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Synopsis
A theoretical study of viscoelastic properties of composites is presented with the aim of

identifying structures which give rise to a combination of high stiffness and high loss
tangent. Laminates with Voigt and Reuss structure, as well as composite materials attaining
the Hashin-Shtrikman bounds on stiffness were evaluated via the correspondence principle.
Similarly, viscoelastic properties of composites containing spherical or platelet inclusions
were explored. Reuss laminates and platelet filled materials composed of a stiff, low loss
phase and a compliant high loss phase were found to exhibit high stiffness combined with
high loss tangent.

INTRODUCTION
Viscoelastic materials can be of use in the damping of mechanical vibration and in the

absorption of sound. The loss tangent, or tangent of the phase angle δ between stress and
strain in sinusoidal loading, is a useful measure of material damping. Most materials used
in structural applications, however, have small loss tangents. Conversely, materials with
high loss tangents tend to be compliant, hence not of structural interest. Fig. 1 contains a
stiffness-loss map (plot of the absolute value of the dynamic modulus vs loss tangent) for
some representative materials. Compliant, lossy materials are used as layers over stiff
materials in various applications; nevertheless a stiff material with high loss would be of
use in structural damping of noise and vibration. We consider in this article the possibility
of making composite microstructures providing high stiffness and high loss.

A possible avenue for making high loss composites is to make use of non-affine
deformation. This is in contrast to affine deformation in which the particles in the solid
move in a way corresponding to a uniform strain plus a rotation in a continuum. The
negative Poisson's ratio materials developed by Lakes (1987) exhibit this property in that
the foam cells unfold during deformation (Lakes, 1991; Chen and Lakes, 1991). Non-



affine deformation can result in high viscoelastic loss in a composite if the phase which has
the highest loss experiences a larger strain than does the composite as a whole.

Elastic properties of multi-phase composite materials have been studied extensively.  Of
these studies, the ones most relevant to the present work are those dealing with bounds on
the elastic behavior and predicted properties of composites of relatively simple structure.
The upper and lower bounds of stiffness of two phase and many phase composite materials
have been obtained in terms of volume fraction of constituents (Hashin, 1962; Hashin and
Shtrikman, 1963). Bounds and expressions for the effective elastic moduli of materials
reinforced by parallel hollow circular fibers  in hexagonal or random arrays have also been
derived by a variational method (Hashin, 1962). Furthermore, bounds on three
independent effective elastic moduli of an n-phase fiber reinforced composite of arbitrary
transverse phase geometry, plane strain bulk modulus, transverse shear modulus and shear
modulus in plane parallel to fibers, have been derived in terms of phase volume
fractions(Hashin, 1965a). For viscoelastic heterogeneous media of several discrete linear
viscoelastic phases with known stress-strain relations, it was shown that the effective
relaxation and creep functions could be obtained by the correspondence principle of the
theory of linear viscoelasticity (Hashin, 1965b). In some cases explicit results in terms of
general linear viscoelastic matrix properties was given, and thus permitting direct use of
experimental information (Hashin, 1966).  In a review by Ahmed and Jones (1990) of
particulate reinforcement theories for polymer composites, it was concluded that the
macroscopic behavior was affected by the size, shape, distribution, and interfacial adhesion
of the inclusions. This article makes use of some of these results for elastic composites to
explore accessible regions of the stiffness-loss maps of the materials.

ELASTIC AND VISCOELASTIC PROPERTIES OF
COMPOSITES

  For the simplest case of a two-phase composite, the Voigt and Reuss composites
described below represent rigorous upper and lower bounds on the Young's modulus for a
given volume fraction of one phase. The Hashin-Shtrikman composites represent upper
and lower bounds for isotropic elastic composites. Viscoelastic composites containing
spherical or platelet inclusions are also considered. Results obtained via the correspondence
principle are plotted as "stiffness-loss maps" in the subsequent section.

Voigt composite
 Let phase 1 be stiff; let phase 2 be high loss. The geometry of the Voigt model structure
is shown in Figure 2. The composite can contain laminations as shown in Figure 1(a) or it
can be made of continuous fibers in Figure 1(b); in either case the strain in each phase is the
same.  For an elastic material with one of these structures, the Voigt relation is
Ec = E1V1 + E2V2,
in which Ec, E1 and E2 refer to the Young's modulus of the composite, phase 1 and phase
2, and V1 and V2 refer to the volume fraction of phase 1 and phase 2 with V1+V2=1. The
Voigt relation for the stiffness of an elastic composite is obtained by recognizing that for the
given geometry, the strain in each phase is the same; the forces in each phase are additive.

