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Abstract

3D printed titanium alloy Ti5553 solid and octet truss lattice specimens were studied via
resonant ultrasound spectroscopy, free decay of vibration and quasi-static methods to determine
viscoelastic damping. Damping in solid alloy and a lattice was between 10−4 and 10−3. Much
of the damping at high sonic frequency is attributed to stress induced heat flow between het-
erogeneities due to 3D printing. Pulsed wave ultrasound experiments disclosed reverberation
in the cell structure of the lattice. Continuous wave ultrasound experiments showed that the
transmissibility in the lattice rolls off beginning at about 50 kHz and becomes negligible above
110 kHz. By contrast, the polymer PMMA, though it is viscoelastic, readily transmits waves
up to 1 MHz. The cut off frequency in the lattice is associated with the structure size, not
intrinsic damping in the alloy. The octet truss lattice, in addition to providing good mechanical
performance, is also an ultrasonic metamaterial.

1 Introduction and rationale

Viscoelastic damping of metals and lattices is of interest in the context of vibration abatement.
Most structural metals have low viscoelastic damping which renders them vulnerable to vibration
in applications. For example, aluminum alloys [1] and brass [2] can have viscoelastic tan δ below
10−5 in the kHz frequency range. High damping metals are known: copper-manganese alloys and
shape memory alloys can have high damping at high vibration amplitudes; zinc-aluminum alloys
provide damping capability over a range of amplitudes; pure zinc has damping of about 10−2.

Structure on the micro or milli scale can influence both static and dynamic properties. Quasi-
static elastic properties of titanium alloy and lattices made from titanium alloy have been studied
[4]; moduli are consistent with predictions from homogenization theory and response in the presence
of spatial gradients is consistent with weak Cosserat elasticity. Rib lattice structures have long been
known [3]; they are of recent interest because they can be made on a micro or milli scale via 3D
printing. The octet truss lattice [3], for example, is stretch dominated and is stiffer [5] than low
density foams made of the same material.
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Waves in heterogeneous materials are known to be blocked at high frequency. Cut off frequencies
occur at which waves are blocked in lattices of atoms [6], periodic zeolites, elastic grid lattices,
corrugated fibers and dielectric materials [7], periodic particulate composites [8], materials with a
periodic distribution of cavities [9] and polymer foams [10]. Resonances of rib elements in a lattice
have been used to design lattices to focus sound [11].

As for the octet lattice, vibration damping has been studied recently. Hollow turbine blades
with a core made of octet lattice offer improved ratios of strength to weight in comparison with
solid blades [12]. Lattice filled blades were found to have have higher fundamental and third mode
natural frequencies compared with solid blades made of the same Inconel 718 alloy. Damping ratios
were near 0.02; solid and lattice filled blades had similar damping. Panels with octet lattices of cell
width 12 cm and rib thickness 1 mm were found to ameliorate vibration via local resonance of the
ribs [13].

This research deals with viscoelastic damping of titanium alloy solid specimens and octet lat-
tices over a range of frequencies from subsonic to ultrasonic via resonant ultrasound spectroscopy,
vibration free decay, and quasi-static methods. Pulsed wave and continuous wave ultrasound ex-
periments were also conducted to explore lattice response at high frequency.

2 Methods

Figure 1: Titanium alloy octet rib lattice. Scale bar: 1 cm.

2.1 Materials

Specimens studied included solid titanium alloy rods 6.504 mm in diameter and 50 mm long as
well as lattices of octet truss structure Figure 1 made of the same titanium alloy. This lattice
specimen was prismatic in shape about 28 mm by 28 mm by 78 mm long and was 6 cells wide.
End pieces originally provided for quasi-static elasticity studies of the lattice were sawn off to
simplify interpretation of ultrasonic studies. Rib lattices had a cell size Lc = 4.5 mm in principal
directions. The ribs visible at the surface were at an angle 45◦ with respect to principal directions
and had a length Lr = Lc/

√
2. Rib thickness wr was about 0.53 mm. Lattices were from two

to seven cells wide in square cross section; the long direction was three times the width. The
masses of specimens were determined using an analytical balance. Dimensions were measured with
a micrometer. Density was calculated from mass and dimensions.

