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Abstract The complex effective mo-
duli of viscoelastic materials can be
experimentally measured by a num-
ber of techniques giving relaxation
data for materials at discrete fre-
quencies. In this paper we present a
method which allows one to find
bounds on the moduli of the mate-

experimentalists can concentrate
their efforts on gathering highly
accurate data at only a few fre-
quencies and numerically generate
data at other frequencies that may
be of interest.

rial at the unmeasured frequencies.
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Introduction

The physical reality of viscoelastic behavior may be
represented mathematically by a variety of functions of
time or frequency. The complex dynamic function of
frequency is regarded as most closely related to direct
perception. All these functions are interrelated, see for
example Gross (1947, 1953); most of the exact relation-
ships are integral transforms. For example, the transient
time dependent functions which describe creep (strain
response to step stress) or relaxation (stress response to
step strain) are related to the dynamic functions which
describe the response to sinusoidal input, by a one-sided
sine or cosine Fourier transform. For the complex
dynamic moduli, the real and imaginary parts are related
by the Kramers-Kronig relations (Kronig 1926; Kronig
and Kramers 1928), which are integral transforms.
Frequency-dependent data must be taken at close
intervals if there is any possibility of resonance. For
example, a structural system may have one or more
natural resonant frequencies; see Lakes (1998) and Lee
et al. (2000). If the damping is small, the structural
compliance exhibits a sharp peak requiring closely
spaced measurements to resolve. In measurements of
relaxing systems on the continuum scale one does not

Our bounds can be very tight, and
are, therefore, good approximations
to the data. Using our bounds,
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expect resonance provided the frequency in question is
sufficiently below the lowest natural frequency of the
microstructure. It is the purpose of this paper to explore
the question of the required density of data points to
characterize properly relaxing systems, and to elucidate
the question of inferences one can make for frequencies
higher or lower than those available in the data. The
upper frequency limit is dictated by experimental
limitations such as resonance in the apparatus. The
lower frequency limit is usually dictated by the patience
of the experimenter.

At all but the highest frequencies, the response of
many linear viscoelastic materials can be well approx-
imated by a relaxation model, which neglects micro-
inertial effects in the stress-strain relation for the
material itself, possibly a composite. The macroscopic
force-displacement relation for a structural element
will exhibit structural resonance even in the absence
of micro-resonance. For example, consider a complex re-
laxation modulus G*(p) =G'(p) + iG”(p)= |G*(p)|e”
as a function of p=iw for an isotropic viscoelastic
material, where w is the frequency.

In this paper, we will only treat the case of
measurements of G* at real values of w, corresponding
to values of p along the positive imaginary axis.
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However measurements at complex values of w, ob-
tained through free damped vibration experiments
(Struik 1967), could also be easily incorporated into
the bounds. The underlying theory remains valid: only
measurements at purely imaginary values of w, corre-
sponding to positive real values of p, need special
attention.

In accordance with linear viscoelastic theory, the
relaxation model says this function has the integral
representation (see Schwarzl and Struik 1967; Ferry
1972)

H(t)d
1+1/(pr)’

0

where G,=G*(0) is real and non-negative (zero if the
material has Newtonian flow) and H(t) is a positive real-
valued distribution function of relaxation times 7. Here t
is called the relaxation time. If the distribution of
relaxation times is discrete (i.e., H(t) is a sum of delta
functions) then G*(p) is a rational function of p with its
poles and zeros alternating along the negative real p axis,
with a zero nearest or at the origin and a pole nearest
infinity, and with the poles having negative residues.

The function G*(p) is analytic in the entire complex
plane with possible exceptions on the negative real
p-axis. Additionally, the function is positive and real on
the positive real p-axis, has positive imaginary part for
p” > 0, and finally, G*(p) = G*(p), where the bar
denotes complex conjugation. Therefore, knowing the
value of G* (p)) also gives the value of G*(p;), but such
known values will not be incorporated (except in the
derivation of the bounds) since the information they
contain is redundant with the integral representation for
G*(p).

Often experimental data for G*(p) are analyzed by
making some additional assumptions about H(t). Com-
monly used models include fitting the data to a delta
function spectrum or to a box function spectrum. In the
latter case, the box spectrum function (Tobolsky 1960) is
taken to be

o ={ @

and then the data is used to try to fit the positive
parameters 1, 7, and H,. Such spectra have been used
in the modeling of polymer materials in superposition
with other spectra to achieve sufficient flexibility to
reproduce accurately experimental data (see Lakes and
Katz 1979; Tobolsky 1960). Box spectra are mathemat-
ically convenient because they generate simple test
models for which the functions G*(p) can be explicitly
calculated.

