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SummARy

All polymer foams are viscoelastic; for foams used in earplugs, this response is 
essential to their function. Poisson’s ratio was inferred from viscoelastic response 
of earplug foam in torsion and bending. Poisson’s ratio increases with frequency 
as a result of stress induced air flow. Air within the pores contributes to the 
overall bulk modulus at high frequency, but not at low frequency at which it easily 
flows when the foam is deformed. Such behaviour is the opposite of that of solid 
polymers in which the shear modulus varies with frequency much more than the 
bulk modulus. 

INTRODuCTION

Poisson’s ratio in viscoelastic solids depends on time in the time domain or 
upon frequency in the frequency domain. The viscoelastic Poisson’s ratio 
may be envisaged in the context of the following thought experiment. Does 
a stretched viscoelastic rod get fatter or thinner with time [1]? The transverse 
deformation of such a rod is described by the Poisson’s ratio n, which in 
viscoelastic materials depends on time or on frequency. In solid polymers, 
the viscoelastic Poisson's ratio increases with time; equivalently it decreases 
with frequency, owing to the effect of the glass transition upon the shear 
modulus in comparison with the bulk modulus. It has been suggested [2] that 
the time dependent Poisson’s ratio n(t) must be monotonically non-decreasing 
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in all cases and that experimental results which indicate otherwise must be 
erroneous by virtue of the theory of viscoelasticity. This is certainly sensible for 
solid polymers in which the shear modulus decreases by orders of magnitude 
with increasing time or decreasing frequency, while the bulk modulus changes 
little; for isotropic materials, Poisson’s ratio depends on the shear and bulk 
moduli as discussed in detail below. Examples to the contrary have been 
presented in materials which support coupled fields [3]. For example one 
may envisage a negative Poisson’s ratio elastic foam [4] skeleton containing 
in the interstices a viscoelastic foam of smaller cell size (microcellular) with a 
conventional cell structure [5]. For a short time or a high frequency, the small 
cell viscoelastic foam is assumed to be sufficiently stiff that it provides most 
of the stiffness. The short time Poisson’s ratio therefore approximates that 
(about 1/3) of a conventional foam. For a long time or a low frequency, assume 
that the modulus of the small cell viscoelastic foam relaxes to zero. Then the 
material has properties equal to those of the negative Poisson’s ratio foam 
skeleton. The Poisson’s ratio of this cellular solid therefore decreases with time.

The viscoelastic Poisson’s ratio has a different time dependence depending 
on the test modality chosen; it may appear different in creep and relaxation. 
The difference, for a moderate degree of viscoelasticity, is minor. Interpretation 
of the dynamic Poisson’s ratio in the frequency domain is unambiguous. The 
dynamic frequency domain approach has the further advantage of simplicity 
[6] in that viscoelastic results can be obtained from elastic equations using 
the dynamic correspondence principle by replacing elastic constants with 
complex moduli. 

To realize a material in which Poisson’s ratio increases with frequency, consider 
a porous material with a viscous fluid in the interstices. If the material is a 
polymeric open cell foam, one expects the time or frequency dependence of 
its viscoelastic behaviour to be the same as that of the polymer making up 
the ribs [7]. Moreover, in such foam, the frequency dependence will be the 
same in torsion or bending. That is the case if the deformation is sufficiently 
slow that any fluid (air or water) in the pores has sufficient time to move easily 
in response to stress. Stress-induced fluid flow in porous media gives rise to 
time-dependent behaviour as analyzed by Biot. This viscoelasticity depends 
on a volume change to move the fluid. By contrast, shape changes in shear 
give rise to no viscoelasticity due to fluid flow, though in a polymer matrix there 
will be viscoelasticity associated with the polymer itself. Since the effective 
bulk modulus of the fluid-filled cellular polymer decreases with time due to 
stress-induced movement of the fluid, the Poisson’s ratio also must decrease 
with time, or increase with frequency. In an isotropic material, the moduli and 
Poisson’s ratio are related and that relationship allows one to infer Poisson’s 
ratio from the moduli. Stress-induced airflow in the open cell foam gives rise 
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to macroscopic viscoelastic effects. Creep due to such a mechanism via Biot 
theory [8] predominantly follows a single exponential over a range of time; in 
the frequency domain the corresponding dependence of storage modulus 
E’ on angular frequency w follows the Debye form:

E’ = E0 + E1 w
2t2 / ( 1 + w2t2 ) (1)

The time constant t is inversely proportional to the permeability and is 
proportional to the square of the distance over which the fluid flows. Such 
effects are known in foams [9]. Air at atmospheric pressure (100 kPa) contributes 
an effect in Young’s modulus on the order of 100 kPa. Such an increment in 
modulus is expected at a time scale or a frequency scale associated with the 
stress induced fluid flow. In foam, the air phase contributes to stiffness at short 
time scales or high frequencies. The air does not provide stiffness in foam 
(with communicating porosity between cells) at long time or low frequencies 
since it is then free to escape through the pores. 

