TED PELLA, Inc., Redding, CA), and open cell 
copper foams (Astro Met Associates, Inc., Cincinnati, OH), with a diameter of 30.0mm, 29.2mm, 9.1mm, 23mm, 
10.0mm, respectively. The as-received fused silica was in spherical shape; metal samples were cut into sphere 
with a CNC mill. The copper foams were initially squeezed from the orthogonal directions to get re-entrant 
copper foams with negative Poisson's ratio [11].  

The RUS samples were supported by two transducers (as shown in Fig. 1) with minimal force to 
approximate the free vibration condition assumed in the analysis. Transducers used were Panametrics V153 
1.0/0.5 broadband shear, polarized with center frequency 1 MHz and longitudinal (compressional) 1 MHz 
transducers. The driver transducer was excited via a synthesized function generator, and the output was 
amplified by a preamplifier, signals were captured by a digital oscilloscope. The band-pass used was from 100 
Hz to 300 kHz.  
4. RESULTS AND DISCUSSION 
4.1. Numerical results 

Fig. 1 shows the plot for an isotropic sphere over the full range of isotropic Poisson’s ratio from -1 to 0.5. 
Frequencies are normalized by f0 [9]: 
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where R, G and ρ  are the radius, shear modulus and density of the sphere. The fundamental torsional  mode 
appears in the graph at a normalized frequency f/f0 = 2.5.  

Fig. 1 shows the first 12 modes. Discrete values of Poisson’s ratio chosen give rise to kinks in the curves. 
The results agree well with Yaoita's plot in the corresponding range of Poisson's ratio. 

 

    Fig. 1 shows that the fundamental mode for an isotropic sphere is the torsional mode (i.e., 1T2) when the 
Poisson’s ratio  is between -0.13 and +0.48. For spheres with a Poisson ratio below -0.13, the fundamental mode 
is a predominantly spherical mode (i.e., 1S0). Modes 1S0, 2S2 and 2S1 decrease rapidly in frequency with 
decreasing Poisson’s ratio. The mode 2S1 always shows up as one of the first three modes, and its rapid change 
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as a function of Poisson ratio compared with the other two first modes (i.e., 1T2 and 1S2) allows for its easy 
identification. 1S2 is the second mode when -0.98 < ν< -0.13, and the third mode when -0.13 <ν< 0.48. The 
torsional modes (broken line) are insensitive to Poisson's ratio's since the torsional modes are determined by 
shear deformation only. However, the spheroidal modes (solid line) are determined by both shear and 
compression deformation, therefore they are sensitive to Poisson's ratio. 

 
    Fig. 2 shows the representative mode shapes of isotropic spheres and their dependence on Poisson’s ratio 
for modes 1T2, 1S2, 2S1, 1T3, 1S3 and 2T1. Colors represent the magnitude of displacement with dark blue refers to 
minimum displacement, and red the maximum displacement. the intermediate displacements appear as yellow 
and green. 

In reality, slight deviation in shape from an ideal sphere inevitably exists. Therefore, it is helpful for the 
interpretation of experimental results by investigating the effect of ovality on the mode structures. 

 

Fig. 3 shows the normalized frequencies of the first 12 modes of an isotropic spheroid with slight ovality as 
a function of the aspect ratio R1/R0 for materials with various Poisson’s ratios. The aspect ratio R1/R0 is defined 
in Fig. 4.  
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    As shown in Fig. 3, most modes tend to shift to lower frequencies when the aspect ratio R1/R0 deviates 
from 1, but the decreasing rate is different from one mode to another. Modes 1T2 and 2S1 are insensitive to R1/R0 
ratio. Close examination of Fig. 3 suggested that slight ovality has a very small effect on the experimental 
results since the relative positions of the modes do not change.   
4.2. Experimental results 

The mode structures of steel, SiO2, open cell Cu foam, InSn alloy and pure indium sphere samples were 
plotted in Fig. 1 and compared with the numerical results. Frequencies were normalized to the first torsional 
mode frequency. The first torsional modes were found to be the lowest mode of steel and silica spheres with a 
frequency of 85.4kHz and 92.6kHz, respectively, and the corresponding shear modulus derived from Equation 
(1) is 80.8GPa and 29.0GPa, respectively; the shear moduli are consistent with published results [12]. Compared 
with the numerical results, the Poisson’s ratios of steel and SiO2 were determined to be +0.3 and +0.2 
respectively. For the re-entrant copper foam specimen with volumetric compression ratio of 2.4, the first 
torsional frequency and the calculated shear modulus is 18.04kHz and 447.6MPa, respectively. A non-torsional 
mode was observed below the first torsional mode, confirmed by the observation that this mode showed up by 
using both compressional and shear transducers. The Poisson’s ratio of the re-entrant copper foam specimens 
was determined to be about -0.3; this is consistent with the recently reported value [12]. The shear modulus and 
Poisson's ratio of the InSn alloy were determined to be 17.6GPa and -0.08 respectively. The results are also 
consistent with recently reported values [6]. This alloy is highly sensitive to small changes in composition, so 
some variation is expected. Confirmation for the negative Poisson's ratio materials is as follows. For the copper 
foams, similar foams were studied using optical methods [11] with similar results. For the InSn alloys, RUS 
measurements were also done [6] using a cylindrical shape, with identification of modes. 
5. CONCLUSIONS 

Experimental results are in good agreement with the numerical results in terms of the mode structures of 
spheres with Poisson’s ratios of +0.3, +0.2, -0.08 and -0.3. Slight splitting of some modes (less than 5%) was 
observed and considered to be attributed to the material anisotropy. However, modes can be identified by the 
difference in response to the longitudinal and shear excitations; therefore, mode splitting did not interfere with 
interpretation. The effects of slight sample ovality on the first 12 modes are also studied for various Poisson's 
ratios, and are found to be negligible in interpretation of the experimental results.  
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Figure caption 
 
Fig. 1 Normalized frequencies of an isotropic sphere over the full range of isotropic Poisson’s ratio from -1 to 
0.5. The capital letters iTn, and iSn refer to the torsional and spheroidal mode respectively; the subscripts “i” and 
“n” refer to the number of modes in the radial direction of sphere and the order of spherical Bessel functions, 
respectively. Modal frequencies are normalized to the fundamental frequency. Experimental data are indicated 
as (○), (*), (�), (□)and (●) which represent steel, SiO2, InSn alloy(13.5%In, air cooled), pure indium and Cu 
foam (Cu foam squeezed by a volumetric compression ratio of 2.4), respectively. 
 
Fig. 2 (Color online) Representative mode shapes and their dependence on Poisson’s ratio for the modes 1T2, 1S2, 

2S1, 1T3, 1S3 and 2T1. Colors represent magnitude of displacement; for interpretation of color (or shading), refer 
to the text. 
 
Fig. 3 Normalized frequencies for an isotropic ellipsoid as a function of aspect ratio R1/R0 for materials with 
various Poisson’s ratios. (a) ν=0.3;(b) ν =0,(c) ν =-0.5;(d)ν =-0.98. 
 
Fig. 4 The ellipsoid model 