Rather than making these ad-hoc assumptions about
the form of H(t), this paper provides bounds, for any
frequency wg, on Gy = G*(py) where pg= iwy. The bounds

G'(p) = Ge + (1)

fr1 <1<,
otherwise

incorporate measured values G;_G*(p,) of the function
G*(p) at N positive real frequencies, w;, w,,..., @y Which
correspond to N values py, ps, ..., py along the positive
imaginary axis. We will refer to these values as anchor
points. Our bounds interpolate these data values and
bound G*(p) at values of p where G* has not been
measured. Moreover, the bounds we provide are the
sharpest possible within the class of functions compatible
with functions that can be represented by the integral
given in Eq. (1), and the bounds provide analytically
admissible approximants to the experimental data.

Specifically this paper addresses the question: given
that one knows how a material responds to oscillatory
inputs at a set of N frequencies, what bounds can one
place on its response at another frequency?

Our analysis is based on the observation that this
bounding problem is essentially the same as one which
has been solved by one of the authors (Milton 1981).
There bounds were derived on the complex effective
permittivity &, of a composite made from two isotropic
phases with complex permittivities & and &, given
values of the function ¢, (g, & ) at N possibly complex
pairs (e}, &;) (see also McPhedran and Milton 1981,
where the bounds were numerically computed and
tested). Due to the homogeneity of this function (i.e.,
due to the fact that ¢.(ce;, cer) = ceo(e1, &) for all real and
complex values of ¢) the problem can be reduced to
bounding ¢.(p, 1) given the value of ¢,(p, 1) at N possibly
complex values p; = 8/1- /812-, and additionally the value
g1, 1)=1. [This is also closely tied to the problem of
bounding Stieltjes functions, since the function f{z)=
[e.(1+z, 1)-1]/z is a Stieltjes function of z with a radius
of convergence around z=0 of at least 1 (see, for
example, Milton 1986) satisfying the additional con-
straint that f{—1) < 1. Common (1968) and Baker (1969)
derive bounds on Stieltjes functions f{z) having a known
radius of convergence and known values of f(z) at N
points. However they assumed that the known values
were for N real values of z and so their bounds are not
appropriate to the present problem.]

The derivation in Milton (1981) was based on the
analytic properties of &.(p, 1), which were rigorously
established by Golden and Papanicolaou (1983). These
analytic properties are the same as those of the function
G*(p) of interest here: in particular, the function ¢.(p, 1)
has an integral representation directly analogous to
Eq. (1). The only difference is that now the value of
G*(1) is not known. As shown in the Appendix, the
proof of the bounds is easily adapted to the present case
where one does not know the value of G*(1). The
bounds we derive apply to arbitrary functions G*(p)
satisfying Eq. (1): no assumptions are made beyond the
non-negativity of G, and H(t).

The bounds confine G, to lie inside a lens shaped
region in the complex plane for any given value of p.
The lens shaped region moves and varies in size as py is
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varied and collapses to a point when pg=py, p>,... Or py.
The region is described as the intersection of two circles
that are given by rational functions of p, (having a
discrete relaxation spectrum) that are compatible with
the data and which have one free parameter. Determin-
ing each of these two circles in the complex plane
involves varying the free parameters while interpolating
the known data values. In this paper, we describe the
rational functions that define the bounds, and give
examples of their use to bound data.

One cautionary remark: before applying the bounds
it is necessary to check that the measured values Gy,
G>,..., Gy at the anchor points are themselves compatible
with the integral representation at Eq. (1). This is
ensured provided the imaginary part of Gy is positive
and that Gy, for k= N-1, N-2,..., 1, lies inside the lens
shaped region associated with the bounds incorporating
the N—k known values G+, G +2,..., Gn.

The remainder of this paper is divided into three
sections. In the next section, the bounds are used to
bound and approximate the moduli of materials that
have box relaxation spectra and used to bound and
approximate experimental relaxation data for an alloy
made from cadmium and magnesium. In the following
section, we describe the bounds and their calculation,
and we give a brief justification of them. Finally, we
describe how the bounds can be used by experimentalists
to obtain data at unmeasured frequencies. In the
Appendix we provide the proof of the bounds.