Foam earplugs are suitable for studies of stress-induced airflow because 
the foam is compliant and the cell size is relatively small. Viscoelasticity is 
intentionally introduced into this kind of earplug, which is larger than the ear 
canal. The user rolls the plug into a narrow rod. The foam of which the plug 
is made retains its deformed shape for sufficient time so that the user can 
insert it into the ear. The US patent [10] for the Classic AEREO safety earplug 
foams studied previously, prescribes that the compressed plugs are intended 
to recover their initial compression in about 2–20 s giving the user enough 
time to insert it into the ear. Following insertion, the foam then expands in 
creep recovery to slowly fill the ear canal, excluding noise.

In the present study, viscoelastic foam from earplugs was characterized 
dynamically in torsion and bending to infer the frequency dependent Poisson’s 
ratio. 

mATERIALS AND mETHODS

Measurements of viscoelastic moduli in torsion and bending were conducted 
at ambient temperature, 22°C, using broadband viscoelastic spectroscopy 
[11] (Figure 1). Torque (sinusoidal for dynamic studies) was produced 
electromagnetically by electric current in a Helmholtz coil acting upon a high 
intensity neodymium iron boron magnet at the specimen free end. Angular 
displacement was measured via laser light reflected from a small mirror upon 
the magnet to a position-sensitive silicon light detector. To perform torsion and 
bending experiments, an electric current was input to the appropriate coil and 
the corresponding detector axis orientation was used. There are two orthogonal 
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coils, one for torsion and one for bending. The magnet was calibrated for 
torque using slender specimens of the well-known 6061 aluminum alloy. The 
light detector was calibrated using a precision micrometer. Signals proportional 
to torque and angular displacement were input to a lock in amplifier (SRS 
type SR 850) to determine magnitude; phase angle was not considered in this 
study. The magnitude ratio (a structural stiffness) between torque and angle 
are proportional to the magnitude ratio between stress and strain (a material 
stiffness) at frequencies well below resonance. One can correct for approach 
to resonance provided the geometry of specimen and attached inertia is 
sufficiently simple. The data point at the resonant frequency, the highest one 
plotted, was obtained using analysis of a lumped resonating system with one 
degree of freedom. The mass moment of inertia of the attached end piece, 
magnet and of the foam itself were input to the calculation. 

Viscoelastic open cell foam was cut into a cylindrical disc shape 7 mm in 
diameter from earplugs (Mack’s safe sound, Mkeon Products, Warren, MI) 
and was cemented on one side to a cylindrical support rod, and on the other 
side to a polymer (PMMA) end piece 0.5 mm thick. The end piece covered the 
entire end of the specimen. The magnet providing the driving torque was a 

Figure 1. Broadband viscoelastic spectroscopy apparatus
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light weight cube about 1 mm on a side glued to the end piece. This earplug 
foam (a polyurethane foam) has a relatively small cell size similar to that of 
earplug foam studied previously [12].  

Poisson’s ratio was inferred from frequency-dependent torsional and bending 
moduli. Poisson’s ratio is given in terms of shear modulus G and Young’s 
modulus E for isotropic materials by: 

E = 2G (1 + n) (2)

In tests of stiff materials, it is practicable to use the slender long rod geometry 
required to easily infer E from bending. At the other geometrical extreme, for 
an extremely short specimen approximating a thin disc, the modulus is the 
tensorial constrained modulus [13] related to Poisson’s ratio for isotropic 
materials as: 

C1111 = 2G [n/(1-2n) + 1] (3)

For n = 0.3, the observed modulus of such a short specimen is 1.35 E. The 
reason is that the stiff constraints on the ends restrain the Poisson effect so that 
the observed stiffness is greater than Young’s modulus. For compliant material 
such as polymer foam, a slender rod specimen geometry is problematical 
because such a rod has a low natural frequency, which restricts the available 
frequency range. Therefore short specimens were used with thickness h smaller 
than the radius r. Results from short specimens down to radius to thickness 
ratio r/h of 3 can be interpreted by approximate or numerical means. For 
example [14] for r/h = 3 and Poisson’s ratio n = 0.3, the observed modulus in 
compression is about 7% greater than the Young’s modulus. In the present 
study, specimens of diameter 7 mm and thickness 3 mm were interpreted 
using this method. 

