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ABSTRACT: Metal matrix composites of silicon carbide particles in indium–tin
alloy were fabricated with the aim of achieving a high value of the product of
stiffness and viscoelastic damping tan �, without excess density. Stiffness and
viscoelastic damping were measured over a wide range of frequency. For
monodisperse 40% by volume SiC, and for hierarchical 60% by volume SiC the
composite damping increased compared with the matrix at frequencies above 100Hz.
Composite shear modulus was almost a factor two greater than matrix for 40% and
a factor of four greater than that of matrix for 60%. The product of stiffness and
damping exceeds that of well-known materials including polymer damping layers.
Hashin–Shtrikman analysis modelled the observed stiffness increase. The damping
increase at higher frequency cannot be accounted for by a purely mechanical
composite model; it is attributed to thermoelastic coupling and an increase in matrix
dislocations during fabrication.

INTRODUCTION

S
TRESS AND STRAIN relations that depend on time or frequency are called viscoelastic.

Viscoelastic materials are of use in the damping of vibrations to reduce fatigue in

structural elements and to prevent exposure of people to excess noise and vibration.

Polymer layers are commonly added to structural components which themselves have little

damping. A figure of merit for the performance of damping layers is the product of

stiffness (Young’s modulus E or shear modulus G) and damping (tan �; the loss tangent,
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which is proportional to the energy loss per cycle). The loss angle � is the phase angle

between stress and strain during oscillatory loading. In known viscoelastic materials,

solids that combine high damping and high stiffness are not common.
In structural metals such as brass, steel, and aluminum, viscoelastic effects are usually

small; tan � is 10�3 or less. Large viscoelastic effects are common in solid polymers at

ambient temperature; the peak loss tangent, tan �, is from 0.1 to 1 or more. Therefore,

polymer layers are commonly used to add damping to structural members. For polymers,

the product E tan � generally does not exceed 0.6GPa; even that value can be attained only

over a narrow range of temperature [1].
In view of the limitations of polymer damping materials, metals and their composites

are of interest. Substantial viscoelastic response in metals is commonly but not exclusively

associated with a high homologous temperature TH>0.5 in which TH¼T/Tmelting, with T

as the absolute temperature [2]. A high homologous temperature occurs at room

temperature for elements such as cadmium, indium, lead, and tin. Eutectic In–Sn alloy,

which exhibits substantial damping exceeding 0.1 at sub-audio frequency, has been

previously studied in depth [3]. Synthetic ceramics, due to their high melting point, tend to

exhibit relatively little damping at room temperature; however they can exhibit significant

viscoelastic effects at elevated temperature [4].

Metal matrix composites (MMCs) offer attractive physical and mechanical properties

such as high specific modulus, strength, and thermal stability, yet composite design with

consideration of viscoelastic properties, even creep, of particulate reinforced MMCs, is not

common [5]. The effect of material microstructure has been considered in the context of

viscoelastic composites [6]. The best viscoelastic response (highest figure of merit E tan �)
is achieved by incorporating stiff inclusions into a compliant, high damping matrix, as

opposed to high damping inclusions in a stiff matrix, or by using a Reuss laminate

morphology. Particle inclusions are superior to fibers in this context, even though they

provide less stiffening effect for a given volume fraction. There is not much benefit from

increasing the damping of the stiff inclusions.

Since InSn has high loss with moderate stiffness (E¼ 21GPa;G¼ 7.5GPa; tan �¼ 0.1

near 1Hz), and since it had been characterized, it was chosen as the matrix material in a

previous experiment. Laminates consisting of tungsten and InSn were observed [6] to have

a combination of stiffness and loss (the product E tan �) exceeding that of well-known

materials by a factor of more than 10. Although this was a successful proof of concept, the

cost and density of the tungsten would be problematical in applications.
The current study uses silicon carbide particles in an InSn matrix. SiC has a high

stiffness, E¼ 430GPa, low density, �¼ 3.2 g/cm3, and reasonable cost [7]. The SiC

constituent provides the strong, stiff inclusions, while the InSn provides the high damping,

moderately compliant matrix. One concern is the bonding of the two constituents.