Examples of the use of the bounds

The practical utility of our bounds will be demonstrated
with two sets of examples. In the first set of examples,
the bounds are applied to model problems with box
relaxation spectra. In the second set of examples,
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the bounds are applied to experimentally obtained
data describing the relaxation of cadmium-magnesium
alloys.

The bounds applied to model spectra

If the relaxation spectra are a sum of delta functions,
the material moduli corresponding to these types of
spectra are rational functions (Gross 1953). Our bounds
are themselves rational and they interpolate the da-
ta provided. Therefore, if the number of data points that
are being interpolated is sufficiently large, our bounds
will exactly recover the complex moduli of these
materials.

Our bounds are applied to model problems with box
relaxation spectra in Figs. 1 and 2. For real values of
the frequency w, the material moduli Gy= G*(iwg) =
G|, + iGj, corresponding to the spectrum given by Eq. (2)
are

Hy 1 + w?c3

Gy ="Joe ({15 G)
2 1 + w?t}

and

Gy = Hy[tan™' (20) — tan™' (110)] , (4)

where we have assumed that G,=0. When our bounds
are applied to a box whose support is small, i.e., box
spectrum that approximates a delta spectrum, the
resulting bounds are very tight because our bounds
can exactly recover the delta function. Even when the
support of the box is large, the bounds are reasonably
tight as seen in Fig. 1. Here we take Hy=1, 7, =0.01,
and 1, = 100. We use two points to anchor our bounds,
at p;=0.01i and p,=100; and show the bounds for
both the real and imaginary parts of Go=G*(pg) =
Gy + iGy.

10'

G” and bounds
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Fig. 1a,b Real and imaginary parts of the material moduli with its upper and lower bounds where the materials distribution function is defined
by a box spectrum. These bounds were generated using only two data points
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Fig. 2a, b Real and imaginary parts of the material moduli with its
upper and lower bounds where the materials distribution function is
defined by two box spectra. These bounds were generated using three
data points. We have found similar results when the anchors are
chosen closer together as well

In all of this paper’s figures, the anchors are easy to
find since they are the points where the bounds
interpolate the data.

In Fig. 2, we take a spectrum composed of two
disjoint boxes. The first box has Hy=1, 1;,=0.1, and
7,=0.5 and the second box has Hy=10, t; =20, and
7, =24. The sum of the spectrum with these two boxes
are qualitatively different than the single boxes. Three
anchor points, at p; =0.02{ and p, =0.3i, p3 = 5i, for our
bounds are used. The bounds are tight again, and with
only two anchors, the bounds capture the apparent
inflection points in G = G'(py) and the two maxima and
the minimum of G, = G”"(py).

Fig. 3a, b Data and two point tand, and |G| bounds for cadmium-
magnesium alloys without errors (solid lines) and with errors (dashed
lines). The anchors are taken at 0.1 Hz and 56.23 Hz: a the bounds for
tandy; b the bounds for |Gy
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The bounds in Fig. 2 are much tighter than the
bounds in Fig. 1 because the range of the data in Fig. 2
is an order of magnitude smaller, the box spectra have
smaller support, and the bounds in Fig. 2 incorporate
three anchor points whereas the bounds in Fig. |
incorporate only two anchor points.

The bounds applied to cadmium-magnesium data

In this section, the bounds are applied to experimentally
obtained viscoelastic properties of cadmium-magnesium
alloys. The alloy used and the experiments performed to
obtain these data are described in Cook and Lakes
(1995). In Figs. 3, 4, and 5, we take two, three, and four
anchor points, respectively, and we show how incorpo-
rating more information by including more anchors can
tighten the bounds.

In Fig. 3, experimentally obtained data and a set of
two point bounds are shown. The bounds are displayed
as solid lines. These bounds were generated by using the
experimental data with anchors taken at 0.1 and
56.23 Hz. No other information from the experimental
data was used to generate these bounds. Figure 3a Shows
the bounds for tand,=Gj/G; and Fig. 3b shows the
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Fig. 4a, b Data and three point tand, and |Gy bounds for cadmium-
magnesium alloys without errors (solid lines) and with errors (dashed
lines). The anchors are taken at 0.00320, 0.1, and 56.23 Hz: a the
bounds for tandy; b the bounds for |G|

bounds for |Gy|. Notice that all but one of the
measurements of tand, are consistent with the bounds,
and all but three measurements of |Gy are consistent
with the bounds, and in each of these cases, the
deviation of the data from the bounds is less than the
error estimates for the experimental results.

