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Substantial softening in the bulk modulus (a factor of five) and a negative Poisson 

ratio (-0.25) have been observed via broadband viscoelastic spectroscopy in the 

vicinity of the Curie point of a barium titanate ceramic. These effects were observed 

under electrical short-circuit conditions at low deformation frequencies. Softening 

was less in an electric open circuit or at higher frequencies. Softening of individual 

elastic modulus tensor elements is known to occur near phase transformations, but 

softening of the bulk modulus has not previously been well reported.  

 
 
 

1. Introduction 
 

    The Poisson ratio can range from -1 to 0.5 for thermodynamically stable isotropic materials, but 
most solids have a positive Poisson ratio (0.25-0.33). Negative Poisson ratios are known for 
(anisotropic) single crystals and also occur in designed foams, via unfolding of the cells [1]. Negative 
values have also been observed experimentally in polymer gels [2, 3] near the volume phase transition. 
Negative Poisson ratios in 2-D systems containing rotating rigid discs in contact have been studied by 
computer simulations [4] and understood via a model [5] which has recently been generalized [6]. The 
negative Poisson ratio in a system composed of identical hexamers in contact arises from the interaction 
between the hexamer shaped discs. 
    If the Poisson ratio is less than -1, the bulk modulus becomes negative provided the shear modulus 
is positive. This is unstable in an object with free surfaces but can be stabilized by constraint [7]. 
Negative moduli are allowed in elasticity theory (under constraint) and are anticipated in the Landau 
theory for phase transformations. Specifically, negative stiffness is theoretically predicted in some 
ferroelastic materials, for example barium titanate, during phase transformations. Landau theory 
predicts a negative stiffness during ferroelastic phase transformation as the second derivative of Landau 
energy with respect to strain becomes negative at temperature T slightly below or above Tc. The 
negative stiffness in ferroelastic materials cannot be directly observed in bulk samples free of 
constraints, since bands and domains will form before the instability occurs [7]. 
    Negative stiffness is of interest in the context of its role in composites. Classical bounds [8] on the 
properties of a composite predict they cannot exceed those of the constituents. If the stiffness of a 
constituent is negative, there is initial stored energy which violates the assumption of the bounds that 
each constituent begins at a minimum of stored energy. Bounds can be violated by embedding negative-
stiffness elements into a positive-stiffness matrix. Composite stiffness and damping [9, 10] can tend to 
infinity if the concentration and stiffness of the constituents are well designed. Negative stiffness [7] 
can be achieved in systems such as pre-strained objects, in which stored energy is involved [11].  
    Recent study [12] on a particulate composite of polycrystalline BaTiO3 in Sn reveals an extremely 
large Young’s modulus (even larger than that of diamond) within a narrow range of temperature 
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entailing negative bulk modulus (inverse compressibility) of the ceramic inclusions. Before the bulk 
modulus becomes negative, it should soften to zero, and the Poisson ratio should go to -1. Mechanical 
studies on barium titanate ceramics have been performed by some researchers [13-18]. Taken together, 
these tests have covered a wide range of frequency, and some apparent softening in Young’s modulus 
has been observed during the transformation near the Curie point (tetragonal-cubic), while the softening 
in shear modulus has been relatively slight. Softening in Young’s modulus observed thus far has been 
modest. More recently, polycrystalline barium titanate [18] was observed to have a slightly negative 
Poisson ratio (-0.002) near the Curie point under electrically free boundary conditions.  

The purpose of the present study is to experimentally observe and understand the conditions under 
which softening occurs in the bulk modulus of barium titanate ceramic. Both electrical boundary 
conditions and variation with frequency are explored. 