Titanium-5553 rods 2 inches long and 1/4 inch in diameter were built on a Renishaw AM250
laser powder bed fusion LPBF system using a reduced build volume in the orientation shown in
Figure 2. One rod was built in the center of the build plate parallel to the plate normal z-axis, two
were built perpendicular to the plate normal along the x and y axes, and 2 more were built at 45
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degrees to the plate normal and 90 degrees from each other on the x-y plane. Columnar supports
were used for all rods other than the central rod. These supports were selected based on prior
successful builds and were slender enough to be manually broken from the rods once removed from
the build plate via wire-EDM. The Renishaw AM250 is a LPBF system using single pulsed laser
maximum power Pmax = 500 W, wavelength λ = 1070 nm, spot size = 70µm. The titanium rods
and supports were built using power ranging from 100 - 200W depending on geometry and feature.
Layer thickness was 60µm. The diameter was selected because it allowed for a meandering laser
scanning strategy to be used which eliminated overlapping, that may be areas of inconsistency,
caused from a striped laser scanning strategy. In a meandering scanning strategy neighboring scan
vectors are equally spaced and in opposite directions over the entire layer. Each layer was rotated 67
degrees to avoid stacking of scan corners and interior seams. An Additive Industries AI MetalFAB1

Figure 2: Design of 3D printed titanium rods.

LPBF system processing Titanium-5Al-5Mo-5V-3Cr, Ti-5553, manufactured the lattice specimens.
The AI MetalFAB1 employs four full-field Ytterbium Yb doped fiber lasers Pmax = 500 W, λ =
1070 nm, and spot size 100 - 105 µm to build parts with a continuous wave exposure strategy.
The lattice portion and solid bases of each part were fabricated using previously developed build
parameters. Laser power ranged from 120 to 160 W within both the lattice and base volumes while
laser speed ranged from 600 to 950 mm/s depending on geometry. Layer thickness was constant at
40 µm. All parts were printed such that their longitudinal axes were perpendicular to the surface
of the build plate. Each build layer was consolidated by the lasers using scan path striping. Scan
path striping is a laser scanning strategy that divides the area to be consolidated into smaller sets
of laser raster vectors. As with the solid rods, for the lattices, each layer was rotated 67 degrees
to avoid stacking of scan corners and interior seams. The specimens were then removed from the
build plate via wire-electrical discharge machining wire-EDM.

2.2 Resonant ultrasound spectroscopy

Resonant ultrasound spectroscopy Figure 3 reveals the mode structure and the width of the resonant
peaks. The mode structure permits inference of elastic moduli and the width of the peaks allows
inference of viscoelastic damping. As with all methods for materials of low damping, the inferred
damping is an upper bound because there is parasitic damping. For RUS, the source is energy
loss into the transducers from contact with the transducers. Resonant ultrasonic spectroscopy
RUS experiments were done using Panametrics 1 MHz broadband longitudinal transducers and
1 MHz shear transducers [15], excited by a Tektronix AFG 3051c arbitrary function generator.
Cylinders were supported by edges and the lattice was supported by corners to reduce parasitic
damping from energy loss into the transducers. Sinusoids of different frequency was varied to
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Figure 3: RUS configuration: 6 mm cylindrical specimen in edge contact with ultrasonic transduc-
ers.

explore resonances. Input and output signals were observed using a Tektronix DPO 3014 digital
oscilloscope. Experiments were repeated after reorienting the specimen. There was some variation
in output signal attributed to the effect of contact with the transducers.

To find the damping in the longitudinal mode of vibration, the specimen was placed between
longitudinal ultrasonic transducers. For longitudinal modes, the expected fundamental natural
frequency was first calculated from the density and the quasi-static value of the modulus. The

longitudinal wave velocity v for waves much longer than the cylinder diameter is given by v =
√

E
ρ

and the fundamental frequency in longitudinal mode is given by f0 = 1
2L

√
E
ρ . Using the Young’s

modulus obtained from prior quasi-static studies [4] the fundamental frequency in longitudinal
mode for the solid cylinder is near 42 kHz and the fundamental frequency in longitudinal mode for
the lattice is near 8.4 kHz. The higher modes of longitudinal vibrations are anticipated at integral
multiples of fundamental frequency i.e. f0, 2f0, 3f0.