A SiC–Sn composite was attempted but abandoned since it was found Sn does not wet

SiC: the molten matrix rejected the particles to the perimeter. Surface-active alloys can

assist in wetting particles. InSn was considered in light of its wetting properties [8] and was

chosen in view of the previous experimental results mentioned above.

The purposes of this study are to fabricate composites with particles of SiC in an

InSn matrix, measure the stiffness and damping over a range of frequency, and to

compare the data to predictions and to previous data for isotropic InSn. In order to

achieve a high concentration of SiC, a hierarchical composite of two different-sized

particles was created.
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EXPERIMENTAL METHODS

Processing

SiC was chosen as the stiff reinforcement and eutectic InSn as the lossy matrix,
for reasons given in the introduction. Two successful samples were produced: one of 40%
by volume 0.5mm SiC particles in an InSn matrix, the other of a hierarchy of 40% by
volume 0.5mm size SiC particles and 20% by volume 0.1mm SiC particles in an InSn
matrix.

SiC particles [9] and chunks of InSn, (99.99% metals basis, [10]) were cast in a test tube
of diameter 6mm at 220�C (InSn melts at 117�C) and mixed using a loop-shape stirring
rod with the tube rotating on its side at about one cycle per second. This method prevents
major agglomeration, settling, and segregation of the particles. After two minutes of
stirring, the composite was tamped using a brass plug to remove porosity. The
temperature was ramped at about � 2�/s to 100�C, and the specimen was furnace
cooled overnight.

For 40% by volume SiC in InSn, particles of average diameter 0.5mm (30/40mesh)
were used. 4.719 g of InSn was combined with 1.387 g of SiC to create a mixture of 40% by
volume SiC, or 22.7% by weight SiC. After casting, the rounded end was cut off using a
diamond saw, to obtain a cylindrical specimen of length 34.0mm, diameter 6.02mm, mass
5.364 g, and density 5.54 g/cm3. Theoretically, the density should be 5.66 g/cm3, so porosity
is about 2.4%.

For 60% by volume SiC in InSn, 2.154 g of InSn was combined with 0.945 g of 0.5mm
SiC and 0.472 g of 0.1mm SiC (Grit 120, [11]) to create a hierarchical mixture of 60% by
volume SiC, or 40% by weight SiC. After casting, the specimen was compressed with a
hydraulic press to remove residual porosity. The specimen was held in a mold at 17.8 kN
(4000 lb) and 90�C for 30min. A volume decrease of 4.3% resulted. The cylindrical
specimen is of length 10.58mm, diameter 6.40mm, mass 1.535 g, and density 4.51 g/cm3.
Theoretically, the density should be 4.81 g/cm3, or a difference of about 6.2%. The
decrease in density may be due to extrusion of some InSn which was observed around the
plug during hot pressing.

Testing

Experiments were performed at ambient temperature (23–25�C) using the modified [12]
broadband viscoelastic spectroscopy apparatus of Chen and Lakes [13]. This device,
shown in Figure 1, was used to measure the loss angle � and the dynamic Young’s modulus
and shear modulus. Each specimen was cemented with cyanoacrylate between a tungsten
support rod at the fixed end and a magnet at the free end. Tungsten was used to maximize
the mismatch of acoustic impedance between specimen and support rod. The purpose is to
minimize parasitic damping due to wave transmission into the rod at high frequencies.
Sinusoidal torque was produced electromagnetically by a Helmholtz coil acting upon the
high-intensity Nd-Fe-B magnet. Angular displacement was measured via laser light
reflected from a small mirror at the free end of the sample to a split-diode light detector.
This technique gives tan � data for frequencies up to about 105Hz; the lower limit
on frequency is dictated by the experimenters’ patience. Time–temperature shifts are not
used; all properties are measured directly. The method is particularly advantageous
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for composites which, unlike amorphous polymers, do not obey time–temperature

superposition. In the present study, since the emphasis is on vibration damping and sound

absorption, neither very low frequency testing nor creep was done. Data were collected

with LabView and a lock-in amplifier (Stanford Research SRS 850). At resonance

frequencies, tan � was inferred from the width of peaks in the dynamic compliance curve,

as follows.