By the correspondence principle (Hashin, 1970, Christensen, 1980), the elastic relation
can be converted to a steady state harmonic viscoelastic relation by replacing  the Young's
moduli E by E*(iω) or E*, in which ω is the angular frequency of the harmonic loading.
This procedure gives

Ec* = E1
*V1 + E2

*V2 (1)



with E*= E' + i E" and loss tangent tan δ = E"/E'.  Taking the ratio of real and imaginary

parts, we obtain the loss tangent of the composite tan δc = Ec"/Ec' .

tan δc =  

V1  tanδ1+ V2 
E2'

E1'  tanδ2

V1 +  
E2'

E1' V2

(2)

Reuss composite
The geometry of the Reuss model structure is shown in Figure 1(c); each phase

experiences the same stress.  For elastic materials, 1/Ec = V1/E1 + V2/E2.  Again using the
correspondence principle, the viscoelastic relation is obtained as

1
Ec* = 

V1
E1* + 

V2
E2* (3)

Again separating the real and imaginary parts of Ec*, the loss tangent of the composite tan

δc is obtained:

tan δc =  
(tanδ1+tanδ2)[V1+V2

E1
'

E2
' ]-(1-tanδ1tanδ2)[V1tanδ2+V2tanδ1

E1
'

E2
' ]

(1-tanδ1tanδ2)[V1+V2
E1

'

E2
' ]+(tanδ1+tanδ2)[V1tanδ2+V2tanδ1

E1
'

E2
' ]

(4)

Hashin-Shtrikman composite:
arbitrary two-phase geometry
Allowing for 'arbitrary' phase geometry, the upper and lower bounds on the elastic

moduli as a function of composition have been developed using variational principles. The
lower bound for the shear modulus GL of the composite was given as (Hashin and
Shtrikman, 1963) 

GL
 = G2 + 

V1
1

G1-G2
 +  

6(K2+2G2)V2
5(3K2+4G2)G2

 (5)

in which K1, G1 and V1, and G2 and V2 are the bulk modulus, shear modulus and
volume fraction of phases 1, and 2, respectively.  Here G1>G2, so that GL represents the
lower bound on the shear modulus.  Interchanging the numbers 1 and 2 in Equation(5)
results in the upper bound GU for the shear modulus.

As for viscoelastic materials, we again apply the correspondence principle. The
complex viscoelastic shear moduli of the composite GL

* and GU
* are obtained as

GL
* = G2

* + 
V1

1
G1

*-G2
* +  

6(K2
*+2G2

*)V2
5(3K2

*+4G2
*)G2

*

 (6)

and



GU
* = G1

* + 
V2

1
G2

*-G1
* +  

6(K1
*+2G1

*)V1
5(3K1

*+4G1
*)G1

*

(7)

In these cases the loss tangent is more complicated to write explicitly, so it is more
expedient to graphically display computed numerical values.

Hashin transversely isotropic fiber reinforced composites
This case is of interest since it allows more than two phases, a situation applicable to

the analysis of experimental results in a companion article. For two phases the results are
almost identical to the arbitrary phase geometry case considered above. The shear modulus
of elastic multi-phase transversely isotropic fiber reinforced composites of arbitrary
transverse phase geometry, can be bounded from below and above in terms of phase
moduli and phase volume fractions. The lower and upper bounds on the shear modulus m(-
) and m(+) were given for elastic composites (Hashin, 1965a) as

m(-) = G1 + 
2G1(K1+G1)

K1+2G1
 {[ ∑

r=2

r=n
  

(Gr-G1)Vr
G1+K1G1/(K1+2G1)]-1-1}-1

(8)

and

m(+) = Gn + 
2Gn(Kn+Gn)

Kn+2Gn
 {[ ∑

r=1

r=n-1
  

(Gr-Gn)Vr
Gr+KnGn/(Kn+2Gn)]-1-1}-1

(9)

in which n is the number of the phases, G1 and K1 are the shear and bulk moduli of the
most compliant phase, Gn and Kn are the shear and bulk moduli of the stiffest phase. r is a
free index representing the phase number; phases are numbered in order of increasing
stiffness.

On the basis of the correspondence principle, corresponding results for the complex
shear modulus (not necessarily bounds) of the composites are again obtained by replacing
m(-), m(+), G1, K1, Gr and Gn by GL

*, GU
*, G1*, K1*, Gr* and Gn* in Equations(8)

and (9), respectively. The loss tangent again is complicated to write explicitly, so it is
graphically displayed using computed numerical values.

Spherical particulate inclusions
For a small volume fraction V1= 1 - V2 of spherical elastic inclusions in a continuous

phase of another elastic material, the shear modulus of the composite Gc was given
as(Christensen, 1979)

Gc
G1

  = 1 -  
15(1-ν1)  (1  -  

G2
G1

)V2

7 -  5ν1 +2(4 - 5ν1)  
G2
G1

(10)

 in which ν1 is the Poisson's ratio of phase 1, and phase 1 and phase 2 represent the
matrix material and the inclusion material respectively.