The method of resonant peak width was used to infer the damping tan δ from the resonance
curves. The traditional half maximum 50% maximum approach, tan δ = 1√

3

∆f50
f0

for those peaks

that were sufficiently higher than the baseline signal. For those peaks that were split, the widths
at amplitudes 80% and 90% of maximum were used rather than the traditional half maximum. For
example at 80% maximum, tan δ = 4

3
∆f80
f0

with f0 as the natural frequency and ∆f as the width.
This was derived using the same approach [14] as that used for the traditional half width approach.

Damping in torsion modes of vibration was determined via RUS as follows. Shear ultrasonic
transducers were used to preferentially excite torsion modes. Cylinders were in contact with the
transducers at their edges and prisms were in contact at their corners to minimize parasitic damping
due to loss of energy to the transducers. The fundamental frequency in torsion mode for a cylinder

is given by f0 = 1
2L

√
G
ρ ; this was applied for the 3D printed titanium cylinders. When the length is

equal to the specimen diameter as for the 6 mm long specimens, the lowest mode is the fundamental
torsion mode, provided the material has a positive Poissons ratio and does not deviate much from
isotropy. This expression is used to obtain an approximate of the fundamental torsion mode of the
lattice specimen, where L is the axial length. If the material is isotropic, Poissons ratio can be
inferred from the mode structure. The higher modes of torsion mode vibrations occur at integral
multiples of fundamental frequency i.e. f0, 2f0, 3f0. There was some variation in the received
voltage amplitude and slight drifting of the peak. Hence, while recording the readings, it was
verified that the resonance frequency and received voltage amplitude was the same before and after
the width of the resonance peak was recorded.
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During the experiments, the shear actuator and the shear sensor were placed on separate plat-
forms to prevent the actuator vibration from affecting the sensor signal. A paper sheet was placed
between the specimen and the lower transducer to eliminate electrical conduction of signal through
the specimen.

These steps enabled elimination of the baseline signal to less than 1 mV compared with the
recorded signals which were 100 mV to 10 V. As the contact force between the transducer and the
specimen contributes to parasitic damping, the specimen was mounted with the lowest achievable
contact force between the transducer and the specimen. After the test completion, the specimen
was released by moving the top transducer up by a maximum of 1 micrometer division.

In shear experiments, it was difficult to identify frequencies corresponding to the higher modes
of torsion. This is because frequency peaks corresponding to different and higher mode shapes
lie very close to each other. Hence to identify the torsion modes in cylinder following concepts
are used: (i) The frequencies of torsion modes in 50 mm long cylinders are obtained and they are
approximately in the ratio 1:2:3. These frequency values are used to obtain expected frequency
values of torsion modes in smaller specimens. (ii) When the edges of the cylinder align with the
shear direction of the transducers, maximum shear response is obtained. When rotated by 90
degrees about the points of contact, the shear response ideally vanishes or reduces significantly.

2.3 Free decay method

Damping via free decay of vibration was determined as follows. The specimen was suspended via
a string from the center, which is a vibration node for the fundamental and for higher modes.
It was placed near a microphone and was tapped with a small hammer. Vibration signals were
captured from the microphone on an oscilloscope. The decrease of vibration amplitude with time
was analyzed to reveal the damping. Lattice specimens with solid alloy end pieces were studied
via the free decay method. A lattice specimen, 32 mm by 32 mm by 96 mm long exhibited a lower
natural frequency of 1.8 kHz, permitting study of lower frequency than was possible with the lattice
without end pieces. As for parasitic damping, the sources of energy loss include radiation of sound
and loss into the support string; the latter is minimized by using a compliant string and locating
it at a vibration node where motion is minimal.