RESuLTS AND DISCuSSION

An image of typical foam structure is shown in Figure 2. The structure is 
independent of direction as revealed by observation of multiple sections 
indicating isotropic physical properties. Cells were mostly from 0.1 mm to 
0.4 mm in diameter; there was communicating porosity between cells sufficient 
that the foam could be squeezed flat with little effort. The foam sample had 
a density 0.29 g/cm3 based on mass and volume. Maximum surface strain 
during the tests was about 10-4. Results of viscoelastic measurements are 
shown in Figures 3 and 4. The magnitude of complex moduli increases 
with frequency as expected for a viscoelastic elastomer. The moduli at low 
frequency are reasonable for a flexible foam rubber material. 
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The Poisson’s ratio was observed to increase with frequency as shown in 
Figure 4. As discussed above, elastic properties of foam in the absence of 
fluid-solid interaction are governed by the Gibson Ashby relations: 

Figure 2. Image of foam structure. Scale bar, 100 microns

Figure 3. Viscoelastic response: absolute value of Young’s modulus, |E*| and shear 
modulus |G*| vs. frequency
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Efoam / Esolid = [rfoam / rsolid ]2, Gfoam / Esolid = (3/8)[rfoam / rsolid ]2 (4)

In viscoelastic materials, by the correspondence principle, the moduli become 
complex and frequency dependent. In the following, the star * indicates a 
complex quantity with magnitude and phase. 

E * foam / E*
solid = [rfoam / rsolid ]2, G*

foam / E*
solid = (3/8)[rfoam / rsolid ]2 (5)

Because the elastic Poisson’s ratio is given by: 

n = E/2G - 1

the viscoelastic Poisson’s ratio is: 

n* = E*/2G* - 1 (6)

So, for a foam in which the moduli depend solely on bending of cell ribs (without 
fluid solid interaction), any frequency dependence and phase angles divide 
out, so that the Poisson’s ratio is a real quantity without phase or frequency 
dependence, a function only of the structure of the foam. For most isotropic 
foams, the Poisson’s ratio is close to 0.3. Indeed, such a Poisson’s ratio is 
determined at low frequencies in the present results. The curve fit in Figure 4 

Figure 4. Viscoelastic response: Poisson’s ratio n vs. frequency. The curve fit is based 
on n = n0 + n1 w

2t2 / ( 1 + w2t2 ) with w as (2p)(frequency) as described in the text
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is based on a Debye form (Equation (1)) for Poisson’s ratio, shown in the 
caption, with a time constant t = 0.56 s, initial Poisson’s ratio n0 = 0.29 and 
increment in Poisson’s ratio n1 = 0.112. We remark that the time constant will 
differ under the large strain conditions associated with the use of the foam 
in earplugs; large compressive strain will likely slow the flow considerably. 

The observed frequency dependence of the Poisson’s ratio is interpreted in the 
context of stress-induced flow of air in the pores. At the higher frequencies, 
the modulus in bending increases more than the modulus in torsion because 
bending entails a change in volume during deformation. The volume change 
drives flow of air at the lower frequencies and compresses air in the pores 
at higher frequencies. Poisson’s ratio by virtue of its relation to the moduli 
therefore increases with frequency in this regime. At sufficiently high frequencies 
above those applied here, moduli are expected to become so high that the 
increment in axial stiffness due to entrained air becomes negligible. In that 
regime, Poisson’s ratio is expected to decrease back to about 0.3. The 
frequency dependence of Poisson’s ratio of flexible foam differs from that of 
solid polymers because the airflow mechanism gives rise to an increase in 
bulk modulus hence Young’s modulus and Poisson’s ratio with frequency. By 
contrast in solid polymers molecular rearrangement has much more effect on 
the shear modulus than on the bulk modulus. 

CONCLuSIONS

Poisson’s ratio of viscoelastic earplug foam increases with frequency as a 
result of stress-induced airflow. Such behaviour is the opposite of that of 
solid polymers and it is in contrast to suggestions made by some authors 
that Poisson’s ratio must increase with time (decrease with frequency) for all 
materials. The difference occurs for the following reasons. For the foam, air 
within the pores contributes to the bulk modulus at frequencies sufficiently 
high that there is insufficient time for it to escape or move to a region of lower 
applied strain. Poisson’s ratio by virtue of its relation to the moduli, increases 
with frequency in these foams. 
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