When the data and their errors are outside the
bounds, there are two possibilities. First, the measure-
ments at the anchors contain enough error to produce
inconsistent bounds or, second, the bounds reflect the
fact that the remaining data are not perfect. In the
second case if the deviation of the data from the bounds
exceeds error estimates, then one would do well to seek
sources of error not accounted for initially.

Fig. 5a, b Data and four point tand, and |G| bounds for cadmium-
magnesium alloys. The anchors are taken at 0.01, 0.1, 5.62, and
31.62 Hz: a the bounds for tandy; b the bounds for |G|

0.2 T r I T T
0.18F (@) i
0.16F —

80.14
<

>

80.12

kel

S 0.1F

8

©0.08

hel

<

$0.06-
0.04
0.02

0 1 1 1 1
107 10° 10
frequency, o = —ip

-
~

(b)

|Gl and bounds
= 8 03
T

—
(=]

107 10° 10
frequency, o = —ip

We now address the first case where the anchors
contain errors. The dashed curves in Fig. 3 show the
bounds when errors have been added to the anchor
points in a Monte-Carlo simulation. We generated
anchors near the experimental values as

(5)

where ¢, and ¢/ are independently generated from
Gaussian distributions with mean zero and variance
equal to 5% of the real and imaginary parts of G¢'¢. We
then computed the bounds for 30 realizations, excluding
those realizations, if any, where the combination G}V,
G¥,..., Gy was incompatible with the integral repre-
sentation at Eq. (1) (i.e., which were such that for some
value of k the value of G}V lay outside the lens shaped
region associated with the bounds incorporating the N—k
values G|, Gi<5,....Gy™). The dashed curves in Fig. 3a
show the maximum upper and minimum lower bounds
for tand, and in Fig. 3b shows the maximum extent of
upper and lower bounds for |G| in the presence of these
errors.

In Fig. 4, experimentally obtained data and a set of
three point bounds are shown. These bounds were
generated by using the experimental data with anchors
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taken at 0.00320, 0.1, and 56.23 Hz. Figure 4a shows the
bounds for tand, and Fig. 4b shows the bounds for |Gy|.
Notice that by adding the new anchor, the bounds are
tightened at lower frequencies.

The dashed curves in Fig. 4 show the bounds when
errors have been added to the anchor points in a Monte-
Carlo simulation. Again, we generated anchors near the
experimental values as described above, but here using
Gaussian distributions which with mean zero and vari-
ance equal to 3% of the real and imaginary arts of Gj."d.
We then computed the bounds for 30 realizations. The
dashed curves in Fig. 4a show the maximum upper and
minimum lower bounds for tand, and in Fig. 4b shows
the maximum upper and minimum lower bounds for
|Go| in the presence of these errors.

In Fig. 5, experimentally obtained data and a set of
three point bounds are shown. These bounds were
generated by using the experimental data with anchors
taken at 0.00320, 0.01, 13.34, and 56.23 Hz. Figure S5a
shows the bounds for tand, and Fig. 5b shows the
bounds for |Gy|. In these bounds, either the accuracy of
both tand, and |G| of several of the data values between
1 and 10 Hz should be questioned or the accuracy of the
anchor values should be questioned. If the anchor values
are assumed to be correct, then these four point bounds
could be used to approximate the data at intermediate
frequencies.

In practice, if many anchors are used, the experimen-
tal data must be very accurate to find rational functions
that interpolate the data and are analytically consistent.
While it may be difficult to obtain this data experimen-
tally, the bounds offer the advantage that they are tight
for a small number of anchors. Thus one should con-
centrate on measuring a small number of values with
high accuracy.

Finally, we do not know of a method other than by
computation of measuring the change in the bounds
when the data is subject to experimental error. However,
the Monte-Carlo procedure used above could be readily
performed on any data set and gives an idea of how
sensitive the bounds are to errors in the anchor points
being used.

A description of the bounds

To describe the bounds, suppose that G*(p) has been
measured at N frequencies on the positive imaginary
p-axis (i.e., positive real w). The real and imaginary parts
of G*(p) at these points provide 2N constraints on our
bounds.