Using the correspondence principle again and assuming there is no relaxation in
Poisson's ratio, Equation(10) becomes



Gc*  =  G1*- 
15(1-ν1) (G1* -  G2*)V2

7 -  5ν1 +2(4 - 5ν1)  
G2*

G1*

(11)

for the complex shear modulus of the composite material. The loss tangent again is
complicated to write explicitly, so it is  graphically displayed using computed numerical
values.

Platelet inclusions
For a dilute suspension of platelet elastic inclusions of phase 2 in a matrix of phase 1,

the shear modulus of the composite Gc was given as(Christensen, 1979)

Gc  = G1 +  
V2  (G2-G1)

15  [ 9K2+4(G1+2G2)

K2  +  
4
3 G 2

 + 6 
G1
G2

 ] (12)

Again, using the correspondence principle, Equation(12) becomes

Gc*  = G1* +  
V2  (G2*-G1*)

15  [ 9K2*+4(G1*+2G2*)

K2* +  
4
3 G 2*

 + 6 
G1*

G2* ] (13)

 for the complex shear modulus of the composite materials.
As for procedure, we remark that although Equations (5) to (13) were developed for the

shear modulus of the composite, the shear moduli G* were replaced by the Young's
moduli E* in the figures for comparison with Fig. 1. The Voigt and Reuss relations given
by Equations (1) and (3) apply to G* as well as to E*. The actual relationship between E*

and G* and the properties of the constituents of a composite is simple only for certain
phase geometries. For example, for some common phase geometries, a Poisson's ratio of
0.3 for each phase gives a Poisson's ratio close to or equal to 0.3 for the composite.
However for some phase geometries, a constituent Poisson's ratio of 0.3 can give rise to a
negative Poisson's ratio in cellular solids with one phase void (Lakes, 1987) or in unusual
laminates (Milton, in press). The calculations are on the basis that V1+V2=1 except that
V1+V2=0.8 for the multi-phase Hashin elastic bound, for which 20% void by volume
fraction is assumed to be contained as a third phase in the composite.

RESULTS AND DISCUSSION
Results are plotted as stiffness-loss maps (plots of |E*| vs tan δ) as shown in Figures 2-

4 below.
Figure 2 shows predicted properties of composites containing phases which differ

greatly in properties. Steel is considered as phase 1, with |E1*|=200 GPa, tan δ1= 0.001

and and a viscoelastic elastomer as phase 2, with |E2*|=0.020 GPa, tan δ2= 1.0. The graph
was enlarged in the vicinity of 100% phase 1 and shown in Figure 3 for clarity. A small
volume fraction of phase 2 results in a large increase in loss with little reduction in stiffness
so that the Reuss structure permits higher losses than the Voigt structure. However, in the
Reuss structure each phase carries the full stress, so that a composite of this type will not
be strong if, as is usual, the soft phase 2 is weak.

As for 'bounds' on the properties, the curves for the Voigt and Reuss composites
enclose a region in the stiffness-loss map, as do the curves for the upper and lower Hashin-
Shtrikman composites. It is tempting to think of these curves as 'bounds' on the
viscoelastic behavior, however such a surmise has not been proven. They represent
extremes of composites which can be fabricated, however we do not yet know if they



represent true bounds. Roscoe (1969) has mathematically established bounds for the real
and imaginary parts E' and E' '  of the complex modulus of composites and has shown them
to be equivalent to the Voigt and Reuss relations. Therefore the stiffness, expressed as |E*|
of the composite is bounded from above by the Voigt limit and cannot exceed the stiffness
of the stiff phase. This is not quite the same as establishing bounds for a stiffness-loss map
since it is not obvious whether a maximum in tan δ = E"/E' could be obtained

simultaneously with a maximum in E' . In particular, we can construct tan δc =
E"voigt/E'reuss > E"reuss/E'reuss and be within the bounds of Roscoe. We do not yet know if
such a composite is physically realizable.

In the stiffness-loss map, the lower and upper two-phase Hashin composites behave
similarly to the Voigt and Reuss composites, respectively. This is in contrast to the usual
plots of elastic stiffness vs volume fraction, in which the Hashin bounds can differ greatly
from the Voigt/Reuss ones. As for the physical attainment of the Voigt and Reuss
composites, simple laminates can be made as in Fig. 1, but these are anisotropic. Isotropic
composites which attain the Voigt or Reuss moduli are not considered to be attainable.
Isotropic polycrystals attaining the Voigt or Reuss bounds for the bulk modulus are also
possible (Avellaneda and Milton, 1989) at the expense of some added structural
complexity.