2.4 Wave ultrasound method

In addition to resonance studies, ultrasonic tests were done on the lattice so as to obtain a better
understanding of the role of the lattice rib structure. One transducer was used for sending in ultra-
sound waves along the length of the specimens, while the other was used to detect the transmitted
waves. Pulsed wave experiments were done by sending a burst of sinusoidal cycles through the
lattice specimen. For comparison, similar experiments were done with a 25 mm diameter PMMA
(polymethyl methacrylate) polymer rod for comparison. All pulsed tests were done at intervals
of 10 ms in which the output of one pulse does not affect the output of the subsequent pulses.
Bursts of sinusoidal signal 2 cycles in length at 10 ms intervals were used as input. Continuous
wave ultrasonic tests were also done on the lattice by transmitting continuous sine waves of varying
frequencies and determining transmissibility. Longitudinal transducers were pressed against the
flat ends of the specimens with the help of a C clamp. Water was used for the PMMA specimen
to enhance the coupling between the specimen ends and the transducers.
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2.5 Broadband viscoelasticity BVS method

The broadband viscoelasticity spectroscopy BVS method allows viscoelastic measurements over
a wide range of frequency from sub-audio to resonant studies at 100 kHz or more [16]. Such
performance can be achieved for specimens that are sufficiently slender so they are structurally
compliant. The instrument allows torsion or pure bending tests upon the same specimen. Torque
is applied via an electric current through a Helmholtz coil. This generates a magnetic field which
acts upon a high intensity magnet cemented to the specimen. Angular displacement is measured
via a laser beam reflected from a mirror on the specimen upon a position sensitive silicon detector.
The specimen is free at one end and fixed at the other end via a steel rod 25.4 mm in diameter.
At low frequency, the resolution of phase angle is limited by the lock-in amplifier used to make the
measurement.

3 Results

3.1 Moduli and damping

The density of the 45◦ solid specimen was 4.8 g/cc. The density of the 0◦ solid specimen is unknown
because it was not a perfect cylinder; it had a longitudinal flat. For that reason, bounds were given
for the quasi-static modulus. For resonance interpretation its density was assumed to be the same
as that of the 45◦ specimen.

In RUS experiments, resonances in longitudinal vibration of solid rods were observed near 42
kHz as anticipated. A second harmonic at about twice this frequency was also observed. Each
specimen was tested in a different orientation and the average longitudinal mode damping was
obtained.

Moduli inferred from resonance were similar to the moduli from quasi-static measurements.
Specifically, at 1 Hz, Young’s modulus E = 76 GPa and 89 GPa for 45◦ and 90◦ rods respectively
and ≥ 86, 74 GPa for 0◦ rods oriented in orthogonal directions. This last specimen was provided
with a longitudinal flat; the section shape impeded calculation of the area moment of inertia. For
the 42 kHz vibration frequency, Young’s modulus E = 83 GPa and 87 GPa for 45◦ and 90◦ rods
respectively; E = 77 GPa assuming its density to be 4.8 g/cc, the same as that of the 45◦ specimen.

As for the solid alloy shear modulus, at 1 Hz, G = 27 GPa and 27 GPa for 45◦ and 90◦

rods respectively and ≥ 20 GPa for 0◦ rods oriented in orthogonal directions. At 32-34 kHz, the
first torsion mode of the 37 mm long specimen, the corresponding shear moduli were 28 GPa,
30 GPa, and 28.8 GPa. At 197-215 kHz, the first torsion mode of the 6 mm long specimens, the
corresponding shear moduli were 27.3 GPa, 29.3 GPa, and 28.2 GPa. The differences are attributed
to heterogeneity associated with 3D printing.

The first two modes of longitudinal vibration were distinctly visible. There are two possible
frequencies for third mode. For the fourth mode onwards the output signal becomes too weak to
be measured.

Damping via RUS in the longitudinal direction for Ti5553 37 mm long solid specimens was 5.9
×10−3 for 0◦, 2.18 ×10−3 for 45◦ and 1.4 ×10−3 for 90◦. Repeated measurements after re-mounting
the specimen disclosed a variance of 3% to 10%. This variance is attributed to effects of variation
of contact force. However, subsequent measurements via free decay of vibration revealed that these
RUS values of damping were dominated by energy loss into the transducers.

Damping in bending near 16 kHz via the method of free decay of vibration was 6.8 ×10−4 for
0◦, 7.8 ×10−4 for 45◦ and 6.1 ×10−4 for 90◦.