 

 
2. Experiment 

 

In the present study, broadband viscoelastic spectroscopy has been used to study the mechanical 
moduli of two barium titanate ceramic specimens over a range of temperature from 25

o
C to 130

o
C at 

frequencies as low as 0.1 Hz. These two specimens were cut adjacent to each other from a piece of 
barium titanate (Alfa Aesar, 99.9% metals basis). One measured 0.8 mm x 1 mm by 9.56 mm and the 
other 0.78 mm x 1 mm by 8.68 mm after cutting (with a diamond saw) and polishing. On one specimen 
(0.8 mm x 1 mm by 9.56 mm) gold was sputtered onto all its surfaces. The electrical resistivity (per 

length) was measured 0.09 /mm. The other specimen was not coated.  
Deformation of each specimen was induced by an electromagnetic torque applied on a permanent 

magnet attached to its free end, and measured by laser light reflected from a mirror mounted on the 
magnet to a wide-angle two-axis photodiode position sensor (Pacific Silicon Sensor Inc. DL100-
7PCBA, Westlake, CA). Data (magnitude and phase of the angular displacement with respect to the 
torque) were captured by a lock-in amplifier (Stanford Research System SR850) and were observed on 
a digital oscilloscope. Frequencies used were well below the lowest natural frequency of the specimen 
(bending: 1200 Hz; torsion: 13000 Hz). Calibration experiments were done using the well-characterized 
type 6061 Al alloy (E298K = 68.9 GPa, G298K = 26 GPa at 1 Hz). Temperature was monitored by a 
miniature K-type thermocouple (OMEGA L-0044K), the tip of which was placed 0.5 mm away from 
the specimen surface near the base. Temperature was either raised or decreased at a rate of 0.008

o
C/s in 

uniformly flowing air. The thermal gradient could be controlled within 0.2
o
C along the length of the 

specimen. The strain applied was on the order of 10
-6

.  
Reflection optical microscopy observations (Nikon Eclipse 80i light microscope with Nikon 

DXM1200F digital camera, Japan) were performed on a sample mechanically ground with SiC abrasive 
papers from 200 grit down to 1200 grit and finally polished with Al2O3 powders (0.3 µm) on a nap 
cloth. The etchant was 100 ml of 10% HCl with several droplets of 48% HF [19], and the specimen was 
etched for 80 s.  

 

 
3. Results 

 
   Optical microscopy observation reveals that most of the grains have a size about 25 µm. Domains 
exhibit a hierarchical structure with the smallest domains resolved in the optical microscope being 
about 1 µm in width (Figure 1). Though there is not a pronounced difference in terms of the grain size 
and shape between present specimens and those used in Ref. 18, the density of the barium titanate 
ceramic from Alfa Aesar (5.85 x 10

3
 kg/m

3
) is closer to the theoretical value (6.02 x 10

3
 kg/m

3
); 

therefore fewer pores exist in the present specimens than those in Ref. 18. Pores can be regarded as one 
type of defects because they are different from the bulk in terms of elastic and thermal properties.   

  Figure 2 presents the mechanical softening associated with the cubic-to-tetragonal transformation 
in the vicinity of the Curie point of the coated specimen under nearly isothermal conditions (0.008 
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°C/s). A sampling of the data points is plotted to clarify the graph. Polycrystalline barium titanate is 
isotropic in nature due to the random orientations of the grains. Therefore, the bulk modulus |K*| and 

the Poisson ratio  were calculated from the observed Young’s modulus |E*| and shear modulus |G*| by 
referring to Equations 1 and 2, which are applicable to isotropic materials:  

 

= E/2G-1            (1) 
 

K = E/3(1-2          (2) 

 
 

  The Young's modulus fell considerably through the transition in contrast to the shear modulus 
which did not vary much. A significant softening occurred in bulk modulus by a factor of five and a 
transient negative Poisson ratio during the transformation was inferred. The Poisson ratio remains 
negative within a range of 0.5

o
C, and reaches a minimum of about -0.25 at about 126.2

o
C. This 

temperature region agrees well with theory which predicts that the elastic anomalies will appear within 
a temperature range of the order of 0.1

o
C [20].  

  Figure 2 displays a negative Poisson ratio within a narrow range of temperature near the Curie 
point. The Poisson ratio refers to the negative ratio of the transverse strain to the longitude strain during 
stretching. The negative Poisson ratio observed during the ferroelastic transformation does not violate 
the stability condition; however, this is an interesting phenomenon rarely reported in stiff isotropic 
polycrystalline material.   