 For the three-phase Hashin structure with 20% void content in the composite, the
lower curve reduces to zero and is not shown in the graph; the upper bound lies close to the
Voigt curve with 20% to 40% lower stiffness as shown in Fig. 2. 

The composite containing soft spherical inclusions is also found to behave similarly to
the Voigt composite in that a small volume fraction of soft, viscoelastic material has a
minimal effect on the loss tangent, though it does reduce the stiffness. As for the composite
containing soft platelet inclusions, it is found that the results are similar to those of the
Reuss structure.  A small volume fraction of platelet inclusions as phase 2 results in a very
large increase in loss tangent without any significant reduction in the stiffness. However,
soft platelets resemble penny-shaped cracks in the matrix, so that such a composite would
be weaker than the matrix, particularly if the matrix were brittle.

Figure 4 shows predicted properties of composites containing phases which do not
differ so much in properties as steel and viscoelastic elastomers. Copper as phase 1, with
|E1*|=117 GPa, tanδ1= 0.002 and indium as phase 2, with |E2*|=10.8 GPa, tanδ2=0.025
(at 1 kHz) were used for this investigation. Observe that the shape of this stiffness-loss
map differs from the case of the polymer-metal composite. The implication of this
difference in shape is as follows. If the constituents differ by orders of magnitude in
stiffness and loss, then the Reuss and platelet composites are orders of magnitude superior
to the Voigt and spherical inclusion composites in achieving high stiffness and high loss. If
the constituents do not differ so much in their properties, their composites of various
structures do not differ as much either. Composites containing a stiff, low loss material
(such as a metal) and a small amount of compliant, high loss material can exhibit a stiffness
close to that of the metal, as well as high loss superior to that of a metal-metal composite.

 An interesting aspect of the Reuss and platelet composites which give the highest loss
(for given stiffness) is that they exhibit highly nonuniform strain fields. The strain in the
soft, lossy phase is much larger than the strain in the stiff phase. This is in contrast to the
Voigt composite in which the strain in each phase is the same. The re-entrant foams (Chen
and Lakes, 1989, in press) with a negative Poisson's ratio also exhibit non-affine
deformation of a more complex nature in that the foam cells unfold as the foam is
deformed.

CONCLUSIONS



1. In a stiffness-loss map, the upper and lower two-phase Hashin composites behave
similarly to the Voigt and Reuss composites, respectively.

2. Reuss laminates and platelet filled materials based on a stiff, low loss phase and a
compliant high loss phase were found to exhibit high stiffness combined with high loss
tangent.  However, in the Reuss structure each phase carries the full stress, so that a
composite of this type will not be strong if, as is usual, the compliant phase is weak.

3. A composite containing soft lossy spherical inclusions in a stiff matrix behaves
similarly to the Voigt composite: low loss and a reduction in stiffness.

4. Composites containing a metal and a small amount of compliant, high loss polymer can
in principle exhibit a stiffness close to that of the metal, as well as high loss.
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1. Stiffness vs loss tangent for some representative materials at or near room temperature.
Steel, 1 Hz, after Nowick and Berry (1972)
Copper, 600 Hz, after Nowick and Berry (1972)
Polymethyl methacrylate, (PMMA), 10 Hz and 1 kHz, after Ferry (1979)
Bone, 1-100 Hz, after Lakes, Katz, Sternstein (1979)
Hevea rubber, 10 Hz-2 kHz, after Ferry (1979)
Polystyrene, 100 Hz, 1kHz, after Ferry (1979)
Polycarbonate, 100 Hz, after Nielsen (1962)
Viscoelastic elastomer, 100, 1,000 Hz, after Shipkowitz, et. al. (1988)

 (a)  (b)  (c)

2. (a) Laminated Voigt structure.
(b) Fibrous Voigt structure.
(c) Reuss structure.
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3. Stiffness-loss map for composites of steel as phase 1 and viscoelastic elastomer as
phase 2.  x: Voigt curve, +: Reuss curve, ♦: two-phase Hashin curve, ◊: upper curve
of three-phase Hashin composite with 20% voids as one phase. o: composite with
phase 2 as dilute spherical inclusions. _ : composite with phase 2 as dilute platelet
inclusions.
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5. Stiffness-loss map for composites of copper as phase 1 and indium as phase 2.  x:
Voigt bound, +: Reuss curve, ♦: two-phase Hashin curve, ◊: upper curve of three-
phase Hashin composite with 20% voids as one phase. o: composite with phase 2 as
dilute spherical inclusions. _ : composite with phase 2 as dilute platelet inclusions.