Damping of a 90◦ solid rod via BVS was 1.8 ×10−4 ± 1.8 ×10−4 at 1 Hz and 3.5 ×10−4 ± 1.8
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×10−4 at 10 Hz. The uncertainty in the damping arises from the phase resolution limit of the lock
in amplifier. Because the specimen was relatively structurally rigid, higher frequencies were not
studied because the desired mismatch of acoustic impedance with the support rod was insufficient.

Table 1: Solid Ti5553 37 mm long specimen torsion mode damping.

Specimen f1 kHz tan δS at f1 f2 kHz tan δS at f2 f3 kHz tan δS at f3

0◦ 32 2.1×10−3 63.5 9.8×10−4 94.5 2.6×10−4

37 1.7×10−3 64.2 6.2×10−4 95 4.3×10−4

45◦ 33 3×10−3 65 3.4×10−4 97 2 ×10−4

67 6.4×10−4 98 4 ×10−4

90◦ 34 4.4×10−3 67.7 4.2 ×10−4 101.3 2.4×10−4

70 102
70.6 6.8×10−4 102.6 2.4 ×10−4

70.8 3.8 ×10−4 102.7 2.2 ×10−4

Table 2: Solid Ti5553 6 mm long specimen torsion mode damping.

Specimen f1 kHz tan δS at f1 f2 kHz tan δS at f2 f3 kHz tan δS at f3

0◦ 197 5.1×10−4 389 3.5×10−4 587 2.3×10−4

590 2.2×10−4

602 1.8×10−4

45◦ 209 4.2×10−4 425 3.1×10−4 615 2.2×10−4

624 2.6×10−4

90◦ 215 4.6×10−4 430 2.2×10−4 646 1.8×10−4

Tables 1 and 2 present torsion mode damping values of solid alloy cylinder specimens. As
the resonance peaks of different mode shapes become dense at higher frequencies, it becomes
difficult to uniquely identify higher torsion modes. Results for multiple modes are reported because
they are meaningful even if the vibration mode is not torsional. In the 37 mm long 90 degree
solid cylinder, mode splitting is observed at 70 kHz and 102 kHz. It is likely that these two
correspond to second and third modes of torsion respectively as the 90 degree specimen is slightly
anisotropic. The splitting of the fundamental longitudinal vibration mode was also observed in the
90 degree specimen. Lower damping in the higher modes can occur from frequency dependence of
the damping. Also, parasitic damping due to energy loss from transducer contact is known to be
higher in the fundamental than in the higher modes. Comparison with other results indicates the
high damping observed in the fundamental mode and some of the higher modes is due to parasitic
damping. The corresponding points are omitted from the summary plot.

The lattice density was found to be 0.534 g/cm3. Because titanium has a density of 4.6 g/cc,
the density divided by the density of the solid is ρ

ρs
= 0.116. Lattice longitudinal damping results

are shown in Table 3 for RUS no end pieces on specimens. Variance of 3% to about 11% in damping
by the RUS method is attributed to effects of variation of contact force. The number of cells in the
table refers to the width. For specimens 4, 3, and 2 cells wide, the mode with the lowest damping is
shown. Further lattice longitudinal damping results are shown in Table 4 for the free decay method
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specimens with end pieces and in in Table 5 for specimens without end pieces.

Table 3: Lattice tan δL via RUS.

Mode frequency kHz tan δL
6 cell First f1 8.1 8.0×10−4

Second f2 16.2 9.8×10−4

Third f3 24.4 8.1×10−4

4 cell 24.6 5.4×10−4

3 cell 32.7 3.7 ×10−4

2 cell 50.9 5.6 ×10−4

2 cell 56.8 4.5 ×10−4

Table 4: Lattice tan δL via free decay of vibration: lattices with end pieces.

widthcells frequency kHz tan δL
7 1.8 3 ×10−4

4 2.8 3.5 ×10−4

3 3.4 5.1 ×10−4

2 4.8 4.8 ×10−4

Table 5: Lattice tan δL via free decay of vibration: lattices without end pieces.

width, cells frequency kHz tan δL
7 6.9 5 ×10−4

6 8.1 5.5 ×10−4

Table 6: Lattice torsional tan δS via RUS.