The bounds are the simplest possible rational func-
tions which interpolate the 2N constraints, and which
are consistent with the integral representation of the
complex moduli given in Eq. (1). The rational functions

that satisfy these requirements are one of the following
two possibilities:

— The first rational function interpolates the data, and
has N simple poles and N simple zeros interlaced
along the negative real axis with a zero closest to the
origin and a pole closest to infinity. The position of
the poles and zeros and the amplitude of the
candidate function, a total of 2N+ 1 parameters, are
partially determined by the 2N known constraints
leaving one parameter free. As this parameter is
varied, while keeping the frequency fixed, the value of
the rational function inscribes a circle in the complex
plane. This circle is one of two defining the bounds in
the complex plane at the given frequency.

— The second rational function interpolates the data,
has N simple poles and N simple zeros interlaced
along the negative real axis, and has one additional
zero at p=0 and one additional pole at p = oco.
Again, the positions of the poles and zeros and the
amplitude of the function, a total of 2N + 1 param-
eters, are partially determined by the 2N known
constraints leaving one parameter free. This param-
eter is varied, keeping frequency fixed, to determine
the second circle defining the bounds in the complex
plane.

The two circles intersect in the complex plane, and
their intersection is a lens shaped region for every
frequency. At any frequency w,, the bounds on the real
and imaginary parts of Gy=|Golexp(idy) are the mini-
mum and maximum of the real and imaginary parts of
the lens shaped region for py=iwg. The bounds on |Gy
and tand, are obtained from the maximum and mini-
mum values of these quantities over the boundary of the
lens shaped region.

Since the proof of these bounds is technical it is
given in the Appendix. It rests on a straightforward
extension of the analysis in Milton (1981). Briefly,
G*(p) can be approximated by a rational function of
very high degree with its poles and zeros alternating
along the negative real axis, and its poles having
negative residues. The positions of the poles and
zeros of the rational function and its amplitude can
then be varied to find the range in the complex plane
over which Go=G*(py) varies while maintaining the
known values G*(p;) =G, at the frequencies, pi, pa,...,
pn- Because the known values G; are complex, this
provides 2N constraints. An examination of first-
order variations shows that a necessary condition for
G, to be at the boundary of its range is that the total
number of poles and zeros of G*(p), not counting
any zero at the endpoint p=0 and not counting any
pole at the endpoint p = oo, must not exceed 2N.
Such rational functions, satisfying the known values,
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have one free parameter and fall into two classes
according to whether or not the function has a zero at
p=0. As the free parameter is varied in each class, G
inscribes a circular arc in the complex plane. The two
arcs generated in this way form the boundary of the
lens.

The bounds on Gj and Gy, are computed numerically.
To do this, we express the numerator and denominator
of the bounds as polynomials using a power basis. Let
9;(p) denote the i-th bound. In the first bound, the
degrees of the numerator and denominator are equal, so

N )
i@l
= 7 3
i:0b D'

gl(p) = ) (6)

where the parameters @; and b; are real, and ay =1 is our
usual normalization. The second bound has a zero at the
origin and a pole at infinity, so the degree of the
numerator is N+ 1, and

P2 ooy
gQ = : P
(.p) ﬁvzoﬁipl

where again the parameters o; and f; are real, and fy=1
is our normalization.

The remaining coefficients of the polynomials are
then determined by the constraint that the bounds
interpolate the data,

Yi(pj) =G, for j=1,2,...,N .

(7)

(8)

The real and imaginary parts of these constraints
provide a set of 2N linear equations on these coefficients.
This set of equations has 2N + 1 unknowns, and its
solutions determine the circle in the complex plane
described above. Values on the circle are determined by
two steps. First fixing one coefficient and solving for the
remaining 2N coefficients with the 2N equations deter-
mines the rational function %;(p). The function ¥,
evaluated at p=py=iwy gives a point on one of the
circles at the desired frequency g, and the circle can be
traced by choosing all possible real values for the free
parameter. Fortunately, this can be simplified.

The center and radius of a circle can be defined by
any three points on the circle. With our bounds, two of
these three points are easy to determine. Our bounds
coincide at the two points where the circles intersect.
These points correspond to ay=0 and by =0 in the first
bound and oy =0, and ;=0 in the second bound. We
will denote the two functions defining the intersection
points of the %,(p) and %, (p) These functions are
found using the first bound to interpolate the anchor
points G;, with the normalization ay=1 and with ay = 0
in the first case and with b, =0 in the second case.