The damping is given by

tan � ffi
1ffiffiffi
3

p
�!

!1
, ð1Þ

in which !1 is the angular frequency at a resonance. The �! represents the full width of
the resonance curve at half maximum amplitude.

The specimen stiffness was inferred from the input torque signal, the calibration of light

detector and magnet, and the output voltage of the light detector. Therefore the magnet,

which provides the torsion or bending moment, was calibrated on a well-characterized

6061 aluminum alloy specimen (G¼ 25.9GPa; tan �� 3.6	 10�6). In view of the specimen

thickness, stiffness, and aspect ratio, it was necessary to take precautions to prevent

the compliance of portions of the system from obtruding in the data. Errors due to the

compliance of the support rod and fixed end glue joint were eliminated by attaching

a mirror to the fixed end of the specimen and measuring its angular displacement in

a separate experiment with the same torque. If they were not eliminated by this procedure,

instrumental compliance effects on the modulus would be 5.6% for torsion and 7.8% for

bending. Free end glue compliance errors were eliminated by attaching the mirror to the

specimen just below the magnet glue joint. Since the specimens have twice the diameter of

those normally tested, a correction was applied to the resonant damping values to account

for [12] the energy transmitted into the support rod.
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Figure 1. Schematic diagram of the apparatus for broadband viscoelastic spectroscopy.
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RESULTS AND DISCUSSION

Figure 2 shows a cross section of the two specimens. The images suggest a reasonably
random distribution of particles without agglomeration. The particles are irregular in
shape. Figure 3 shows a typical interface at a higher magnification. Very few
imperfections, such as gaps, were found at magnifications of 500 and 800. The composites
can be considered effectively homogeneous [14], since the particles are of diameter 0.5mm
and less compared with the specimen diameter of 6.02mm. The particles were cast
randomly, therefore there was no intentional anisotropy.

We choose the Hashin–Shtrikman [15] lower formula as a model for stiffness and
damping as a function of the volume fraction. Other theories [16,17], such as the
composite spheres model with single size spheres, a three-phase model, the self-consistent
scheme, and a concentrated suspension model give results for particulates close to the
Hashin–Shtrikman lower formula.

Figure 3. A typical interface at 200	 magnification between a 0.5 mm SiC particle (in black) and the InSn alloy
(in white).

Figure 2. Cross section views of 6 mm diameter (left) 40% SiC-InSn composite and (right) 60% SiC-InSn
composite. Scale mark is 1 mm.
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The Hashin–Shtrikman bounding formulae apply to isotropic elastic composites. The
lower bound for the shear modulus GL of an elastic composite is,

GL ¼ G2 þ
V1

1=ðG1 � G2Þ þ 6ðK2 þ 2G2ÞV2=5ð3K2 þ 4G2ÞG2
ð2Þ

in which K1 and K2, G1 and G2, V1 and V2 are the bulk moduli, shear moduli and volume
fractions of phases 1 and 2, respectively. Composites obeying the Hashin–Shtrikman
formulae are attained via certain hierarchical microstructures. A coated spheres structure
in which the entire volume of the composite is filled with coated spheres of different
size attains the Hashin–Shtrikman bounds for bulk modulus. A rank-two laminate
structure [18] attains the above Hashin–Shtrikman bounds for shear modulus. In analysis
of viscoelastic composites, the moduli become complex via the elastic-viscoelastic
correspondence principle. The Hashin–Shtrikman formulae are no longer bounds in the
viscoelastic case, but they are close to the bounds [19]. As in the elastic case, properties
described by these formulae are attainable by known hierarchical microstructures. The SiC
inclusions were assumed to be elastic. In view of the particulate morphology, a high
volume fraction of inclusions is required to achieve composite stiffness significantly higher
than that of the matrix.