Mode frequency kHz tan δS
First f1 7.1 8.53 ×10−4

Second f2 14.0 5.67 ×10−4

Table 6 presents the torsion mode damping in the lattice. The first and second torsion mode
vibrations are distinctly visible. Beyond 20 kHz, where the third mode is expected, the higher
modes are small in amplitude. There are many modes with similar amplitude. These modes are
weaker than the first and second torsion modes, and the density of these modes is very high. At
higher frequencies, beyond 150 kHz, modes are too weak to be recorded.

Figure 4 shows the free vibration response of a lattice specimen 6 cells wide. The amplitude of
the free vibration decays via the equation ln A2

A1
= −πtanδ(t2−t1)

T where A1 is the amplitude at time
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Figure 4: Free vibration decay of the lattice. Left, initial part of waveform showing the period;
right, free decay of vibration. The red colored points highlight logarithmic decay of amplitude

t1 and A2 is amplitude at time t2. These are local extrema of the sinusoidally varying signal. T
is the time period of the vibration, while tanδ is the viscoelastic damping, which is obtained from
this experiment.

The waveform period T was obtained from an expanded plot of the waveform, the graph on
the left in Figure 4. The amplitude ratio was obtained from the graph on the right, from the red
colored points, Ideally all the local maximum or local minimum points should follow the logarithmic
decrement. The presence of multiple modes renders the waveform more complicated than an
ideal waveform.The time period is approximately 124 µs which corresponds to 8.06 kHz. This is
approximately the same as the fundamental frequency of the longitudinal vibration obtained from
RUS. The damping is found to be 5.5 ×10−4. This is less than the damping 8.5 ×10−4 obtained
from the RUS but is similar to the damping of the second mode. The difference can be attributed
to the parasitic damping due to the contact between the ultrasound transducers and the specimen.
The impulse force caused slow swing of the specimen with respect to the microphone; this was
too slow to obtrude in the results. Damping due to radiation of sound in longitudinal or bending
modes is typically of concern if damping is less than 10−4; for such materials, measurements may
be conducted in an evacuated chamber.

The lattices with end pieces resonated at a lower frequency than the lattices without as a result
of the additional inertia. Damping tended to increase with frequency in this regime.
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Figure 5: Summary of damping tanδ vs frequency. Solid points: solid specimens.

Inferred values of tan δ of solid alloy and lattices vs frequency are summarized in Figure 5.
Values that were clearly raised by parasitic damping, such as nearby modes with high apparent
damping, are not included in this plot.

3.2 Ultrasonic wave transmission
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Figure 6: Pulsed ultrasonic results for lattice left and PMMA right specimens at 50 kHz. Pream-
plifier gain: 10 for the lattice.

The results of pulsed ultrasonic tests at different frequencies are summarized in Figures 6 - 10.
Waveforms received in the PMMA specimen, at all the observed frequencies, resembled the input

waveform. At lower frequencies the output also contained echos of diffracted input which reflect
off the curved side surface. At higher frequencies, these diffracted signals are not observed. The
received signal was an attenuated version of the input signal following a time delay. Signal amplitude
is not a measure of attenuation because the ultrasonic transducers, with a natural frequency of 1
MHz, respond more strongly near that frequency than at lower frequencies. Indeed the transmitted
signal tends to increase with frequency despite the attenuation in this viscoelastic polymer which
has a tan δ of about 0.02 at ultrasonic frequency.
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Figure 7: Pulsed ultrasonic results for lattice left and PMMA right specimens at 100 kHz. Pream-
plifier gain: 10 for the lattice.
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Figure 8: Pulsed ultrasonic results for lattice left and PMMA right specimens at 300 kHz. Pream-
plifier gain: 10 for the lattice.
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Figure 9: Pulsed ultrasonic results for lattice left and PMMA right specimens at 700 kHz. Pream-
plifier gain: 10 for the lattice.
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Figure 10: Pulsed ultrasonic results for lattice left and PMMA right specimens at 1000 kHz.
Preamplifier gain: 10 for the lattice.
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Figure 11: Pulsed ultrasonic results for lattice at 300 kHz on a longer time scale

When compared with the waveforms in PMMA, waveforms in the titanium alloy lattice at
lower frequencies showed distortion of the transmitted pulse as well as reverberations over longer
time scales see figure 11. At higher frequencies the signal transmitted through the lattice became
progressively weaker.