One point on each bound must still be determined for
every frequency. To find this point on the first bound, we
choose the normalization ay=1 and the free parameter

to be by. For the second bound, we choose the
normalization =1 and the free parameter to be oy.
These choices are convenient because when the free
parameter is zero, they reduce to the points where the
bounds intersect. To find a reasonable choice for the free
parameter, we numerically minimize the condition num-
ber of the linear system equations one must solve to find
the radius and center of the circle given three points on
the circle. We used the Nelder-Mead algorithm for the
minimization (see Dennis and Woods 1987) and note that
what we seek is a point that allows us to find the circle
accurately. Therefore, finding a minimum is unimpor-
tant; we only seek a reasonable condition number of the
linear system defining the center and radius.

The lens shaped region that defines the bounds is
itself bounded by one arc from each of the two circles.
The circles consist of two arcs — the arc that defines the
lens and the remaining arc. To determine which arc is
part of the lens, the third point found above can be used
once more. If the distance between that point and the
center of the other circle is smaller than the radius of the
other circle, then the third point lies on the arc that
defines the lens. If the distance is larger than the radius,
the other arc of the circle defines the lens.

Given the anchor points for the bounds, they are
computed with the following algorithm. For each p=iw
where the bounds are desired:

— Find the two intersecting points of the two circles
using the first bound with ¢y =0 first and then with
by=0 and evaluating the intersection functions at
p = io.

— Find a third point on each bound by choosing the free
parameter of the bounds to minimize the condition
number of the linear system of equations that defines
the circles from three points.

— Determine which arc of the circles define the lens
shaped bounds.

— Determine the minimum and maximum real and
imaginary parts of the lens.

An alternative approach to finding the third point is
based on the observation that when p, is taken to be
real, say po=w, where w, is chosen to be some typical
frequency in the range of interest, the lens shaped region
collapses to an interval on the real axis extending
between %2(w,) and %»;(w;) We choose by and oy so
that ¢ (w;) and %,(w,) equal some intermediate point,
which we take to be say the geometric average of the
endpoints:

G1(r) = Ga(wr) = VG 12(w) G (o) . )
With these chosen values of by and oy the arc joining
Y12(po) and %2 (py) which passes through % (py) and the
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arc joining %2(py) and %, (py) which passes through
%>(po) define the bounds for all complex values of py.

Conclusions

As our examples demonstrate, the bounds can be
very tight, even when only a few data points are
incorporated.

This should allow experimentalists to simplify their
method of measurement since they should now need
far less data to obtain equal results. Alternatively, an
experimentalist could use our bounds in combination
with their data to detect when the relaxation model
breaks down. Even when the relaxation model breaks
down G’(p) and G”(p) should still be compatible with
the bounds derived in Milton et al. (1997). Since those
bounds are based on weaker assumptions about G*(p)
they are nowhere near as tight as the bounds discussed
in this paper when G*(p) is known to have the integral
representation at Eq. (1). Additionally, the bounds
derived in Milton et al. (1997) require measurements
of the imaginary part of G*(p) over an entire frequency
interval and the real part at a selected number
of frequencies while the bounds given here only
require measurements of G*(p) at a discrete set of
frequencies.

Our bounds are not as strong when the anchor points
are at widely spaced frequencies. In this case, the bounds
diverge rapidly at high frequencies above the data and
low frequencies below the data. Furthermore, the
bounds require more data to become tight enough to
use as a reasonable approximation to the data at the
unmeasured frequencies.
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Appendix: Proving the bounds

The bounds described in this paper can be established
via the method of variation of poles and zeros (Milton
1981). Here we show how this method works in the
present context. Our goal is to obtain bounds on
Go= G*(po) which hold for all rational functions G*(p)
satisfying the required analytic constraints and which
have degree m, where m is very large. Since irrational
functions in the required class can be approximated
arbitrarily closely by rational ones, we can then obtain
bounds for irrational functions by taking the limit as m
approaches infinity.

Rational functions G*(p) can be represented as a
product:
G*(p) :A@_ql)@_q3)~~~<p_q2m—l)
P=a2)(p—q4)--- (P~ q2m)
in which the q; are the zeros, for odd i, and poles, for
even 1, of the function. The analytic properties of the
function G*(p) imply (Schwarzl and Struik 1967) that
the amplitude 4 must be positive and that the poles and
zeros are interlaced along the negative real axis,
satisfying

; (A1)

(A2)

where the unusual labeling of indices has been chosen to
simplify subsequent formulae, as will be explained later.