The theoretical stiffness of particulate composites falls at or near the lower bound,
depending on the specific morphology, assuming perfect bonding and no porosity. Based
on the Hashin–Shtrikman lower formula, for a volume fraction of 40% SiC, G is 16.4GPa.
At 1Hz, tan � is 0.069 compared to 0.075 for InSn matrix; at 10Hz, tan � is 0.033
compared to 0.036 for InSn. For a volume fraction of 60% SiC, G is 26.1GPa and tan � is
0.063 compared to 0.075 for InSn, at 1Hz. The predicted composite tan � is always lower
than that of the InSn alloy matrix.

The experimental shear modulus for 40% SiC was found to be a maximum of 14.2GPa
at 1000Hz, and the dynamic elastic modulus was found to be a maximum of 25.8GPa.
Experimentally, the dynamic moduli depend on frequency since the composite is
viscoelastic. The experimental shear modulus for 60% SiC was found to be a maximum
of 27.4GPa at 400Hz, and the dynamic elastic modulus was found to be a maximum of
64.7GPa.

The effect of residual porosity can be estimated as follows [20]:

Etheory ¼ Esample
�theory

�sample

� �2

ð3Þ

in which Esample is the stiffness of the porous sample measured experimentally, �sample is
measured to be 5.54 g/cm3, �theory is 5.66 g/cm3, based on the density of inclusions and
matrix and their volume fraction, assuming no porosity, and Etheory is the modulus if there
were no porosity. This assumes spherical pores at high density, with no orientation.
Therefore, porosity has the effect of reducing the modulus by 4.4% in the 40% SiC
composite.

The observed composite shear moduli are close to the theoretical prediction based on
the Hashin–Shtrikman lower formula, but the Young’s modulus for the 40% SiC–InSn
composite is less than the expected value. Modulus reduction could occur if particles
agglomerated at the specimen center, but the micrographs suggest this is not the
case. However, since the relatively large particles are restricted to contact with
the mold walls during casting, inevitably there is a decrease in concentration at the
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perimeter. Imperfect particle–matrix bonding could also account for a decrease in

elastic modulus. Also, the particles as shown in Figure 2 are not spherical. Any significant

elongation would make the inclusions behave in a fiber-like manner and give rise to

a composite with increased modulus and reduced damping. In prior studies, the transition

occurs at aspect ratios of 100 or more [21,22]. Most of the particles in Figure 2 have an

aspect ratio close to 1. Therefore the effects of inclusion aspect ratio are considered

minimal in this study.

The tan � and normalized shear modulus in torsion of 40 and 60% SiC–InSn composites

and the InSn alloy [3] used as a matrix are plotted in Figure 4. The tan � inferred from

creep of InSn was calculated as follows. The exact relationship for a power-law creep

function, J(t)¼Atn, is �¼ n�/2. For an arbitrary creep function a power-law may be

fitted for a particular value of time. The loss tangent obtained is then an approximation.

The experimental results for InSn creep follow a power-law for several decades of

time, therefore the quality of the approximation is good. This is confirmed by the

overlap of observed low frequency damping and values derived from creep. Composite

damping properties in bending were similar to those in torsion. Also shown for

comparison are the predicted modulus and damping based on a Hashin–Shtrikman

model. The SiC inclusions have the favorable effect of increasing the stiffness of the

composite in comparison with the matrix. An unexpected benefit is an increase in tan �
at the higher frequencies (above 100Hz), in contrast to the decrease in damping predicted

by a purely mechanical composite model. At lower frequencies (below 1Hz),

the damping of matrix and composite is similar, with somewhat lower damping in

the 60% specimen at lower frequencies. At higher frequencies (above 100Hz), the

composite damping exceeds that of the matrix and the difference increases with frequency.

Above 1 kHz, the tan � of 60% SiC composite increased compared to the InSn alloy and

compared to 40% SiC–InSn composite.