The reverberations in the lattice are predominantly due to the vibration of the ribs. The
fundamental natural frequency f for a simply supported bar [17] of Young’s modulus E, density ρ,
length L and area moment of inertia I in bending is, with q as mass per unit length, and I = 1

12w
4,

so f = π
2 [ EI
qL4 ].

For a bar of square cross section thickness w, q = ρw2L/L, so

f =
π

4
√

3

w

L2

√
E

ρ
. (1)

If E = 80 GPa, L = 3.3 mm, w = 0.53 mm, then f = 93 kHz.
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For a bar free at both ends, [18] f = 2 5.6
πL2κ

√
E
ρ with κ as the radius of gyration. This leads to

f =
5.6

π
√

3

w

L2

√
E

ρ
. (2)

This frequency is higher by a factor of about 2.3 than that in Equation 1 but is of the same order
of magnitude. In the lattice, the ribs are neither fully constrained nor fully free.

This analysis Equation 1 suggests that the ribs will vibrate at around 110 kHz and higher. The
reverberations in the pulsed ultrasonic tests are not seen in high ranges of frequencies. Indeed, the
transmissibility of the lattice figure 12 is maximum near 40 kHz, rolls off above about 50 kHz and
is negligible beyond 110 kHz.
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Figure 12: The ultrasonic transmissibility of the lattice vs. frequency. The experimental data
points are shown in red. The blue curve shows the trend.

The observed cut off frequency may also be interpreted by comparing the cell size with the
wavelength. From the prior quasi-static studies, Young’s modulus E for the lattice was obtained as

0.95 GPa, hence the velocity v = fλ =
√

E
ρ = 1334 m/s. As the octet cell size is approximately 4.5

mm, the wavelength of input should be substantially greater than 4.5 mm for the lattice to support
the waves. A wavelength of one cell size corresponds to a frequency of 296 kHz. Because each
wave has two maxima and crosses zero twice, a wavelength of four cell sizes is a more appropriate
measure, corresponding to a frequency of 75 kHz. The transmissibility curve figure 12 for the lattice
shows that transmission rolls off above about 50 kHz and is negligible beyond 110 kHz. Similarly,
the pulsed ultrasound tests on lattice show that at high frequencies the output approaches zero. In
summary the lattice blocks waves above about 110 kHz in contrast to the polymer PMMA with a
much higher viscoelastic tan δ which gives rise to wave attenuation.

For the lattice, tan δ = 5 × 10−4 at 100 kHz corresponds to an attenuation α = 0.12 /m or
a distance of 8.5 m for waves to attenuate by a factor of 1/e. Therefore the observed viscoelastic
damping is far too low to give rise to the observed cut off of waves.
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4 Causes of damping

The viscoelastic damping due to thermoelastic coupling was obtained by Zener [19]. The predicted
relaxation strength is

∆ =
α2T

CvJS
, (3)

with T as the absolute temperature, α as thermal expansion, JS as the adiabatic compliance at
constant entropy, and Cv as the heat capacity at constant volume. The maximum damping is half
the relaxation strength

tan δmax =
1

2
∆. (4)

For titanium [20], ∆ = 10−3 so the peak tan δ = 5 × 10−4. This is a substantial contribution in
comparison with the damping observed. The frequency dependence for damping due to macroscopic
heat flow is that of a Debye peak. The predicted frequency f0 for peak damping from transverse
thermal currents for a bar of thickness d and thermal diffusivity D, vibrating in bending [19], [21]
is

f0 =
π

2
Dd−2. (5)

For a circular rod of radius r vibrating in bending,

f0 = 0.539Dr−2. (6)

Input of values for titanium [20], gives a peak at 78 Hz for a rib 1/2 mm thick, and about 0.5 Hz
for a rod 6 mm in diameter. These peaks are well below the frequencies explored in the present
research. The contribution of thermoelastic damping from transverse thermal currents to the total
observed at ultrasonic and at high sonic frequency will be minimal.