The quantities —1/g; are called retardation times, for
odd i, and relaxation times, for even i. Since we wish to
consider only those functions which interpolate the data,
we have the constraints

oy i) a) (B —gomr)
o) =4 (i —a2) (i —q4) - (j — q2m) =%

Gm<q1<qm—2<q3...<qm3<q2<¢q,, , <0,

forj=1,2,...,2N. (A3)
where we have chosen to set
Pj+N :ﬁj7 Gj+N = Gﬁ ] = 1,2, ,N (A4)

in which the bar denotes complex conjugation. The
constraint on G*(p,+ x) is a corollary of the constraint
on G*(pj) because the function G*(p) satisfies G*(p) =
G(p). It is conceivable that the known values G; may
have to be slightly perturbed to ensure that there exist
suitable rational functions (rather than only irrational
functions) interpolating these known values. We will
assume this has been done, although it turns out that
there are always suitable rational functions of degree
m= N interpolating the known values, whenever there
exists an interpolating irrational function.

We will additionally assume that ¢,,, satisfies the
constraint that
q_ < 92m (AS)
where ¢ is very large and negative. (Ultimately we will
want to take the limit as ¢ approaches minus infinity.)
This assumption is convenient because by making it we
ensure that the set of points (4, ¢, g2,..., ¢2,,) Where the
constraints are satisfied is a closed bounded set. (The
amplitude A4 cannot be zero or take unboundedly large
values because then the constraints at Eq. (A3) would be
violated.) Consequently, for p =p, the range of values
Go= G*(po) takes in the complex plane as (4, ¢qi, ¢2,...,
¢>m) varies over all admissible values will also be closed
and bounded, and consequently any given value on the
boundary of the range must be achieved at some
(possibly non-unique) point (4", ¢'1, 5., ¢2m). Now
if the position of a pole happens to coincide with the
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position of a zero, we can cancel this common factor
from the numerator and denominator in Eq. (Al) and
reduce the degree m by 1.

Accordingly, by reducing the value of m as necessary,
we can assume that

4 <@y <1 <Gy 2 <3 <Grp 3<r <G 1 <0
(A6)

The next step is to explore the effect on Go= G*(p)
when we perturb the positions of the poles and zeros
while still maintaining the 2N constraints at Eq. (A3).

We choose (g1, ¢,-.., ¢on) as our set of 2N dependent
variables to be determined from the 2N equations
Eq. A3 and (4, gon+1, ¢28+25 ---» G2m) as our set of
2(m — N) + 1 independent variables. (There is some
freedom in the choice of independent and dependent
variables, but we require that ¢,, and ¢,,_; be kept
independent to make it easier to keep track of the
constraints ¢ < ¢,,, and ¢,,,_; £0. We took an unusual
indexing of the poles and zeros to ensure that the
constrained pole and constrained zero are last in
sequence.) The implicit function theorem implies that
Eq. (A3) have a solution for the dependent variables in
terms of the independent ones, at least for (4, ¢i, ¢2,---
¢>m) in a neighborhood of the point (4°, ¢, ¢%,..., @)
provided the Jacobian

-G G, -G G,
pP1—qi Pr—q2 p1—q3 P1—42n

7G2 Gz 7G2 Gz
n=—q  p-@  p-g 7T pp—qw
—Goy Goy —Goy Goy
paNn—q1  PaN—q2  PNTG3 P2N—4q2N

is non-zero when we set (4, q1, ¢-.., ¢2,,) €qual to (A’,
qlla q,Za ceo q,2m)-

Aside from the factors of Gy, G»,..., Go and the signs
of each column, which are easily factored out, this is one
of those special matrices for which an exact formula is
available for the determinant (see, for example, Noble
1969) and we have

-1 N 2N Gn 28_1 non
J:( ) [2/\/":121\/][ n=1 VS] (Ag)
Hk:l Hl:l(pk - IN)
where
2N 2N
=[] =)y su= ] (@n—a) - (A9)
k=n+1 k=n+1

From the inequalities at Eq. (A6) it is now clear that the
Jacobian as given by Eq. (A7) is non-zero when we set
(A, q15 425-- -5 (]2m) equal to (A,’ q’lo q,Z:"'a q,Zm)' Now by
differentiating Egs. (9) and (A2) with respect to the
independent variable ¢; with i 2 2N + 1, we obtain the
set of equations