 
 

 
 

Figure 1. Microstructure of barium titanate ceramic from Alfa Aesar (99.9% metal basis) as revealed by 
reflection optical microscopy in polarized light.   

 



4 

 
 

Figure 2. Mechanical softening during phase transformation near the Curie point of coated barium 
titanate ceramic at 0.1 Hz. The plot includes the observed Young’s modulus |E*| and shear modulus 
|G*| of the coated ceramic, and Young’s modulus of the uncoated ceramic. Also shown are the inferred 

bulk modulus |K*| and the Poisson ratio .  
 
 
 
 

4. Discussion 
 

    A reduction by a factor of five in the bulk modulus occurs during the transition but it does not go 
to zero. Gradients in temperature, in composition, and in stress upon the crystals in the ceramic could 
broaden the transition and mitigate the softening effect. However, we argue that temperature gradients 
do not contribute in the present experiment as detailed below.  

  Thermal gradients should be controlled during dynamic measurements because they can broaden 
the apparent transformation. Thermal gradients arise from thermoelastic effects and temperature 
variations in the apparatus (~ 0.2

o
C in our case). The thermal gradient across the cantilever arising from 

thermoelastic effects can be minimized to a negligible level by applying a small strain. During dynamic 
test, the front and back parts of the cantilever will expand and contract. Temperature changes due to 
thermoelastic coupling are given by the following formula, for rapid adiabatic deformation [21]:   

 

∆T = - E 
T/CV      (3) 

 
in which E is Young’s modulus (E = 100 GPa), CV is the heat capacity per unit volume (2.53 x 10

3 
J/K 

m
3
) [22],  is the linear coefficient of thermal expansion (10

-4
 /

o
C in the vicinity of the Curie point [7]). 

A strain of 10
-6

 will cause a thermal gradient of 0.002
o
C which is minimal. 

  A thermal gradient along the cross-section of the cantilever can arise from a delay in thermal 
diffusion, following Equation (4) [23]:  
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 = (1/4)  CPd2/k   (4) 

 

in which , d, k, Cp and  represent the thermal diffusivity time constant, the depth of penetration of 

heat in time , the thermal conductivity, the heat capacity and the mass density, respectively. Given a 
thermal conductivity of 4.7 W/(m K) [24], a heat capacity of approximately 600 J/(K kg) [25] when the 
“tetragonal to cubic” transformation takes place, and a mass density of 5.85 x 10

3
 kg/m

3
, the thermal 

diffusion was estimated to be about 5.5 mm
2
 s

–1
. For a cross-section of 0.8 mm

2
, heat transfer could 

thus be completed within 0.15 s. As the thermal heating or cooling rate is reduced to 0.008°C/s, the 
thermal gradient in the cross-section can be neglected. Moreover, based on this time constant, 
deformation at the lowest frequency used, 0.1 Hz, is isothermal, not adiabatic, so thermoelastic 
temperature gradients at low frequency are minimal.  

  In addition to these types of thermal gradient that can be controlled by the experimenter, the 
heterogeneity in transition temperature among different grains (or domains) can broaden the 
transformation and reduce the softening. Compositional and size difference will broaden and weaken 
the softening during the transition as different elements will transform at different times. For example, 
crystal deformation is partially restrained by adjacent crystals (grains) in the polycrystalline ceramic. 
The strain change of bulk material at the Curie point is about 2 x 10

-4
. Suppose the anisotropic strain of 

the individual crystals is of similar magnitude, then, with a modulus of about 100 GPa, the stress is 20 
MPa. Given the published shift of Tc of 0.04

o
C per MPa, this gives a shift of 0.8

o
C which is substantial 

enough to account for much or all of the broadening. If some grains in the polycrystal soften at a 
particular temperature, the polycrystal will behave as a sponge, softer than the bulk ceramic but the 
modulus will not go to zero.  