Stress induced thermal currents between crystals or other heterogeneities also contribute to
the damping [2]. The contribution of inter-crystalline thermal currents to the total damping is
quantified by the quantity R which multiplies the total available relaxation strength; R has been
calculated for some cubic materials. For aluminum [22], ∆ = 0.0046; R = 0.0024 and for brass, ∆
= 0.0036, R = 0.18. Titanium has hexagonal close packed symmetry. No value of R is known for
titanium but titanium crystals have substantial anisotropy. Single crystal compliance elements are
[24], in TPa−1, s11 = 9.62, s12 = -4.67, s44 = 21.5, s33 = 6.84, s12 = -1.81. Heterogeneity in the
titanium rods and lattices can be from the polycrystalline nature of the metal, from 3D printing,
or both. For example, a heterogeneity of size 50µm would correspond to peak damping near 8 kHz.
Damping was measured at sufficiently small amplitude that friction effects, which are nonlinear,
do not contribute. Any effect of porosity on the thermo-elastic contribution to the damping can
be shown to be minuscule [14]. As for heterogeneity in the nodes, inclusions in these alloys were
found to be very rare. The microstructure has columnar grains. The surface has some roughness
due to the 3D printing.

For comparison, damping in aluminum [23] can be from 6 to less than 3 × 10−6 at frequencies
between 16 and 34 kHz, depending on grain size. The low damping was attributed to the fact
aluminum has the smallest single crystal anisotropy of common metals, among them, titanium.
Such anisotropy contributes to damping from stress induced thermal currents between the crystals
or grains in polycrystalline materials or between layers in 3D printed materials.

Other damping mechanisms known to be active in metals [22] [18] include dislocation motion
and motion of point defects.
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5 Discussion

Solid Ti alloy rods had damping tan δ between 1.8 × 10−4 and 7 × 10−4 depending on frequency.
For comparison, aluminum alloys [1] and brass can have tan δ less than 10−5. Zinc has damping
of about 10−2; some of its alloys approach that value over ranges of frequency. For short solid
specimens which have their fundamental torsion mode at higher frequency, the damping is on the
order of 10−4 in torsion vibration modes. In long titanium alloy cylinders, the damping of the
fundamental torsion mode is of the same order of magnitude as the damping in the longitudinal
vibration mode. The damping decreases to the order of 10−4 in higher torsion modes. Part of that
effect is attributed to the known greater effect of parasitic damping on the lower modes.

In the lattice, the damping tan δ is between 10−4 and 10−3 for both torsion and longitudinal
modes of vibration. The higher modes of the two vibration types in the lattice progressively become
weaker as frequency increases.

For both solid rods and lattices, much of the damping at high sonic frequencies can result from
stress induced heat flow between heterogeneities associated with the 3D printing process.

Materials prepared by 3D printing are known to exhibit deviations from the ideal design ge-
ometry and input material properties. Such deviations and uncertainties could be analyzed by
numerical methods [25].

Pulsed wave ultrasound tests reveal reverberations in the lattice structure. The transmissibility
of the lattice rolls off beginning at about 50 kHz and becomes negligible above 110 kHz. By contrast,
the glassy polymer PMMA, though it is viscoelastic, readily transmits waves up to 1 MHz. The
cut off frequency observed in the lattice is not due to intrinsic damping in the alloy comprising
it because solid alloy specimens exhibited small damping on the order of 10−4 at frequencies in
the vicinity of the cut off. The observed viscoelastic damping is far too low to give rise to the
observed cut off of waves in the lattice. The physical cause of the cut off frequency is resonance
of the cell ribs. The cut off frequency observed can also be viewed in the context of a generalized
continuum theory with more freedom than Cosserat elasticity used to understand the quasi-static
response [4] of lattices. This is the Mindlin microstructure theory [26], also called micromorphic
elasticity, which allows the local rotation and strain to differ from the macroscopic rotation and
strain. The octet truss lattice, intended for superior mechanical performance, is also an ultrasonic
metamaterial.
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