Figure 4. Torsional damping tan � and normalized shear modulus G/G0 vs. frequency of 40% by volume
(triangles, i) and 60% by volume (inverted triangles, j) SiC in InSn compared to InSn [3] (solid circles, �).
G0¼7.5 GPa. Properties were measured directly with no appeal to time temperature superposition.
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The observed high frequency increase in tan � in the composites may be caused by

several mechanisms not accounted for in the composite theory, which assumes a purely

mechanical apposition of the constituents. For example, residual stress due to shrinkage as

cast composites are cooled can generate dislocations in the metal matrix. A high

dislocation density is known in SiC–Al composites; dislocations in the matrix elevate the

composite strength [23]. These dislocations can be responsible for damping. In the present

castings, differential thermal contraction during cooling is caused by the large difference in

the coefficient of thermal expansion (� or CTE) of the InSn and the SiC particles.

Specifically, �¼ 5.4	 10�6K�1 for SiC. Although expansion values for InSn are not

available, an average value �¼ 27	 10�6K�1 for InSn may be considered based on

20	 10�6 K�1 for Sn, 33	 10�6K�1 for In. It is also possible that interfaces with the

particles could refine the microstructure of the eutectic alloy and give rise to enhanced

damping at selected frequencies. Dislocations have been presumed to lead to the ��n

dependence of tan � in InSn and in other alloys, over many decades of frequency � [3]

following a dislocation point-defect mechanism.

Thermoelastic effects [24,25] can also contribute to the damping of composites [26–28]

as well as in objects such as bent bars, in which the strain field is heterogeneous.

Thermoelastic damping due to stress-induced heat flow has a characteristic frequency �0,

�0 ¼
�

2

k

Cv

1

d2
, ð4Þ

with d as thickness, k as the thermal conductivity and Cv as the heat capacity per unit
volume. This is for a vibrating reed. For a one-dimensional composite inclusion of
thickness d, the same relation is obtained. For a general composite, the multiplicative
coefficient may differ, depending on the specific morphology. Thermal properties for InSn
are not available. For Sn, with thickness 0.5mm, �0¼ 2.3 kHz; for In, 83Hz, and for SiC,
131Hz. The peaks predicted are not symmetric: they remain relatively high on the high
frequency end. The predicted thermoelastic peak tan � for SiC in In is 0.004 and for SiC in
Sn it is 0.014, assuming a one-dimensional model [28]. For spherical inclusions, damping
will be lower [27], perhaps by a factor of two depending on the material. A further
complication is the irregular shape of the particles in the present composites.
Thermoelastic damping may contribute to damping at high frequencies in these
composites, but dislocation damping is considered more significant.

For the 60% composite, the figure of merit E tan � is 1.3GPa at 100Hz, and 5.2GPa

near 1Hz. This figure of merit is significantly higher than the maximum, about 0.6GPa

observed in common materials (illustrated by the diagonal line in Figure 5). Polymer

damping layers generally do not exceed E tan �¼ 0.6GPa. Even better performance is

possible if one were to incorporate a third level of structural hierarchy [29] to achieve

higher volume fractions of particles. Indeed, the W–InSn laminates considered previously

had E tan �¼ 8GPa at 1Hz; an optimal volume fraction (95% by volume tungsten) was

obtained straightforwardly in this case by choice of layer thickness. Such high volume

fractions are the due to the fact the Reuss and the Hashin–Shtrikman lower morphologies

are inefficient in achieving high stiffness for given volume fraction. Nevertheless, these

morphologies are of interest in damping layers since they give rise to the highest values of

E tan � for given constituent properties [6].

As for future developments in high damping composites, the optimal matrix would be

stiffer than InSn since that would permit smaller volume fractions of inclusions. Since
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indium is relatively expensive, a matrix containing other materials would be more
desirable in terms of cost.

CONCLUSIONS

The viscoelastic damping and shear and Young’s moduli were increased significantly by
the addition of silicon carbide inclusions in the indium–tin alloy. Hashin–Shtrikman
analysis, which assumes a purely mechanical effect of the inclusions cannot explain the
increase in damping observed at high frequencies. Thermoelastic damping as well as
damping due to dislocations from differential shrinkage are contributory causal
mechanisms. The product of stiffness and damping exceeds that of well-known materials
including polymer damping layers.
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