   Curve fitting has been performed on the data on the right side of the Curie point (T > Tc) for the 
bulk modulus vs. temperature curve of the coated ceramic, as shown in Figure 3 (a). Extrapolation of 
the fitting curve does approach zero at a temperature between 126.1

o
C and 126.2

o
C. From the present 

result, we may say that if the bulk modulus (and the Young’s modulus) can go to zero during the 
transformation, such a softening will be limited within a temperature range of 0.1

o
C. Such a softening 

to zero may be associated with the discontinuous nature of the weakly first-order transformation. 
Softening in the shear elastic tensor element C66 to zero has been observed in single-crystal KH2PO4 
[26] during its phase transformation when the thermal gradient is controlled within 0.001

o
C and the 

thermal rate is 0.002
o
C/h (zero field is maintained). Although such an observation suggests that 

improved control of thermal gradient would disclose more pronounced softening of the bulk modulus in 
the present material, the intercrystalline heterogeneity discussed above can also account for the 
broadening observed.  

Ishidate et al. [27] have presented the elastic Curie-Weiss behaviour of the elastic constants of 
barium titanate in the context of a pressure-induced transformation. In view of the fact that temperature 
and pressure are equivalent thermodynamic variables, the elastic constants have analogous elastic 
Curie-Weiss behaviour as for a temperature-induced transformation. Therefore, the elastic anomaly part 
(subtracting the real value of the bulk modulus from the linear part given by the broken line in Figure 

3(a)) of the bulk modulus is expected to be proportional to the inverse of T-T0 [27], i.e., K ~ 1/(T-T0), 
except near Tc. This behaviour is shown in Figure 3(b) with T0 equal to approximately 126.2

o
C. In the 

immediate vicinity of Tc, as the bulk modulus approaches zero, K deviates from a linear response to 

the form K ~ 1/(T-T0)
γ
, similar to the behaviour of the susceptibility [28].  

  A sufficiently low excitation frequency is also crucial for observing the softening during 
transformation. Only if the characteristic time (relaxation time) of the transformation, which decreases 
with decreasing strain [29], is sufficiently short compared to the period of excitation stress [30] is a 
very large softening expected to be observed. The relaxation time of the transformation near the Curie 
point is of the order of 10

-11
 - 10

-10 
s; therefore, this effect can only become prominent at high 

frequencies in ultrasonic tests, for which the acoustic frequency is in the range 10
5 
- 10

9
 Hz [20]. The 

frequency dependence of the modulus softening for both coated and uncoated specimens from 0.1 Hz 
up to 10 Hz is given in Figure 4 (only a sampling of the data points is given to clarify the graph). The 
strain applied is of the order of 10

-6
. Though the excitation frequencies are much lower than the 
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acoustic frequency, the effect of frequency on the modulus softening is still noticeable in the vicinity of 
the phase transformation. The reason is that there are other sources of frequency dependence as 
discussed below. 

   
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. (a) Curve fitting for the bulk modulus of the coated ceramic in the vicinity of the 
transformation. Solid lines are guides to the eye. Extrapolation suggests the bulk modulus will approach 

zero between 126.1
o
C and 126.2

o
C. (b) K (inverted triangles) and 1/K (solid circles) vs. temperature 

near the Curie point. K is obtained by subtracting the real value of K from the linear part shown with 

the broken line in Figure 3(a). K follows an elastic Curie-Weiss law except near Tc, with T0 = 126.2
o
C.  
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  Electrical boundary conditions influence the softening, in particular the coated specimen under short-
circuited condition exhibited more softening than the uncoated specimen. Effects of electrical boundary 
conditions are well known in single-crystal ferroelectrics. If the crystal is insulated (so that the electric 
field is free to vary), polarization caused by stress will generate surface charges which in turn give rise 
to a depolarizing field significantly reducing the polarization. So the elastic compliance is not expected 
to behave as anomalously as in the case of a short circuit. For a polycrystalline material, the effect of an 
electric short circuit on modulus softening will not be expected to be as pronounced compared with a 
single crystal. A small specimen size, however, may enhance the effect. The specimens in the present 
study were about 100 grains wide in cross-section. A stronger effect for small specimens may not, 
therefore, be due to grain size but to the influence of heterogeneity of residual stress or composition. 