-1 -Gy Go —Go .. Go DGO/Dql
Po—4q1 Po—q2  Po—9q3 Po—92N
0 -G G, -G . G Dql/in
pPi—=q1  P—49 P43 P1—92N
0 =% =G =G .. _G&G Dg>/Dg;
p=q  Pp=9 P4 P24 Dq; /in
0 —Goy Gon Goy Gy
PN—q1 P2N—q2  P2N—YG3 P2N—q2N DQZN /in
Go
Po—qi
G
Pr—qi
i+1 G,
= (_l) P2—4qi ) (AlO)
GZN
DP2N—4i

where Gy - G*(pg) and D/Dgq; denotes the derivative with
respect to ¢; at p=po while keeping the remaining
independent variable fixed, and adjusting the dependent
variables so that the constraints at Eq. (A3) remain
satisfied. Using Cramer’s rule, the solution to these
equations for DGy/Dgq; can be expressed as the ratio of
two determinants of the form at Eq. (A7), and with the
aid of the formula at Eq. (A8) for such determinants we
see that

DG, _ (_l)iGO[ 1%]:\11(170 _pn)] [H ﬁZI(Qn - Qi)}
Dg; (Po — ai) [H %Zl(Pn - Qi)] [ %Zl(Po - (In)]

(A11)

Similarly, by differentiating Eqs. (A1) and (A3) with
respect to the independent variable 4, we obtain the set
of equations

_1 —G() G() —Go . GO DGO/DA
Po—q1 Po—q2 Po—q3 Po—qoN
0 6. G -G .. _G Dq: /DA
Pr—q Pr—q2 Pr—q3 Pr—q2N D DA
0 =% Gy -G .. G a2/
n=q P P pP—qw Dq3/DA
0 —Goy G —Goy G
P2N—q1 P2N—q2  P2N—G3 DP2N—42N DQZN /DA
Go
A
Gy
A
G
=—| 4 |, (A12)
Gon
A

where D/DA denotes the derivative with respect to A
while keeping the remaining independent variables
fixed, and adjusting the dependent variables so that
the constraints at Eq. (A3) remain satisfied. Now
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observe that, for odd values of i, the right hand side of
Eq. (A10) when multiplied by ¢;/4 reduces to the right
hand side of Eq. (A12) in the limit ¢; — co. It follows
that

DGy lim ¢;DGy
DA gi — o0 4 Dg;

foroddi , (A13)

and by substituting Eq. (A11) in this formula we have

DGy _ Go [TT3Y1 (o — )]
DA A [IT7Y(po — qu)]

When pq is complex we look for points (4’, 4%, ¢5,...,
¢>n) such that G, is at the boundary of its range of
possible values. At such points, the derivatives DGy/Dg;
and DGy/Dq; (where ¢; and ¢;, with i # j, are two
unconstrained independent variables) if both non-zero
must be such that

DGy _ DGy
Dg; Dq; '’

(A14)

arg (A15)
since otherwise G, could be pushed outside the bound-
ary by small variations in ¢; and g; away from ¢; and q}.
However, at the point (4, ¢, ¢5...., ¢5,) the four
products in Eq. (All) which are enclosed in square
brackets are each either real and non-zero or indepen-
dent of i and non-zero, and therefore can be factored

out. We conclude that the condition at Eq. (A15) can
never be satisfied because arg(po—q;) # arg(po—¢q;) when
Po 1s complex and 7 # j. This contradiction can only be
resolved when at most one unconstrained independent
variable ¢;, exists. The variable ¢, if independent, must
be constrained, i.e., either j=2m, g;=¢ and ¢;¢’; is
constrained to be positive, or j=2m-1, ;=0 and ¢;—¢’;
is constrained to be negative.

Similarly, the derivatives DGy/Dg; and DGy/DA
(where ¢; is an unconstrained independent variable) if
both non-zero must be such that
DGy

0_
Dy, D4

arg (A16)

and from Eqgs. (A11) and (A14) we see that this condition
can never be satisfied at the point (4°, ¢1,¢%» @)
because arg(po—q;) # arg(4’)=0 when p, is complex.
Therefore for G, to be on the boundary there can only
be one unconstrained independent parameter, namely the
amplitude A. Either we have m = N, or alternatively we
have m= N + 1 and the variables ¢5,, and ¢»,, satisfy the
constraints ¢, =0 and ¢5,=¢ . In the limit as ¢
approaches minus infinity, this latter constraint is equiv-
alent to requiring that the bound has a pole at p = co. This
establishes the bounds described in this paper. The key to
the proof is the factorization of the derivatives DG,/Dg;
and DGy/DA as in Eqgs. (All) and (A14).
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