 

 
 
   

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Frequency dependence of Young’s modulus from 0.1 Hz to 10 Hz for both coated and 

uncoated specimens in the vicinity of the Curie point. A slow rate of temperature change (0.008
o
C/s) is 

maintained. The strain applied is of the order of 10
-6

. 

  
  The mechanical softening during a first-order phase transformation has three contributions, and can 

be expressed theoretically in terms of changes in Young's modulus E as [31]: 
 

∆E = ∆Etransient + ∆EPT + ∆Eintrinsic    (5) 
 

in which the three terms on the right side of the equation refer to (1) the contribution from transient 
experimental conditions (thermal rate and frequency), (2) the contribution from the phase 
transformation itself, and (3) the contribution from the transformation twin walls, respectively. 
Similarly, damping in a first-order transformation can be decomposed into three terms [31]. These 
various contributions have been verified by experiment in other systems. The first contribution has been 
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mentioned above. For an isothermal experiment, the thermal rate applied should be sufficiently slow to 
allow enough time for heat to flow in the specimen, equalizing the temperature. A fast thermal rate can 
lead to a sigmoid-shaped anomaly in the modulus versus temperature curve near the transformation [32] 
owing to the effect of constrained negative stiffness elements; no effects of this type are observed here 
because the thermal rate is so slow. Moreover, for full transformation to occur, the inverse of the 
excitation frequency should be longer than the transformation relaxation time. The main origin of 
elastic softening during a ferroelastic phase transformation comes from the coupling between 
spontaneous strain and the order parameter (contribution from the second term), which relates to a 
certain tilt angle of the oxygen octahedron [33]. At a particular macroscopic strain (spontaneous strain) 
level, the restoring force opposing the tilting of the octahedron becomes too small to recover the tilt, 
and the system becomes soft. The movement of twin walls can introduce additional elastic softening in 
that twin band deformation will be accounted for in the macroscopic strain.  

  A negative Poisson ratio and reduced bulk modulus are linked (via Eq. (1), (2)) only in isotropic 
materials such as polycrystalline aggregates. Softening in one or some of the elastic modulus tensor 
elements, typically the shear moduli, of single crystals is known to occur during phase transformations, 
but not in the bulk modulus of polycrystalline aggregates. Single crystals may exhibit a negative 
Poisson ratio [34] for a restricted range of angle of deformation, but there is typically nothing unusual 
about the bulk modulus. Cooperative rotation of groups of atoms is one mechanism that can lead to a 
negative Poisson ratio [35]. Softening of the bulk modulus near volume-change phase transformations 
may be more general in nature. Such softening has been observed in gels [2, 3].  

  Softening of moduli is predicted to increase with a decrease in frequency in both first-order and 
second-order transformations [36]; this analysis is one-dimensional and makes no distinction between 
shear and bulk effects. For transformations in which diffusion occurs the compressibility is predicted 
[37] to diverge (bulk modulus softens to zero), and the time constant in relaxation to become 
progressively longer as the critical temperature is approached. Such stress-induced diffusion was 
demonstrated experimentally as softening of Young's modulus and slowing of the relaxation upon 
approach to a critical temperature in niobium with dissolved hydrogen [38]. Barium titanate exhibits 
both displacive and (diffusional) order-disorder aspects in its transformation [39]. Softening of the bulk 
modulus can result from a variety of physical mechanisms in phase transformations which admit a 
change in volume, including those in polymer gels [2]; the effect may be universal in that sense.  

 

 

5. Conclusions 
    

   The work described in this paper provides evidence for a significant softening of the bulk modulus 
and a negative Poisson ratio in barium titanate ceramic during the ferroelastic transformation near the 
Curie point. Softening was less in electric open-circuit conditions or at high deformation frequencies.  
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